A CONNECTED METRIC SPACE WITHOUT AN EQUALLY SPACED CHAIN OF POINTS

J. Arias de Reyna

We construct a connected subspace M of the euclidean plane \mathbb{R}^{2} containing two points A and B such that, for every pair of points $\{P, Q\}$ of $M \backslash\{A, B\}$, the three real numbers $d(A, P)$, $d(P, Q)$ and $d(Q, B)$ are not the same. This solves a question posed by Väisälä.

In [3], Väisälä proved the following result:
"Let (X, d) be an arcwise connected metric space and let $a, b \in X$. Then for every positive integer n there is a sequence of distinct points $a=x_{0}, \ldots, x_{n}=b$ in X such that $d\left(x_{j-1}, x_{j}\right)$ is independent of j ".

He also asked if this result is true when arcwise connectedness is replaced by connectedness.

We solve completely Väisälä's question by means of the construction of a connected metric space (M, d) with two points A and B such that, for every $P, Q \in M \backslash\{A, B\}$, the real. numbers $d(A, P), d(P, Q)$ and $d(Q, B)$ are not the same. The metric space (M, d) is a subspace of the plane \mathbb{R}^{2} endowed with the euclidean distance.

Let $A=(0,0)$ and $B=(1,0)$. If $P, Q \in \mathbb{R}^{2}$ we shall say that
Received 18 July 1983.
Copyright Clearance Centre, Inc. Serial-fee code: 0004-9727/83 $\$ \mathrm{~A} 2.00+0.00$
P and Q are related (and we will write $r(P, Q)$), if $P, Q \subset \mathbb{R}^{2} \backslash\{A, B\}$ and either $d(A, P)=d(P, Q)=d(Q, B)$ or $d(A, Q)=d(Q, P)=d(P, B)$. For every $P \in \mathbb{R}^{2}$ the set $\left\{Q \in \mathbb{R}^{2}: r(P, Q)\right\}$ contains, at most, four points.

Let Ω be the first ordinal number equipotent to the continuum. Select a well ordering $\left\langle P_{\alpha}: \alpha<\Omega\right\rangle$ of the points of \mathbb{R}^{2} such that $P_{0}=A$ and $P_{1}=B$. Select a well ordering $\left\langle F_{\alpha}: \alpha<\Omega\right\rangle$ of the perfect subsets of \mathbb{R}^{2} such that $A \in F_{0}$ and $B \in F_{I}$.

Now we define $\left\langle Q_{\alpha}: \alpha<\Omega\right\rangle$ inductively in the following way.
Suppose we have chosen, for every $\beta<\alpha, Q_{\beta}$. Then let Q_{α} be the first point P in the well ordering $\left\langle P_{\alpha}: \alpha<\Omega\right\rangle$, satisfying
(a) $P \neq Q_{\beta}$ for every $\beta<\alpha$,
(b) $P \in E_{\alpha}$,
(c) if $\beta<\alpha, P$ is not related to Q_{β}.

There exist points that satisfy (a), (b) and (c) because the cardinal of F_{α} is the cardinal of the continuum [Levy, 2.15], (c) is equivalent to the assertion $P \notin\left\{Q \in \mathbb{R}^{2}\right.$: there exists $\beta<\alpha$ with $\left.r\left(Q, Q_{\beta}\right)\right\}=H_{\alpha}$ and the cardinal of $H_{\alpha} \cup\left\{Q_{\beta}: \beta<\alpha\right\}$ is smaller than the cardinal of the continuum.

We define $M=\left\{Q_{\alpha}: \alpha<\Omega\right\} \subset \mathbb{R}^{2}$ endowed with the induced metric. It is clear that $A=Q_{0}$ and $B=Q_{1}$, hence $A, B \in M$.

There exist no pair of points $\{P, Q\}$ in $M \backslash\{A, B\}$ such that $d(A, P)=d(P, Q)=d(Q, B)$ because otherwise P and Q would be related points and the definition of M would imply either $P k M$ or $Q k M$.

It is clear that $Q_{\alpha} \in F_{\alpha} \cap M$. It follows that the set M has nonempty intersection with every perfect subset of \mathbb{R}^{2}. The set $M \subset \mathbb{R}^{2}$ is connected according to Sierpinski [2], since its complement does not
contain any perfect set.

References

[1] A. Levy, Basic set theory (Springer-Verlag, Berlin, Heidelberg, New York, 1979).
[2] W. Sierpinski, "Sur un ensemble ponctiforme connexe", Fund. Math. 1 (1920), 7-10.
[3] J. Väisälä, "Dividing an arc to subarcs with equal chords", Colloq. Math. 46 (1982), 203-204.

Facultad de Matematicas,
Universidad de Sevilla,
c/ Tarfia sn.,
Sevilla-l2,
Spain.

