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The logarithmic law for the mean velocity in turbulent boundary layers has long
provided a valuable and robust reference for comparison with theories, models and
large-eddy simulations (LES) of wall-bounded turbulence. More recently, analysis
of high-Reynolds-number experimental boundary-layer data has shown that also the
variance and higher-order moments of the streamwise velocity fluctuations u′+ display
logarithmic laws. Such experimental observations motivate the question whether LES
can accurately reproduce the variance and the higher-order moments, in particular their
logarithmic dependency on distance to the wall. In this study we perform LES of very
high-Reynolds-number wall-modelled channel flow and focus on profiles of variance
and higher-order moments of the streamwise velocity fluctuations. In agreement
with the experimental data, we observe an approximately logarithmic law for the
variance in the LES, with a ‘Townsend–Perry’ constant of A1 ≈ 1.25. The LES also
yields approximate logarithmic laws for the higher-order moments of the streamwise
velocity. Good agreement is found between Ap, the generalized ‘Townsend–Perry’
constants for moments of order 2p, from experiments and simulations. Both are
indicative of sub-Gaussian behaviour of the streamwise velocity fluctuations. The
near-wall behaviour of the variance, the ranges of validity of the logarithmic law
and in particular possible dependencies on characteristic length scales such as the
roughness length z0, the LES grid scale ∆, and subgrid scale mixing length Cs∆ are
examined. We also present LES results on moments of spanwise and wall-normal
fluctuations of velocity.
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1. Introduction
The logarithmic law of the wall for the mean velocity in a rough-wall turbulent

boundary layer, written below using an effective roughness length,

〈u〉
u∗
= 1
κ

log
(

z
z0

)
, (1.1)

† Email address for correspondence: r.j.a.m.stevens@jhu.edu
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LES and generalized log-laws in wall-bounded turbulence 889

is a well-established result (Prandtl 1925; von Kármán 1930; Millikan 1938). Here, u
is the streamwise velocity component, u∗ is the friction velocity, κ ≈ 0.4 is the von
Kármán constant, z is the height from the wall, and z0 is the roughness length.

Models based on the ‘attached-eddy hypothesis’ (Townsend 1976; Perry & Chong
1982; Perry, Henbest & Chong 1986) have predicted a logarithmic behaviour for
the variance of the fluctuations of the streamwise velocity component in the inertial
layer. However, only recently clear experimental evidence (Marusic & Kunkel 2003;
Hultmark et al. 2012; Marusic et al. 2013) has emerged for a universal law for
the variance (second-order moment profiles) of the streamwise velocity fluctuations,
based on well-resolved experimental boundary layer data at sufficiently high Reynolds
numbers. The log-law for the variance has the form

〈(u′+)2〉 = B1 − A1 log
( z
δ

)
, (1.2)

where u′+ = (u − 〈u〉)/u∗ is the normalized streamwise velocity fluctuation and
δ is an outer length scale. The experimental data are consistent with a value of
A1 ≈ 1.25, i.e. the ‘Townsend–Perry’ constant (Marusic & Kunkel 2003; Smits,
McKeon & Marusic 2011; Hultmark et al. 2012; Marusic et al. 2013; Meneveau
& Marusic 2013), while B1 depends on the flow conditions and geometry and is
not thought to be universal. When Gaussian behaviour is assumed, the even-order
moments can be related to the second-order moment through the relationship
〈(u′+)2p〉 = (2p− 1)!!〈(u′+)2〉p, where n!! ≡ n(n− 2)(n− 4). . . 2 is the double factorial
(Meneveau & Marusic 2013). This relationship between the second and 2pth moments
means that the pth root of the even-order moments of the velocity fluctuations should
follow a generalized logarithmic law for higher-order moments as follows

〈(u′+)2p〉1/p = Bp − Ap log
( z
δ

)
. (1.3)

The assumption of Gaussian statistics furthermore implies that Ap = A1[(2p− 1)!!]1/p.
The results of Meneveau & Marusic (2013) show that the experimental data are
consistent with the logarithmic trends of the pth root of the moments (see also
Hultmark et al. 2013), but deviations from the Gaussian prediction for the slopes Ap
are found.

Observation of such possibly canonical statistical behaviour in boundary layers
provides valuable points of reference for turbulence theories and various applications.
Knowledge about the probability density function (PDF) of velocity fluctuations
plays an important role in diverse practical applications, such as characterizing
wind-turbine power fluctuations to estimating probabilities of extreme events. In
addition, the generalized logarithmic laws for higher-order moments may serve as a
new benchmark on which to test predictions from models and simulations.

There is relatively little information available about the ability of large-eddy
simulations (LES) to reproduce accurately higher-order statistics of turbulence. Most
of the literature to date focuses on comparisons of mean velocity distributions and
second-order moments. It is important to recall that most LES models are motivated
by the need to dissipate kinetic energy at the correct rate, i.e. to reproduce the
correct second-order statistics such as mean kinetic energy. However, there is no
guarantee that the inherent nonlinear dynamics of LES will actually reproduce the
extreme values of the distributions that arise from the real nonlinear dynamics
in the real physical system. An earlier study (Kang, Chester & Meneveau 2003)
provided comparisons of LES and experiments for inertial-range velocity increments
and their high-order moments in decaying isotropic turbulence. Overall, the results
were encouraging. However, in wall-bounded flows the situation is significantly more
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challenging due to flow inhomogeneity, anisotropy, wall-blocking, etc. Prior studies
on the accuracy of LES for high-Reynolds-number wall-modelled turbulent boundary
layers include those of Brasseur & Wei (2010), who explored various resolution
criteria to reproduce accurately the mean velocity profiles, and Sullivan & Patton
(2011) who documented behaviour of variances and third-order moments. In this
paper, we use data from high-resolution LES of a turbulent wall-bounded flow to
study the ability of LES to reproduce fundamental scaling laws for second as well as
higher-order moments. Such analysis has not yet been done and is needed to place
LES on firmer fundamental ground as a tool to model turbulence.

In § 2 we start with a brief description of the simulation method. Subsequently,
in § 3.1 we compare the streamwise velocity fluctuation variance from LES with
experimental data (Hutchins et al. 2009; Meneveau & Marusic 2013) and in § 3.2 we
discuss the role of the numerical resolution and possible effects of model and physical
length scales characterizing the near-wall region and in setting the lower limit of the
logarithmic region for the variance. Then, in § 3.4 the spanwise and vertical velocity
fluctuations are analyzed in more detail, which is followed by conclusions in § 4.

