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Abstract

The functional least squares procedure of Chambers and Heathcote for estimating the slope parameter
in a linear regression model is analysed. Strong uniform consistency for the family of these estimators
is proved together with a necessary and sufficient condition for weak convergence in the space of
continuous vector valued functions. These results are then used to develop the asymptotic normality of
an adaptive version of the functional least squares estimator with minimum limiting variance.

1980 Mathematics subject classification (Amer. Math. Soc): primary 62 J 05, 62 F 35; secondary 60 F
17.

1. Introduction

Let p > 1 be an integer and consider the linear regression model

Yj=(xJ,fi)+eJ, j=l,...,n,

where the Xj: = (xjX,. . . ,x jp), j = 1,2,..., are known deterministic vectors, /} =
(/?,,...,jSp) is the unknown slope vector to be estimated from the observations
Yl,...,Yn, and where the errors e,, e2 , . . . are independent identically distributed
real random variables with common distribution function F(x) — Pr{e7- < x},
x E R, and characteristic function

(1.1) C(t)=f°°e'"dF(x).
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[2] Functional least squares 337

Throughout ( , > will denote inner product. Any intercept term is absorbed into
the errors. It is assumed that there is a unique slope vector /?0 to be estimated,
that is, the sequence {ey} of errors can in fact be written as {Yj — (xj, Po)}. The
usual least squares estimator /?„ of /?0, which dates back to Gauss, is the statistic
minimising the sample version

£ 5 (Yj-Y- (xj-x.fi))2

7= 1

of the error variance a2 = /!£, (x — Esj)2 dF(x). It is well-known that, under
some restrictions on the vectors Xj,j — 1,2,..., /?„ is a consistent estimator for {SQ

and nl/2(0n — /?0) is asymptotically normally distributed provided a2 < oo. On
the other hand, several authors have reported non-robust properties of /?„ if the
distribution of the e; deviates from the normal distribution.

Chambers and Heathcote (1981) observed that when the errors are normally
distributed, then least squares estimation is equivalent to minimising the empirical
counterpart of the function

since in the normal case this is simply a£
2 for all t. If e is not normal but ae

2 < oo,
then least square estimation is equivalent to minimising the sample version of the
constant term in the power series expansion of L(t). In this case L(t) = ae

2 + o(t)
as t -> 0. Let us introduce the function

(1-2) L(fi; t) = -y2
 2

where </>(s), s £ R*. is the limiting average characteristic function of the nonsto-
chastic vectors x,,...,xn, assumed to exist by condition (2.i) below. Note that
L(fi0; t) = L(t). Based upon the above observations, Chambers and Heathcote
(1981) proposed the fascinating idea of constructing the functional least squares
estimator /?*(f) of /?„ defined, for each t ¥= 0 in some interval around the origin,
to be the random variable minimising

(1.3) £„(/?;/) = - - l o g
7 = 1

the sample version of L(fi; t). Upon taking partial derivatives with respect to the
components of /?, they arrived at the estimating equations

(1.4) /„(/?; 0 = (0,. . . ,0)

where

(1-5) ln(fi;t) = (lHl(fi;t),...,lnp(fi;t))
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338 Sandor Csorg6 [3|

with

(1.6)
i i n n

*) = ~A 2 2

They also noted that in the limit t -» 0 the estimating equations (1.4) become the
normal equations of least squares estimation, and therefore /?n*(0) can always be
interpreted as /?„. Under conditions (2.i)-(2.vi) of the next section they proved
that at each point t the estimator /?„*(*) is strongly consistent for /?0, and that
«1/2(A,*(0 ~ Po) is asymptotically normally distributed with mean zero, covari-
ance matrix o2(t)A~\ where the;? X p symmetric matrix A~l is the inverse of the
matrix A of condition (2.iii) below and the scalar "variance function" o2(t) is
that of (6.1) below. Chambers and Heathcote (1981) computed o2(t) for a
number of error distributions and linked an integrated, or averaged version of the
estimator to robust estimation theory. Heathcote (1982) further illustrated func-
tional least squares estimation showing that it may be viewed as perturbed
ordinary least squares estimation, treating efficiency problems and connecting it
to the theory of angular random variables by some illuminating comments. He
also constructed confidence bands for the variance function o2(t) = t'2sinha2t2

