54E35, 54G20, 54D05

BULL. AUSTRAL. MATH. SOC. VOL. 28 (1983), 283-285.

A CONNECTED METRIC SPACE WITHOUT AN EQUALLY SPACED CHAIN OF POINTS

J. ARIAS DE REYNA

We construct a connected subspace M of the euclidean plane \mathbb{R}^2 containing two points A and B such that, for every pair of points $\{P, Q\}$ of $M \setminus \{A, B\}$, the three real numbers d(A, P), d(P, Q) and d(Q, B) are not the same. This solves a question posed by Väisälä.

In [3], Väisälä proved the following result:

"Let (X, d) be an arcwise connected metric space and let $a, b \in X$. Then for every positive integer n there is a sequence of distinct points $a = x_0, \ldots, x_n = b$ in X such that $d(x_{j-1}, x_j)$ is independent of j ".

He also asked if this result is true when arcwise connectedness is replaced by connectedness.

We solve completely Väisälä's question by means of the construction of a connected metric space (M, d) with two points A and B such that, for every $P, Q \in M \setminus \{A, B\}$, the real numbers d(A, P), d(P, Q) and d(Q, B) are not the same. The metric space (M, d) is a subspace of the plane \mathbb{R}^2 endowed with the euclidean distance.

Let A = (0, 0) and B = (1, 0). If $P, Q \in \mathbb{R}^2$ we shall say that Received 18 July 1983.

Copyright Clearance Centre, Inc. Serial-fee code: 0004-9727/83 \$A2.00 + 0.00

P and *Q* are related (and we will write r(P, Q)), if $P, Q \subset \mathbb{R}^2 \setminus \{A, B\}$ and either d(A, P) = d(P, Q) = d(Q, B) or d(A, Q) = d(Q, P) = d(P, B). For every $P \in \mathbb{R}^2$ the set $\{Q \in \mathbb{R}^2 : r(P, Q)\}$ contains, at most, four points.

Let Ω be the first ordinal number equipotent to the continuum. Select a well ordering $\langle P_{\alpha} : \alpha < \Omega \rangle$ of the points of \mathbb{R}^2 such that $P_0 = A$ and $P_1 = B$. Select a well ordering $\langle F_{\alpha} : \alpha < \Omega \rangle$ of the perfect subsets of \mathbb{R}^2 such that $A \in F_0$ and $B \in F_1$.

Now we define $\langle Q_{\alpha} : \alpha < \Omega \rangle$ inductively in the following way. Suppose we have chosen, for every $\beta < \alpha$, Q_{β} . Then let Q_{α} be the first point P in the well ordering $\langle P_{\alpha} : \alpha < \Omega \rangle$, satisfying

- (a) $P \neq Q_{\beta}$ for every $\beta < \alpha$,
- (b) $P \in F_{\alpha}$,
- (c) if $\beta < \alpha$, P is not related to Q_{β} .

There exist points that satisfy (a), (b) and (c) because the cardinal of F_{α} is the cardinal of the continuum [Levy, 2.15], (c) is equivalent to the assertion $P \notin \left\{ Q \in \mathbb{R}^2 : \text{there exists } \beta < \alpha \text{ with } r(Q, Q_{\beta}) \right\} = H_{\alpha}$ and the cardinal of $H_{\alpha} \cup \left\{ Q_{\beta} : \beta < \alpha \right\}$ is smaller than the cardinal of the continuum.

We define $M = \{Q_{\alpha} : \alpha < \Omega\} \subset \mathbb{R}^2$ endowed with the induced metric. It is clear that $A = Q_0$ and $B = Q_1$, hence $A, B \in M$.

There exist no pair of points $\{P, Q\}$ in $M \setminus \{A, B\}$ such that d(A, P) = d(P, Q) = d(Q, B) because otherwise P and Q would be related points and the definition of M would imply either $P \notin M$ or $Q \notin M$.

It is clear that $Q_{\alpha} \in F_{\alpha} \cap M$. It follows that the set M has nonempty intersection with every perfect subset of \mathbb{R}^2 . The set $M \subset \mathbb{R}^2$ is connected according to Sierpinski [2], since its complement does not contain any perfect set.

References

- [1] A. Levy, Basic set theory (Springer-Verlag, Berlin, Heidelberg, New York, 1979).
- [2] W. Sierpinski, "Sur un ensemble ponctiforme connexe", Fund. Math. 1 (1920), 7-10.
- [3] J. Väisälä, "Dividing an arc to subarcs with equal chords", Colloq. Math. 46 (1982), 203-204.

Facultad de Matematicas, Universidad de Sevilla, c/ Tarfia sn., Sevilla-12, Spain.