2. Large-eddy simulations
The LES code we use to study the turbulent wall-bounded flow solves the filtered

incompressible Navier–Stokes equations without buoyancy, system rotation or other
effects. The nonlinear terms are evaluated in rotational form. A pseudo-spectral
discretization and thus double periodic boundary conditions are used in the horizontal
directions parallel to the wall, while centred second-order finite differencing is used
in the vertical direction (Moeng 1984; Albertson & Parlange 1999; Porté-Agel,
Meneveau & Parlange 2000). The deviatoric part of the subgrid scale (SGS) stress
term is modelled using an eddy-viscosity SGS model, employing the scale-dependent
Lagrangian dynamic approach in conjunction with the Smagorinsky model and a sharp
spectral cutoff test filter (Bou-Zeid, Meneveau & Parlange 2005). Only this model
will be used here, since this study is not focused on comparing the performance of
different SGS models (such comparisons will be presented elsewhere). The trace of
the SGS stress is combined into the modified pressure, as is common practice in
LES of incompressible flow. A second-order accurate Adams–Bashforth scheme is
used for the time integration. Due to the very large Reynolds numbers considered
here we parameterize the bottom surface by using a classic imposed wall-stress
boundary condition. This boundary condition relates the wall stress to the velocity at
the first grid point using the standard logarithmic similarity law (Moeng 1984) using
velocities test-filtered at twice the grid scale (Bou-Zeid et al. 2005). This test-filtering
ensures that the average predicted stress is close to the stress predicted by the classic
logarithmic law. In addition the viscous stresses are neglected.

The wall stress is expressed in terms of the velocity at the first grid point above the
wall (at height ∆z/2 for the staggered vertical mesh, ∆z is the vertical grid spacing)
according to

τw(x, y)=−
[

κ

log
[
(∆z/2)/z0

]]2 ([
u(x, y, ∆z/2)

]2 + [v(x, y, ∆z/2)
]2
)
, (2.1)

where u and v indicate the test-filtered, with a spectral cutoff, streamwise and
spanwise velocity. Subsequently, the stress is divided into its streamwise and spanwise
component using the direction of u(x, y, ∆z/2). For the top boundary we use a
zero-vertical-velocity and zero-shear-stress boundary condition so that the flow studied
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Name z0/H Nx ×Ny ×Nz (∆x=∆y)/∆z Name z0/H Nx ×Ny ×Nz (∆x=∆y)/∆z

A1 10−4 64× 32× 32 2.00π E2 10−5 128× 64× 32 1.00π

A2 10−4 128× 64× 32 1.00π F2 10−5 256× 128× 64 1.00π

B1 10−4 128× 64× 64 2.00π G2 10−5 512× 256× 128 1.00π

B2 10−4 256× 128× 64 1.00π H2 10−5 1024× 512× 256 1.00π

B3 10−4 512× 256× 64 0.50π I2 10−5 2048× 1024× 577 1.13π

C1 10−4 256× 128× 128 2.00π J2 10−6 192× 96× 32 1.00π

C2 10−4 512× 256× 128 1.00π K2 10−6 384× 192× 64 1.00π

C3 10−4 1024× 512× 128 0.50π L2 10−6 768× 384× 128 1.00π

D1 10−4 512× 256× 256 2.00π M2 10−6 1536× 768× 256 1.00π

D2 10−4 1024× 512× 256 1.00π N2 10−6 2048× 1024× 577 1.69π

TABLE 1. LES cases. The simulation for z0/H= 10−4 and z0/H= 10−5 are performed on
a (4π× 2π× 1)H domain in the streamwise, spanwise and vertical direction, respectively,
and the z0/H = 10−6 cases on a (6π× 3π× 1)H domain. The table indicates the number
of grid points used for the different cases and the ratio between the horizontal and vertical
grid spacing. All simulations use the scale-dependent Lagrangian subgrid model.

corresponds effectively to a ‘half-channel flow’ with an impermeable centreline
boundary. The flow is driven by an applied pressure gradient in the x direction,
which in equilibrium determines the wall stress u2

∗ and the velocity scale u∗ used
to normalize the results of the simulations, together with the domain height H used
to normalize length scales. The LES code has been further documented and applied
in various previous publications (Porté-Agel et al. 2000; Bou-Zeid et al. 2005;
Chester, Meneveau & Parlange 2007; Calaf, Meneveau & Meyers 2010; Chamecki &
Meneveau 2011).

As periodic boundary conditions are used in the streamwise and spanwise directions,
a sufficiently large domain in these directions is required in order to allow the flow
to develop with negligible correlation over the domain length. Therefore, we use a
domain up to (6π × 3π × 1)H in the streamwise, spanwise and vertical directions,
respectively. We perform simulations with different grid resolutions and roughness
lengths z0/H, see table 1, to study their influence. Note that for the z0/H= 10−6 case
a larger domain size is used. For this case the mean velocities (compared with the
friction velocity) are higher than for the higher roughnesses and, as will be explained
in more detail below, we found that a larger computational domain is necessary for
this case to prevent unphysical streamwise and spanwise correlations associated with
the use of periodic boundary conditions. As discussed below in detail, a sufficient
grid resolution is needed to accurately capture the logarithmic region for higher-order
moments. In the beginning of the article we compare the simulation performed on the
2048× 1024× 577 grid with z0/H= 10−5 (case I2) with the smooth-wall experimental
data collected at the University of Melbourne (hereafter the Melbourne data) at Reτ =
19 030 (Hutchins et al. 2009) before we compare the LES of the cases with different
roughness lengths with several experimental datasets.

In order to limit the computational time that is needed to reach a statistically
stationary state, an interpolated flow field obtained from a lower-resolution simulation
is used as initial condition for the next, higher-resolution simulation. Each case has
been run for approximately 100 dimensionless time units (where the dimensionless
time is in units of H/u∗) before it is used as initial condition. For the simulation
cases on the 1024× 512× 256 grid this is followed by integrating for an additional 1
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30
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FIGURE 1. (Colour online) Snapshot of the streamwise velocity from the LES performed
on a 2048 × 1024 × 577 grid with z0/H = 10−5 (case I2). The colour indicates the
streamwise velocity in non-dimensional units u/u∗.

dimensionless time unit on the fine grid before data collection is started. Subsequently,
data are collected over roughly 2.5 time units while collecting a full snapshot of
the flow field every ≈0.07 time units. For the 2048 × 1024 × 577 cases the flow is
simulated for approximately 1 time unit and snapshots are saved every 0.03 time units.