of normally distributed errors.
Now if the reasonable criterion of minimum asymptotic variance is accepted

for differentiating among possible estimates of /?0, then fin is appropriate only if
o2{t) has a global minimum at zero. But Chambers and Heathcote (1981) have
shown that in the class of distributions which lack a variance, or are normal, or
are leptokurtic, the normal is the only one for which this is the case. (It would be
of interest to know whether this holds in the class of all distributions.) If o2(t)
achieves its global minimum elsewhere, say at t0 ¥= 0, then P*(t0) would be the
ideal estimator. But in practice o2(t), determined completely by the error char-
acteristic function C(t) of (1.1), is not known. Chambers and Heathcote proposed
an estimator o2(t) (see (6.3) below) for o2(t), and reasoned heuristically that the
random variable tn minimising o2(t) is the second best choice, that is, the
adaptive estimator /?*(/„) is to be used for estimating /?0.

One of the main goals of this paper is to justify the above reasoning, or, rather,
to see the extent to which it can be justified and beyond which it cannot be
justified. This is expressed by condition (3.i) below. This condition reflects the tail
behaviour of the distribution of the errors and, fortunately, is satisfied in all
practical situations. For example, it is satisfied by errors with any stable distribu-
tion. The main result, presented in Section 7, lies somewhat deeper and requires
for its proof (almost sure) uniform consistency of /?„*( •) and a weak convergence
theorem for the sequence of stochastic processes wl/2(/?*( •) — /?0), the condition
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[4] Functional least squares 339

for the latter being necessary and sufficient. These results are perhaps of interest
in their own right, and are presented in Sections 4 and 5, respectively, after listing
the conditions for the Xj sequence in Section 2 and some preliminaries from
Csorg6 (1981a, b) and Marcus (1981) in Section 3. Strong uniform consistency of
0n

2( •) is developed in Section 6, together with the strong consistency of tn. Some
concluding remarks are found in Section 8.

2. Assumptions

We shall use the following conditions for the x}• = (x y l , . . . ,Xjp) vectors:
(2.i) The limit <f>(s) — l im,, .^ <t>n(s) exists for all s G Rp for the functions

and the function <j>(s) is continuous at s = (0,. . . ,0).
(2.ii) For any k and m, 1 < k, m < p, the following limits exist:

1 " 1 "
*km = u m - 2 XJkXJm, Xk = lim - 2 *;*•

n->oo n = i n^oo " ,= ]

(2.iii) The/? X p matrix A = (akm) with elements akm — xkm — xkxm is nonsin-
gular.

(2.iv) For any k and m, 1 < k, m < p, we have

hm — 2 4'y-. = °' hm2 "j=lxjkx}m

hm -^— J _ I = 0 , lim y 2
 J = 0.

Throughout we will restrict / to a compact set S C R «o? containing zero, for
example S can be [-b, -a] U [a, b] with 0 < a < b. Also we restrict /? to a
compact set A" C R1" with a non-empty interior, and thus consider the functions
L(P; t) and Ln(0; 0 of (1.2) and (1.3) on the compact set K X S C R'+ 1 . Hence
we define /&*(/) by the equation

(2.1) LH(R(t); t) = inf Ln(P; t), t G 5 .

As Chambers and Heathcote (1981) pointed out, /J*(0 is not necessarily uniquely
defined, but any of the many possible ways of making it unique would work. We
shall also use the following two further conditions:

(2.v) C(0 =*= 0 for any t G S.
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(2.vi) fi0 is an interior point of the compact set K, and 0 <|<Hs)|< 1 =

<j>(0,... ,0) for any s ¥= (0,... ,0) in the set

(2.2) R={s = t(f30-/3):P<=K,teS}.

Apart from that they did not specify compact sets, the above conditions are the
same as those required by Chambers and Heathcote (1981), with the extra
continuity of <j> at the origin in condition (2.i) and the extra requirement of the
second and fourth relations in condition (2.iv). Formally they do not require the
third relation of (2.iv), but they implicitly make use of it. It is, in fact, necessary.
This third relation may well imply the fourth for nonzero xk's as well, but I
cannot prove it. Since

L(/8; /) = - 1 log|C(0|2 - y2 log|<K'(A> " P))t

condition (2.vi) is equivalent to the condition

(2.3) L(0o;t)<L(p;t), 0 G K, 0 * ft,' G 5.

For n large enough /?„*(/) is a solution of (1.4) almost surely. Applying the
implicit function theorem (Rudin (1976), page 224) we see that /?„*(?) is unique
and is continuously differentiable (for n large enough, almost surely) on a suitably
chosen S. Of course we assume that our S above is such a choice. In particular,
/?„*( •), for n large enough, can be considered a random element of the separable
Banach space QP(S) of continuousp-dimensional vector valued functions/(/) =
(fi(t),...,fp(t)) endowed with the supremum norm sup{|/(f)|: t E S}. The
Euclidean norm of a vector J = ( J , , . . . , J J ) ) G R ; ' will be denoted by | s \ , while its
maximum norm max(| 5, | , . . . ,| sp |) by | | j | | . Of course, the space Q2(S) will be
identified with the corresponding space of continuous complex valued functions
on S.

3. Preliminaries

Consider the empirical characteristic function

of the first n error variables. As a consequence of the Glivenko-Cantelli theorem
and the continuity theorem of characteristic functions we have

(3-1) sup |C n ( / ) -C( f ) | a - i 0 ,
tes
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[6] Functional least squares 341

as. Pr
where -» denotes almost sure convergence. The symbol -» will mean conver-
gence in probability, and all convergence relations are understood as n -> oo if
not specified otherwise. Consider also the empirical characteristic process

Dn(t) = «1/2(Q(0 - C(0) = «"1/2 2 Wu> ~ C(t))

and let D(t) be a univariate complex Gaussian process with zero mean and
covariance

ED(t) D(s) = C(t - s ) - C(t)C(-s).

As shown in Csdrgo (1981a), this can be represented as the stochastic integral

(3.2)

where B is a Brownian bridge process in [0,1]. Now with U{t) = ReC(f) and

= (1 - l / (0) 1 / 2 set

where X is the Lebesgue measure. Making use of the Dudley-Fernique necessary
and sufficient condition for the sample continuity of a stationary Gaussian
process, Csorg6 (1981a) showed that D is sample continuous if and only if the
condition

(3.0 rJo h(\ogl/h)l/2

holds, where \pis the nondecreasing rearrangement of \p defined as

<H/i) = sup{y:m(y) < h).

Therefore (3.i) is a necessary condition of the weak convergence of Dn( •) in G2(S)
to D( •). To see what this condition is all about we note that it is generally not
satisfied if

but it is satisfied if for a positive 8 we have

(3.3)

A finer analysis is found m Csdrgd (198la), who also proved that Pr{(ej (> xj =
O(x~"), as x -» oo, is sufficient for weak convergence with any small positive a.
(In fact, strong approximation results were proved with specified rates depending
on a.) As far as weak convergence goes Marcus (1981) filled the gap between the
latter condition and condition (3.i) by giving two nice proofs for the sufficiency
part of the following result.
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342 Sandor Csorgo [71

T H E O R E M A . Dn( • ) converges weakly in G 2 ( S ) t o D ( ) if and only if condition
( 3 . i ) holds.

The proof of the weak convergence theorem for /?„* in Section 5 will require the
following slight extension of this result.