A visualization of streamwise velocity normalized by u∗ from a snapshot is shown
in figure 1. The usual elongated structures can be seen at various distances to the
wall and the increase of the variance towards the wall is also evident. In figure 2(a)
we show that the time-averaged mean velocity is close to the expected logarithmic
law for the three different roughness lengths considered here, although a small
‘bump’ in the log-law can be discerned at about z/H ≈ 0.02 to 0.03, depending on
the grid resolution. Many works have proposed various improvements in subgrid
and wall modelling approaches to further improve agreement with the logarithmic
law for mean velocity. Here we take a well-documented model which exhibits
good (but not optimized) performance in predicting the mean velocity and focus on
higher-order moments of the fluctuating (resolved) velocity. The horizontally averaged
vertical stress profiles in figure 2(b) confirm that the flow has reached a statistically
stationary state in the sense that the linear shear stress profile balances the driving
pressure gradient. Figure 2(b) shows that, due to the high resolution, the modelled
normalized SGS stresses (−〈τ+xz 〉) only become larger than 10 % of the total stresses
(−〈τ+xz 〉 − 〈u′+w′+〉) for z/H . 0.01, for the case shown (case I2). This is also the
location where the ‘bump’ is seen in the mean velocity profile. We note that the
results for the other roughness lengths are similar.

Further characterization of the LES result for case I2 is provided from the
streamwise spectra shown in figure 3. The LES captures some of the expected
k−5/3

1 behaviour for all velocity components, although the spectra become slightly
steeper for the highest wavenumbers. A peel-off at various heights can be seen that
prevents a complete collapse onto a single −5/3 slope due to the different values
of the cutoff wavenumber when normalized with z. In the production range k1z < 1,
for the streamwise velocity component a slope of approximately −1 is observed
in experiments (Perry, Lim & Henbest 1987) and in LES of atmospheric boundary
layers by Porté-Agel et al. (2000), see figure 3(a). The slope is lower for the spanwise
velocity component and approximately horizontal for the vertical velocity component.
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FIGURE 2. (Colour online) (a) Horizontally averaged streamwise velocity from LES
compared with the logarithmic law for the mean flow. The squares, diamonds and
triangles indicate the results for z0/H = 10−6, z0/H = 10−5 and z0/H = 10−4,
respectively, while the dashed lines are the expected corresponding log-laws. (b) Vertical
profiles of the resolved stress (−〈u′+w′+〉, circles) the normalized SGS stress (−〈τ+xz 〉,
squares) and the total stress (−〈u′+w′+〉 − 〈τ+xz 〉, diamonds) for z0/H = 1 × 10−5, for
case I2 (on a 2048× 1024× 577 grid).

The PDFs of the velocity fluctuations in figure 3 reveal that the streamwise velocity
component is sub-Gaussian and exhibits negative skewness, see also figure 4(a). The
skewness for the three velocity components is plotted in figure 4(a). The sign change
of the skewness for the streamwise velocity component has also been observed
in experimental data (Metzger & Klewicki 2001; Marusic, Mathis & Hutchins
2010) and a corresponding model has been proposed by Marusic et al. (2010).
The spanwise and vertical velocity components are super-Gaussian, with a positive
skewness for the vertical velocity component and a near zero skewness for the
spanwise velocity component. For the vertical velocity component we can compare
the results observed in LES of planetary boundary layers, see e.g. Moeng & Rotunno
(1990) and Sullivan & Patton (2011), which is a slightly different case because the
effect of the temperature inversion is not included in our simulations. Sullivan &
Patton (2011) show that the change from negative to positive skewness shifts from
z/zi ≈ 0.1 on a 323 grid, where zi is the inversion height, towards z/zi . 0.01 on a
10243 grid. The same trend is observed in our dataset. Apart from this near wall
behaviour, the LES results and measurements (Moeng & Rotunno 1990; Lenschow
et al. 2012) are found to be consistent although we note that there is significant
scatter in the measurements. The observed flatness of the vertical velocity component
between 3 and 4 for 0.05 . z/H . 0.5 and its increase at the top of the domain are
also consistent with the LES of Sullivan & Patton (2011) and recent measurements
(Lenschow et al. 2012).

Later on we will evaluate high-order moments of the fluctuating velocities and thus
statistical convergence is an important issue. As done in the analysis of experimental
data (Meneveau & Marusic 2013), one can test for convergence by examining
premultiplied PDFs. Figure 5 shows the premultiplied PDFs for the even-order
moments up to the 10th-order. The figure shows that the moments, i.e. the area
under the corresponding curves, can be determined accurately up to the 10th-order
moment for the streamwise velocity component. For the spanwise and vertical velocity
component we see that the statistics are slightly less converged for the 10th-order
moment, but still this convergence can be considered as acceptable.
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FIGURE 3. (Colour online) Streamwise spectra of the (a) streamwise velocity, (c) spanwise
velocity and (e) vertical velocity component. Also shown are PDFs for the (b) streamwise,
(d) spanwise and (e) vertical velocity fluctuations at different heights. The dark line is a
Gaussian distribution shown as reference.

3. Results

In § 3.1 we compare the streamwise velocity data with experimental data from the
Melbourne wind tunnel (Hutchins et al. 2009; Meneveau & Marusic 2013), before
discussing the effect of the numerical resolution and near-wall cross-over length
scales (from the near-wall region to the logarithmic region for the variance) in § 3.2.
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FIGURE 4. (Colour online) (a) Skewness and (b) flatness of the streamwise (u′+),
spanwise (v′+) and vertical (w′+) velocity component as function of z/H. The dashed
vertical lines indicate the region (0.04 6 z/H 6 0.23).
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FIGURE 5. (Colour online) Normalized premultiplied PDFs, i.e. (PDF(x′+)(x′+)2p)/

(max(PDF(x′+)(x′+)2p)) where x indicates the (a) streamwise (u), (b) spanwise (v), and (c)
vertical (w) velocity component at z/H = 0.1189 respectively, for p = 1, 2, 3, 4, 5. Each
curve has been normalized by its peak for plotting purposes.

Subsequently we present LES results for the spanwise and vertical velocity components
in § 3.4.

3.1. Streamwise velocity component
Figure 6(a) shows a comparison of the experimental (empty circles) and LES profiles
of variance of streamwise velocity fluctuations. The experiments at Reτ = 19 030 from
Hutchins et al. (2009) are plotted as a function of z/δ where δ is the boundary-layer
thickness, while the LES results are plotted as a function of z/H. For the data, it
appears that the equivalence between the two outer scales (H for the LES and δ for
the boundary layer) appears appropriate, since no additional horizontal shifting is seen
to be required. The agreement between the LES and the data is quite good for z/H &
0.02, with a logarithmic layer for the variance visible from about z/H ≈ 0.23 down
to about z/H ≈ 0.02. This is further confirmed by examining the local slope plot in
figure 6(b), which displays good agreement between LES and experiment down to
z/H ≈ 0.02. The vertical dashed lines indicate the suggested range of the logarithmic
region for the variance, and within this region the slope is A1 ≈ 1.25 shown as the
dashed line in figure 6(a).
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FIGURE 6. (Colour online) (a) Profile of second-order moment for the streamwise velocity
fluctuations obtained from LES (line) compared with the experimental results (circles)
(Hutchins et al. 2009; Meneveau & Marusic 2013) as function of z/H (z/δ). The dashed
line is the fitted logarithmic law for the variance. (b) The local A1 (local slope), see (1.3),
as function of z/H. The dashed vertical lines indicate the region (0.046 z/H(z/δ)6 0.23)
over which A1 is determined. LES grid locations are shown in figures 2–4, figures 7
and 16.

Note that the reported profiles for the variance from LES corresponds to the
‘resolved’ part of the fluctuations and do not include the SGS variance. In order
to verify that the SGS variance can be neglected in the logarithmic region for the
variance 0.046 z/H 6 0.23, we examine the streamwise spectra, see figure 3, in more
detail. The second-order moment is related to streamwise spectra as follows

〈(u′+)2〉 = σ 2
u-LES = 2

∫ kmax

0
Eu(k1; z)u−2

∗ dk1, (3.1)

where Eu(k1; z) is the one-dimensional streamwise spectrum of the streamwise velocity
component in the streamwise wavenumber direction, at height z. The integration is
over the resolved wavenumber range, from 0 to kmax, where kmax is the largest resolved
wavenumber in the LES. By extrapolating the spectra towards infinity the resolved
variance in the streamwise velocity component can be compared with its assumed
true value. We provide estimates for the total variance by extrapolating the spectrum
towards ∞ (for practical purposes we approximate infinity with 10 000kmax) and using

σ 2
u-total = σ 2

u-LES + 2
∫ ∞

kmax

Emodel(k1; z)u−2
∗ dk1, (3.2)

where the second term (the SGS variance, which we will also denote as σ 2
u-SGS) is

calculated from an extrapolated spectrum from the LES data. We use three ways to
specify Emodel used in the second term. The first method is a least-squares fit to the
LES spectrum from kmax/2 until kmax, the second method a least-squares fit to the
LES spectrum from kmax/2 until 3kmax/4 and the third method using a −5/3 spectrum
starting at kmax. The result of this procedure is shown in figure 7 and shows that for
0.02 6 z/H 6 0.95 more than 98 % of the variance in the flow is resolved by our
LES, and for most heights it is more than 99 %. We note that these observations are
qualitatively consistent with the observation that the modelled normalized SGS stresses
(−〈τ+xz 〉) only become larger than 10 % of the total stresses (−〈τ+xz 〉 − 〈u′+w′+〉) for
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FIGURE 7. (Colour online) The fraction of the resolved variance of u, σ 2
u-LES/σ

2
u-total as

function of z/H determined by extrapolation of the spectra towards infinity, obtained using
three different methods, see the details in the text. The dashed vertical lines indicate the
region (0.04 6 z/H 6 0.23). Closer towards the wall where the fraction of the resolved
variance is lower the determination becomes less accurate.

z/H . 0.01, see figure 1(b). Here we emphasize that different methods could be used
to estimate the SGS variance, which could lead to slightly different results. Therefore
the mentioned fraction of the resolved variance and the corresponding SGS variance
should be considered as an approximation only. As is shown in figure 7 the uncertainty
becomes larger closer to the wall due to the difficulties in estimating the SGS variance
when the resolved variance in the flow is only of the order of 50 % which happens
in the first few grid-points above the wall. Here we also emphasize that the mean
and variance profiles obtained from LES are relatively resolution independent in the
well-resolved region of the flow, while differences are observed closer to the wall
where the resolution influences the resolved variance in the flow most.

Next, in figure 8(a) we present profiles of moments of order 2p, raised to the
power 1/p. It shows that the higher-order, even moments of the streamwise velocity
also agree quite well with the experimental data. In agreement with this observation
the corresponding Ap values (see (1.3)) obtained from fitting the data in the interval
0.04 6 z/H 6 0.23 also show good agreement, see figure 8(b).

3.2. Cross-over scale
Estimates for the near-wall start of the logarithmic region for the variance vary
significantly. The classical theoretical assumption is that the equilibrium logarithmic
layer begins at a fixed value of z+. However, recent experimental evidence (Zagarola
& Smits 1998; Marusic & Kunkel 2003; Hutchins et al. 2009; Hultmark et al. 2012;
Hutchins et al. 2012; Winkel et al. 2012; Marusic et al. 2013) and studies such as
those of Wei et al. (2005), Eyink (2008) and Klewicki, Fife & Wei (2009) suggest that
there is a Reynolds-number dependence for the lower limit of this region. Specifically,
Klewicki et al. (2009), Alfredsson, Segalini & Örlü (2011) and Marusic et al. (2013)
have proposed a ∼Re1/2

τ dependence for the lower limit of the logarithmic law for the
variance. At very high Reynolds numbers, such a trend raises the interesting question
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FIGURE 8. (Colour online) (a) Even-order moments (raised to the (1/p)th power) of
the streamwise velocity fluctuations as a function of z/H (z/δ). The symbols indicate
experimental data (Hutchins et al. 2009; Meneveau & Marusic 2013) and the lines LES
data. The dashed vertical lines indicate the logarithmic region for the variance (0.04 6
z/H(z/δ)6 0.23). LES grid locations are shown in figures 2–4, figures 7 and 16. (b) Ap
as function of 2p from the Melbourne experiments at Reτ = 19 030 (circles) and LES
(squares). The dashed line indicates the Gaussian values Ap = A1[(2p − 1)!!]1/p with
A1 = 1.25.

about how to represent effects of viscosity in ‘infinite-Reynolds-number’ LES in
which the viscous stress is neglected entirely. Also, the status of such a scaling for
rough-wall boundary layers has not been established. Here we examine this issue
from the viewpoint of our LES results. In general agreement with observations from
experimental data (Marusic & Kunkel 2003; Hutchins et al. 2009; Smits et al. 2011;
Hultmark et al. 2012; Hutchins et al. 2012; Kulandaivelu 2012; Winkel et al. 2012;
Marusic et al. 2013) we find that the turbulence intensity profiles tend to depart
more abruptly from the logarithmic profile for the variance than profiles of the mean
velocity when approaching the wall. Figure 6 shows the LES data begin to deviate
from the logarithmic law for the variance when z/H . 0.02. We point out that also
at this height the mean velocity displays a non-negligible ‘bump’ as seen in figure 2
around the twelfth vertical grid point, i.e. z/H ≈ 0.02.