THEOREM B. Let bnj, j = l , . . . ,w; n = 1,2,..., be a triangular array of real
numbers such that (1/«)£"=, b%j — 1 for any n, and ( l / « )max l s ; y e n b^j -» 0. Then
the process

Db
n{t) = n^2 2 bnJ(e'"> ~ C(t))

7 = 1

converges weakly in Q2(S) to D(-) if and only if condition (3.i) holds.

PROOF. The covariance structure of /)„*, for any n, is the same as that of D{ •).
Therefore, according to the obvious multidimensional analogue of Liapunov's
central limit theorem for row-wise independent triangular arrays of random
variables (see Chung (1974), page 201, Corollary), the finite-dimensional distribu-
tions of £>„* always converge to those of D. Hence (3.i) is necessary for weak
convergence in S2(5) . Concerning sufficiency, Marcus' longer first proof evi-
dently goes through. In fact his much simpler second proof also goes through with
trivial modifications (as in the case of the first one) if one notes that the starting
point, namely Fernique's extension of a theorem of Pisier (Fernique (1978),
Theoreme 1.3) also holds true for independent but non-identically distributed
summands.

This proof also indicates that the multivariate extension of Theorem B is just as
straightforward as that of Theorem A in Csorgo (1981b). Of course, S in (3.1) and
Theorems A and B above could have been any compact set from the line,
containing also the origin. Finally we note here that an annotated bibliography of
the empirical characteristic function is compiled in Csorgo (1980).

4. Strong uniform consistency of /?*

We begin with a lemma which will be useful in Section 6 as well.

LEMMA 1. Under condition (2.i) we have

An = sup
a.s.

^ 0 .
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[8l Functional least squares 343

PROOF. The claim is equivalent to the following

(4.1) A, = sup
(s,/)eRxs 7 = 1

a.s.
•o,

where the set R is of (2.2). Let Gj(y) — Gj(yv...,yp) denote the distribution
function of the deterministic vector Xj, that is, Gj(y) = lK(j)(y), y G R' , where
R(j) is the infinite rectangle R(j) = {s G R'1: x, < 5}. Clearly, <}>n(s) of condition
(2.i) is the characteristic function of the probabihty distribution function

2
7 - 1

Applying the /j-variate continuity theorem, it follows, on the one hand, from
condition (2.i) that <j>(s) is a proper /?-variate characteristic function. On the other
hand, it follows from (2.i) that

(4.2) Fn(y) - G(y)

at every continuity point y G Rp of G, where G(y) is the (unique) distribution
function belonging to <j>(s). It is plain (Fubini theorem) that

(4.3) <j>(s)C(t)=f

(s,t)ER"+\

that is, the product <j>(s)C(t) is the characteristic function of the (p + l)-variate
distribution function G(^ , , . . . ,yp)F(yp+l).

Now consider the sequence of independent (but not identically distributed)
(p + l)-dimensional random vectors (xJf ey) with their distribution functions

= Gj(yu...,yp)F(yp+l),

and let Fn(y) = Fn(yu. ..,yp+x) be the empirical distribution function of
(x, ,e ,) , . . . , (*„,£„) . Clearly

1 "
K{y\>--->yP+\)=- 2 GJ(yl,...,yp)l( 00)(yp+^)

7 = 1

and the averages in (4.1) are the characteristic functions of the Fn. Since
characteristic functions always converge uniformly on compact sets if they
converge pointwise on the whole space and since R X 5 is a compact set, (4.1)
will therefore follow from the (p + l)-variate continuity theorem if we can show
that
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at every continuity point (ylt... ,yp+i) of GF. But

\Fn{y\T-->yP+\) ~ G{yx,...,yp)F{yp+x)\

where the second term goes to zero by (4.2) in every continuity point of G and the
first term is

1 "- 2
7 = 1

- F(yp+])} •0

in every point y G Rp+' by Kolmogorov's strong law of large numbers for
independent non-identically distributed random variables. Hence the lemma is
proved.