In the LES, since viscous effects are neglected, there are only a few other
characteristic length scales in the near-wall region: the grid resolution ∆ (here
we use the simplifying characterization of grid scale as ∆= (∆x∆y∆z)1/3, see Scotti,
Meneveau & Lilly (1993) for a justification), the LES mixing length Cs∆, where Cs

is the dynamically determined Smagorinsky coefficient, and the imposed roughness
length z0. We will denote the height of the break in the variance profiles as zb. One
can postulate a simple extension of the two prior models for the lower limit of the
logarithmic layer for the variance (fixed z+b , or additional dependence on Reynolds
number as z+b Re1/2

δ ) to the case of LES in which an ‘LES inner length scale’ replaces
the viscous scale, ν/u∗. Then one is led to four possibilities: that the cross-over
scales with grid resolution and then it could occur at either a fixed height zb/∆, or at
a fixed ∆(zb/∆)

1/2 (or with the corresponding mixing length Cs∆ instead of ∆). Or
that the cross-over scales with roughness length z0, again leading to two possibilities:
a cross-over at a fixed height zb/z0 or at a fixed z0(zb/z0)

1/2. Naturally, some other
powers may be possible, or if ∆/H is close to z0/H some intermediate options are
possible, including dependencies on both ∆/H and z0/H.
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FIGURE 9. (Colour online) (a) Plots of zb/H as a function of ∆/H compared with (∆/H)1

and (∆/H)1/2 behaviour (dashed lines). (b) Plot of zb/∆ as function of ∆/H. Note that
the zb > 3∆ criterion (horizontal dashed line) is such that the determined zb value is not
directly influenced for the shown results. In both panels the circles, diamonds, and left-
pointing triangles indicate zb/H obtained from A1 = 1 ((1) in the legend). The squares,
right-pointing triangles and up-pointing triangles indicate zb/H obtained from dA1/dz= 0
((2) in the legend), see the details in the text. The ratio of the horizontal to vertical grid
scale is mentioned in the legend, see also table 1.

We first examine the dependence of the cross-over on grid resolution ∆. As
discussed before, the spectra (figure 3) and the vertical stress profiles (figure 2b)
indicate that a smaller fraction of the variance of the flow is explicitly resolved in this
region and the LES modelling therefore becomes more important. The reason for this
is that here the horizontal resolution becomes more limiting and at the same time the
effect of the modelled wall stresses (see (2.1)) becomes noticeable in this region. The
results indicate that the position at which the LES data for the higher-order moments
begin to depart from the logarithmic law depends on the grid resolution. As there
is uncertainty in the determination of zb, especially for lower-resolution simulations,
we find this location using two methods. In the first method we define zb/H based
on the vertical location where A1 = 0.8, see figure 2(b). In the second method zb/H
is based on the position where dA1/dz = 0. Figure 9 shows zb/H as a function of
∆/H assuming zb > 3∆. The zb > 3∆ criterion is used to prevent that the first local
maximum in the A1 as a function of z/H profiles, see figure 6(b), is identified as the
start of the logarithmic region for the variance. For the first method the uncertainty
is based on the difference between zb obtained using A1 = 0.6 and A1 = 1.0. For the
second method the uncertainty gives the difference in zb/H obtained using A1 and A1
smoothed over a 3∆z interval. The figure shows that the lower boundary at which the
logarithmic region for the variance can be observed shifts towards the wall when the
grid spacing is decreased. Because the outer boundary of the logarithmic region for
the variance occurs at a fixed fraction of the boundary-layer thickness (approximately
0.1δ–0.2δ), this means that a sufficient resolution is required to capture the logarithmic
region for the variance over a significant interval. For our highest-resolution simulation
the start of the logarithmic region for the variance is identified to be around
z/H ≈ 0.02 and for some of the lower resolution simulation the logarithmic region
for the variance that can be resolved is too small to observe it clearly. Although the
data in figure 9 show that a small power difference with (∆/H)1 dependence cannot
be excluded, certainly a scaling with (∆/H)1/2 does not appear to hold.
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FIGURE 10. (Colour online) The fraction of SGS variance, σ 2
u-LES/σ

2
u-total, at the lowest

zb/H, see figure 9, as a function of (a) ∆/H and as a function of (b) zb/∆ using the
lower zb estimates shown in figure 9. In (a) the percentage of the SGS variance decreases
with increasing grid resolution (decreasing ∆). In (b) the results nearly collapse with the
zb/∆ relation found. Note that the zb > 3∆ criterion (vertical dashed line) is such that
the determined zb value is not directly influenced for the shown results. The vertical bars
indicate the variation obtained from the different methods to determine the SGS variance.

Figure 10 shows that for all simulations, except for the two lowest-resolution
simulations (A1 and A2 (see table 1); case A1 is omitted from these graphs as zb
cannot be determined well for that simulation) the SGS variance is less than 10 %
at zb and this decreases strongly with increasing resolution. Figure 10(b) reveals, in
agreement with figure 9(a), that the results reasonably collapse when represented as
function of zb/∆. Figure 11 shows zb/H as function of Cs∆/H and zb/(Cs∆) as
function of Cs∆/H. As the Cs value at zb/H is relatively constant, the message of
the corresponding figure is similar to that shown in figure 9, and considering the
uncertainty in the data it is hard to say whether Cs∆ or ∆ length scale is most
appropriate.

Next, we examine the possible dependence of the cross-over height zb/H on the
imposed roughness length z0/H. Figure 12 shows the second-order moments of
fluctuating streamwise velocity for the simulations and several experiments with
the different z0/H∗ and z0/δ

∗, and the corresponding local A1. Here H∗ and δ∗ are
chosen such that all of the shown datasets overlap in order to focus on A1 and not
on B1, which is discussed below. From figure 13 we conclude that zb/H is roughly
independent of z0/H. Simulations using larger roughness lengths (i.e. z0/H= 2× 10−4,
not shown) and at high resolution suggest that when z0/H is no longer much smaller
than ∆/H, the assumptions on which the equilibrium wall-boundary condition is
based, begin to lose validity and results (not shown) are degraded. In figure 12(a)
one can also note that the fluctuations close to the wall decrease with increasing
roughness. The reason is that the rougher surface will result in a larger damping of
the streamwise velocity fluctuations close to the wall. In figure 12(b) we see that
this results in a slight decrease of A1 as function of the roughness length. We note
that the differences in the local A1 obtained for the different roughness lengths in the
LES are mainly due to the difference in the resolutions used for these cases.

Figure 14(a) shows A1 obtained from the region 0.04 6 z/H 6 0.23 compared with
the experimental data from several high-Re-number experiments as summarized in
table 1 of Marusic et al. (2013). In order to relate the inner scale between our LES
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FIGURE 11. (Colour online) (a) Plot of zb/H as function of Cs∆/H compared with
(Cs∆/H)1 and (Cs∆/H)1/2 behaviour (dashed lines). (b) Plot of zb/(Cs∆) as function
of Cs∆/H. The circles, diamonds and left-pointing triangles indicate zb/H obtained from
A1 = 1 ((1) in the legend). The squares, right-pointing triangles and up-pointing triangles
indicate zb/H obtained from dA1/dz= 0 ((2) in the legend), see the details in the text. The
ratio of the horizontal to vertical grid scale, as well as the simulation case numbers as
defined in table 1 are indicated. The horizontal and vertical bars indicate the uncertainty
determined as indicated in the text.
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FIGURE 12. (Colour online) (a) Profile of second-order moment for the streamwise
velocity fluctuations obtained from LES compared with the experimental results as
function of z/H∗ (z/δ∗). (b) The local A1, see (1.3). The colours indicate the different
z0/H∗ values from the LES. The symbols indicate different experimental datasets:
diamonds (roughness, Schultz & Flack 2007), circles (Melbourne, Hutchins et al. 2009),
squares (Superpipe, Hultmark et al. 2012), triangles (SLTEST, Hutchins et al. 2012). LES
grid locations are shown in figures 2–4, figures 7 and 16.

and the experimental data on smooth wall boundary layers we use the approximate
relationship

z0

δ
= ν

δu∗
exp(−κB), (3.3)

where ν, u∗ and δ are the air viscosity, friction velocity and boundary-layer height in
the experiment. The empirical values κ = 0.4 and B= 5 and the ν, u∗ and δ values
as documented in table 1 of Marusic et al. (2013) are used.
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FIGURE 13. (Colour online) (a) Plot of zb/H as a function of ∆/H compared with
(∆/H)1 and (∆/H)1/2 behaviour (dashed lines) plotted for various z0 to quantify
dependence on z0. (b) Plot of zb/∆ as a function of ∆/H. The circles, diamonds and
left-pointing triangles indicate zb/H obtained from A1 = 0.9 ((1) in the legend). The
squares, right-pointing triangles and up-pointing triangles indicate zb/H obtained from
dA1/dz = 0 ((2) in the legend), see the details in the text. The z0/H value is indicated
in the legend, see also table 1.
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FIGURE 14. (Colour online) (a) Plot of A1 as a function of z0/H (z0/δ) for different
experiments (squares, Marusic et al. 2013) and the LES (circles). Note that for the
experimental data z0/δ is obtained from (3.3) as described in the text. (b) Plot of Ap as
a function of 2p from experiments (circles) and LES with the different z0/H. The dashed
line indicates the Gaussian comparison Ap = A1[(2p− 1)!!]1/p with A1 = 1.25.

As the B1 value in the logarithmic law for the variance depends on the large-scale
flow geometry (e.g. it is expected to differ for channels and boundary layers),
and because we are mainly interested in capturing the ‘universal’ slope A1 = 1.25
behaviour, we show the data in figure 12(a) as a function of z/H∗. For the experiments
the uncertainties shown as error bars are those given in tables 1 and 2 of Marusic
et al. (2013). For the LES we determine the uncertainty in the same way as done
for the experimental data (Marusic et al. 2013) by determining the 95 % confidence
bounds from the curve-fitting procedure. In order to obtain values consistent with
the experimental ones we interpolate the LES data to the measurements heights used
in the experiments. The figure suggests that A1 slowly decreases with increasing
roughness although the trend is weak compared with the uncertainties. We also recall
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the observation of Meneveau & Marusic (2013) that Ap for the higher-order moments
becomes less sensitive to Reτ for increasing Reynolds number. Additional experimental
and simulation results are needed to verify whether an actual z0 dependence exists.

3.3. The role of B1

In contrast to the fairly constant A1 value it has been shown by Marusic et al. (2013)
that B1 can vary significantly among different flows, indicative of dependencies on
non-universal large-scale structures in turbulent wall-bounded flows. The data in
figure 14 show the observed variation of B1 as a function of z0/H. The figure shows
that B1 obtained from LES is within the scatter obtained from the experiments. Since
the half-channel flow geometry in our LES differs from the developing boundary
layer experiments, to the degree that there are differences, these are to be expected.
One can note that the B1 value obtained from LES is higher for z0/H = 10−6 than
for the other two LES cases. We are not sure what the reason is for this difference.
The z0/H = 10−6 case is the more challenging case since its lower roughness leads
to higher mean velocities (compared with the friction velocity). As the increase in
the velocity fluctuations is small compared with the increase in the mean velocity,
the turbulence intensity is significantly lower for this case than for the other cases.
Therefore, a larger computational domain to prevent unphysical streamwise and
spanwise correlations associated with the use of periodic boundary conditions is
necessary. A too small domain leads to higher fluctuations. In addition, the ∆/z0
and ∆x/∆z = ∆y/∆z are largest for z0/H = 10−6, which could influence the results.
However, unfortunately it is at the moment not possible to perform the z0/H = 10−6

simulation with the same ∆/z0 and ∆x/∆z = ∆y/∆z as the other cases since this
would require grids with more than an order of magnitude more grid points.

3.4. Spanwise and normal velocity components
We now turn to the fluctuations of the spanwise velocity component. Figure 15(a)
shows the higher-order moment data obtained from LES for the spanwise fluctuations.
The data in this figure do not reveal as clear a logarithmic region for the variance
as the streamwise component results. As indicated before, the spanwise velocity
fluctuations are more difficult to resolve than the streamwise velocity fluctuations
since their characteristic length scales tend to be smaller than the elongated ones
in the streamwise direction. This probably means that the results for the spanwise
velocity component are more sensitive to the numerical resolution than for the
streamwise velocity component. As we have seen in the previous section that the
logarithmic region for the variance of the streamwise velocity can only be captured
clearly when the grid is sufficiently fine, we cannot exclude that LES at significantly
higher spanwise resolution could reveal a logarithmic region for the spanwise velocity
fluctuations as well, but we believe this observation cannot be made based on the
current dataset.

In contrast to the streamwise and spanwise velocity fluctuations, the higher-order
moments for the vertical velocity fluctuations shown in figure 15(b) do not reveal any
logarithmic region for the variance. Because the vertical velocity fluctuations seem
to decrease linearly starting from the outer boundary of the logarithmic region up to
approximately the top of the domain, these data are presented in a linear scale. In this
region the higher-order moments of the vertical velocity seem to be fitted well by

〈w′+2p〉1/p =−Cp
z
H
+Dp. (3.4)
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FIGURE 15. (Colour online) (a) Plot of B1 as a function of z0/H (z0/δ) for different
experiments (squares, Marusic et al. 2013) and the LES (circles). Note that for the
experimental data, z0/δ is obtained from (3.3) as described in the text. (b) Symbols
indicate different experimental datasets: diamonds (rough wall boundary layer, Schultz
& Flack 2007), circles (Melbourne, Hutchins et al. 2009), squares (Superpipe, Hultmark
et al. 2012), triangles (SLTEST, Hutchins et al. 2012). LES grid locations are shown in
figures 2–4, figures 7 and 16.
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FIGURE 16. (Colour online) From bottom to top the figure indicates the moments of order
2p= 2, 4, 6, 8 and 10 as a function of z/H for the (a) spanwise and (b) vertical velocity
fluctuations.

We find that Cp ≈ 1.08, 1.81, 2.53, 3.29, 4.17 for p = 1, 2, 3, 4, 5, respectively.
Interestingly, this means that Cp increases almost linearly as function of p (Gaussian
prediction).

4. Summary and conclusions
We have used LES to study the scaling of higher-order moments in high-Reynolds-

number turbulent wall-bounded flow. In the LES used here, the SGS stresses are
modelled using a dynamic eddy viscosity SGS model, while the stress at the wall is
modelled using a log-law-based closure for rough surfaces. The focus of the study
is not on comparing the performance of different subgrid closures or to explore
resolution requirements in detail. Instead, the focus is on exploring the capabilities
of a more or less standard LES tool in predicting the generalized logarithmic laws
that have been recently observed from data at very high Reynolds numbers. We also
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focus on the lower-limit (distance to the wall) of the generalized logarithmic law for
moments observed near the wall in LES, on exploring whether trends observed in
experimental data as function of Reynolds number (viscous scales) can be discerned
when the latter are replaced by possible scalings with grid scale ∆/H, SGS mixing
length scale Cs∆, or roughness length z0/H.

In terms of reproducing a logarithmic law for variances and higher-order moments
of the streamwise velocity fluctuations, we find very good agreement between the
LES and the experimental data, as long as a sufficiently fine resolution is used.
In experiments the second- and higher-order moments begin to deviate from the
logarithmic law close to the wall due to viscous effects. Non-trivial dependencies
on Reynolds numbers (i.e. viscous effects) were observed at significant distances
from the wall (hundreds of wall units). In the LES, in which the viscous effects are
not included explicitly, the higher-order moments also are found to deviate from the
logarithmic law at some distance zb/H from the wall. Detailed tests show that for
the LES this effect is coupled to the grid scale or (almost equivalently) to the SGS
mixing length used in the simulation and that zb/H is (approximately) independent
of z0/H. While the simulations and comparisons with experimental data show that
there might be a small dependence of A1 on z0/H, the observed trend is very weak
compared to the uncertainties in the data and possible limitations of the simulations.

As all velocity components are available in the simulations, we also studied the
spanwise and vertical velocity fluctuations. For the vertical velocity fluctuations we
do not find any logarithmic regions. Instead, outside the logarithmic region of the
streamwise velocity, the variance of vertical velocity fluctuations as well as appropriate
roots of higher-order moments decrease approximately linearly with the distance from
the wall. For the spanwise velocity fluctuations, the variance and the appropriate roots
of higher-order moments do not show a very clear logarithmic region in the current
dataset. However, we cannot exclude that significantly better resolved LES could
reveal such a logarithmic region as the data for the spanwise velocity component
are found to be more sensitive to numerical grid resolution than for the streamwise
velocity component. The present analysis illustrates how the recently established
logarithmic behaviour of high-order moments in wall-bounded turbulence may be
used to examine and test the accuracy of LES models with more rigor than only
testing based on mean velocity profiles. It will be interesting to see how different
subgrid models, e.g. the standard Smagorinsky model, other eddy-viscosity models
such as the Vreman, Geurts & Kuerten (1997) or the WALE model (Nicoud &
Ducros 1999), or the modulated gradient model (Lu & Porté-Agel 2010, 2013), may
perform in reproducing higher-order moments. We note that some models such as the
modulated gradient model or the k-equation model can provide additional information
about SGS variance. In addition, these tests can be used to asses how different types
of wall model boundary conditions affect the results, see for example the trends
shown in Stoll & Porté-Agel (2006) and the new insights about importance and
coupling of stress fluctuations with outer-scale motions (Marusic et al. 2010).

Acknowledgements

C.M. is grateful to I. Marusic for collaborations on wall-bounded turbulence and for
making the Melbourne wind tunnel data available for comparisons. R.J.A.M.S. was
supported by the ‘Fellowships for Young Energy Scientists’ (YES!) of FOM, M.W.
by DFG funding WI 3544/2-1, and C.M. by US National Science Foundation grants
numbers CBET 1133800 and OISE 1243482. Most computations were performed with

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
4.

51
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2014.510


906 R. J. A. M. Stevens, M. Wilczek and C. Meneveau

SURFsara resources, i.e. the Cartesius and Lisa clusters. This work was also supported
by the use of the Extreme Science and Engineering Discovery Environment (XSEDE),
which is supported by National Science Foundation grant number OCI-1053575.

REFERENCES

ALBERTSON, J. D. & PARLANGE, M. B. 1999 Surface length-scales and shear stress: implications
for land–atmosphere interaction over complex terrain. Water Resour. Res. 35, 2121–2132.

ALFREDSSON, P. H., SEGALINI, A. & ÖRLÜ, R. 2011 A new scaling for the streamwise turbulence
intensity in wall-bounded turbulent flows and what it tells us about the ‘outer’ peak. Phys.
Fluids 23, 041702.

BOU-ZEID, E., MENEVEAU, C. & PARLANGE, M. B. 2005 A scale-dependent Lagrangian dynamic
model for large eddy simulation of complex turbulent flows. Phys. Fluids 17, 025105.

BRASSEUR, J. G. & WEI, T. 2010 Designing large-eddy simulation of the turbulent boundary layer
to capture law-of-the-wall scaling. Phys. Fluids 22, 021303.

CALAF, M., MENEVEAU, C. & MEYERS, J. 2010 Large eddy simulations of fully developed wind-
turbine array boundary layers. Phys. Fluids 22, 015110.

CHAMECKI, M. & MENEVEAU, C. 2011 Particle boundary layer above and downstream of an area
source: scaling, simulations, and pollen transport. J. Fluid Mech. 683, 1–26.

CHESTER, S., MENEVEAU, C. & PARLANGE, M. B. 2007 Modeling turbulent flow over fractal trees
with renormalized numerical simulation. J. Comput. Phys. 225, 427–448.

EYINK, G. L. 2008 Turbulent flow in pipes and channels as cross-stream ‘inverse cascades’ of
vorticity. Phys. Fluids 20, 125101.

HULTMARK, M., VALLIKIVI, M., BAILEY, S. C. C. & SMITS, A. J. 2012 Turbulent pipe flow at
extreme Reynolds numbers. Phys. Rev. Lett. 108 (9), 94501.

HULTMARK, M., VALLIKIVI, M., BAILEY, S. C. C. & SMITS, A. J. 2013 Logarithmic scaling of
turbulence in smooth- and rough-wall pipe flow. J. Fluid Mech. 728, 376–395.

HUTCHINS, N., CHAUHAN, K., MARUSIC, I., MONTY, J. P. & KLEWICKI, J. 2012 Towards
reconciling the large-scale structure of turbulent boundary layers in the atmosphere and
laboratory. Boundary-Layer Meteorol. 145 (2), 273–306.

HUTCHINS, N., NICKELS, T. B., MARUSIC, I. & CHONG, M. S. 2009 Hot-wire spatial resolution
issues in wall-bounded turbulence. J. Fluid Mech. 635, 103–136.

KANG, H. S., CHESTER, S. & MENEVEAU, C. 2003 Decaying turbulence in an active grid generated
flow and comparisons with large eddy simulation. J. Fluid Mech. 480, 129–160.

KLEWICKI, J. C., FIFE, P. & WEI, T. 2009 On the logarithmic mean profile. J. Fluid Mech.
638, 73–93.

KULANDAIVELU, V. 2012 Evolution of zero pressure gradient turbulent boundary layers from different
initial conditions. PhD thesis, University of Melbourne.

LENSCHOW, D. H., LOTHON, M., MAYOR, S. D., SULLIVAN, P. P. & CANUT, G. 2012 A comparison
of higher-order vertical velocity moments in the convective boundary layer from lidar with in
situ measurements and large-eddy simulation. Boundary-Layer Meteorol. 143, 107–123.

LU, H. & PORTÉ-AGEL, F. 2010 A modulated gradient model for large-eddy simulation: application
to a neutral atmospheric boundary layer. Phys. Fluids 22, 015109.

LU, H. & PORTÉ-AGEL, F. 2013 A modulated gradient model for scalar transport in large-eddy
simulation of the atmospheric boundary layer. Phys. Fluids 25, 015110.

MARUSIC, I. & KUNKEL, G. J. 2003 Streamwise turbulence intensity formulation for flat-plate
boundary layers. Phys. Fluids 15, 2461–2464.

MARUSIC, I., MATHIS, R. & HUTCHINS, N. 2010 Predictive model for wall-bounded turbulent flow.
Science 329, 193–196.

MARUSIC, I., MONTY, J. P., HULTMARK, M. & SMITS, A. J. 2013 On the logarithmic region in
wall turbulence. J. Fluid Mech. 716, R3.

MENEVEAU, C. & MARUSIC, I. 2013 Generalized logarithmic law for high-order moments in turbulent
boundary layers. J. Fluid Mech. 719, R1.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
4.

51
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2014.510


LES and generalized log-laws in wall-bounded turbulence 907

METZGER, M. M. & KLEWICKI, J. C. 2001 A comparative study of near-wall turbulence in high
and low Reynolds number boundary layers. Phys. Fluids 13, 692–701.

MILLIKAN, C. M. 1938 A critical discussion of turbulent flows in channels and circular tubes. In
Proceedings of the Fifth International Congress for Applied Mechanics, Harvard and MIT,
12–26 September. Wiley.

MOENG, C.-H. 1984 A large-eddy simulation model for the study of planetary boundary-layer
turbulence. J. Atmos. Sci. 41, 2052–2062.

MOENG, C. H. & ROTUNNO, R. 1990 Vertical velocity skewness in the buoyancy-driven boundary
layer. Boundary-Layer Meteorol. 47, 1149–1162.

NICOUD, F. & DUCROS, F. 1999 Subgrid-scale stress modelling based on the square of the velocity
gradient tensor. Flow Turbul. Combust. 62, 183–200.

PERRY, A. E. & CHONG, M. 1982 On the mechanism of wall turbulence. J. Fluid Mech.
119, 173–217.

PERRY, A. E., HENBEST, S. M. & CHONG, M. 1986 A theoretical and experimental study of wall
turbulence. J. Fluid Mech. 165, 163–199.

PERRY, A. E., LIM, K. L. & HENBEST, S. M. 1987 An experimental study of the turbulence
structure in smooth- and rough-wall boundary layers. J. Fluid Mech. 177, 437–466.

PORTÉ-AGEL, F., MENEVEAU, C. & PARLANGE, M. B. 2000 A scale-dependent dynamic model
for large-eddy simulation: application to a neutral atmospheric boundary layer. J. Fluid Mech.
415, 261–284.

PRANDTL, L. 1925 Bericht über Untersuchungen zur ausgebildeten Turbulenz. Z. Angew. Math. Mech.
5, 136–139.

SCHULTZ, M. P. & FLACK, K. A. 2007 The rough-wall turbulent boundary layer from the
hydraulically smooth to the fully rough regime. J. Fluid Mech. 580, 381–405.

SCOTTI, A., MENEVEAU, C. & LILLY, D. K. 1993 Generalized Smagorinsky model for anisotropic
grids. Phys. Fluids 5, 2306–2308.

SMITS, A. J., MCKEON, B. J. & MARUSIC, I. 2011 High Reynolds number wall turbulence. Annu.
Rev. Fluid Mech. 43, 353–375.

STOLL, R. & PORTÉ-AGEL, F. 2006 Effects of roughness on surface boundary conditions for large-
eddy simulation. Boundary-Layer Meteorol. 118, 169–187.

SULLIVAN, P. P. & PATTON, E. G. 2011 The effect of mesh resolution on convective boundary layer
statistics and structures generated by large-eddy simulation. J. Atmos. Sci. 68, 2395–2415.

TOWNSEND, A. A. 1976 Structure of Turbulent Shear Flow, 2nd edn. Cambridge University Press.
VON KÁRMÁN, T. 1930 Mechanische Ähnlichkeit und Turbulenz. Gött. Nachr. 68, 58–76.
VREMAN, B., GEURTS, B. & KUERTEN, H. 1997 Large-eddy simulation of the turbulent mixing

layer. J. Fluid Mech. 339, 357–390.
WEI, T., FIFE, P., KLEWICKI, J. C. & MCMURTRY, P. 2005 Properties of the mean momentum

balance in turbulent boundary layer, pipe and channel flows. J. Fluid Mech. 522, 303–327.
WINKEL, E. S., CUTBIRTH, J. M., CECCIO, S. L., PERLIN, M. & DOWLING, D. R. 2012 Turbulence

profiles from a smooth flat-plate turbulent boundary layer at high Reynolds number. Exp. Therm.
Fluid Sci. 40, 140–149.

ZAGAROLA, M. V. & SMITS, A. J. 1998 Mean-flow scaling of turbulent pipe flow. J. Fluid Mech.
373, 33–79.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
4.

51
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2014.510

	Large-eddy simulation study of the logarithmic law for second- and higher-order moments in turbulent wall-bounded flow
	Introduction
	Large-eddy simulations
	Results
	Streamwise velocity component
	Cross-over scale
	The role of B1
	Spanwise and normal velocity components

	Summary and conclusions
	Acknowledgements
	References