LEMMA 2. Under conditions (2.i), (2.v) and (2.vi) we have

A/̂ 1' = sup \Ln(/3; t) -

PROOF. Setting M — 2 sup{?"2: t G 5} < oo and introducing the notation

7=1

for the function figuring in An of (4.1), we obtain by easy manipulation that

Mj,l) < M sup
(s,t)£RXS

Mmaxilog 1 +

log

inf
, log 1 +

inf

This upper bound tends to zero almost surely, since Lemma 1, or (4.1) also
implies that

inf
(s,t)£RXS

J ; 0 | " " ^f \<t>(s)C(t)\,
(s.t)ERXS

and this limit is strictly positive by conditions (2.v) and (2.vi).

We can now prove strong uniform consistency for the vector of functional least
squares estimators.
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THEOREM 1. Under conditions (2.i), (2.v) and (2.vi) we have

345

res

PROOF. From Lemma 2 we infer that sup,eS | inf^g^ Ln(fi; t) — inf^^- L((l; t)
3.S.

-» 0, or, what is the same, that

(4.4)

It also follows from Lemma 2 that

(4.5)

W{n) = sup \Ln(fin*(t); t) - L ( / J o , / ) | -> 0.
tes

W(n\ 8) = sup inf Ln(0; /) - Jnf ; t) •0

for any 8 > 0 for which the compact set K(8) - K\{P E K: \ /? - fi0 \< 8} is
not empty.

Let nk = nk(u) be any random subsequence of the positive integers tending to
infinity as k -» oo on each elementary event w. Then (4.4) and (4.5) imply the
following two equalities:

(4.6)

(4.7)

Pr{ lim W{nk) = o) = 1,

What we have to show is that the event

S20 = ( lim sup sup \p*(t) - A,| > o
v n^oo teS

is of probability zero. Clearly i20 = [m < oo}, where the random positive integer
m = m(«) is defined asm = inf{7: supr6S| /Jn*(O — fi0 \> \/j i.o.}, inf 0 = 00.
Let nk = nk(u) -+ 00 be such that sup,es | /?„*/') — Po I > l / w f°r aU k(nk(u) = k
if w(w) = 00). Then, by (4.6) and (4.7),

Pr{fi0} = Pr{fl0 n { lim W(n

= Pr(n0 n f lim sup
[ U-00 r e S

inf L (0; r) - L(/?0;.0| =
) * I

= Pr|fl0 n f lim sup inf L (jB; /) - L(/80; r) = 0 ns

= 0
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by the definition of event B in (4.7), for condition (2.vi) implies (see (2.3)) that
L(Po] t) < inf)3eA:(1/m) L(fi; t), t G S for any m, and on no elementary event can
the functions inf/3eA-(i/m) Ln (/?; /) have two different limit functions.

5. Weak convergence of B*

When proving the weak convergence of the processes

(5.1)

we start out from the estimating equations (1.4). Applying the one-term Taylor
formula we obtain

/„(/?*(;); /) = /.(ft; t) + An{0n(t);
where /?„(*) = (0n}(t),.. .Jnp(t)) with component vectors 0nk(t) satisfying

(5.2) | | /UO-f tNI#(O-f t l l> tes,k=i,...,P.
The matrix An(0n(t); t) is obtained by evaluating the &th row of An{^\ t) at
P = 0nk(t),k= \,...,p, where

' a/Bl(jB;O dlnl(P;t) '
3)8,

8; 0 ; 0
30,

with lnk(B; t) of (1.6), from which
(5.3)

= --2 2 ix^-xJ
" r = l 7 = 1

k, m < ^. Since ln(fi*(t); t) = (0,... ,0), a.s. for n large enough, we have

(5-4) -AMt)\t)B:(t)

Therefore, in order to prove weak convergence in GP(S) for B* of (5.1), it will
suffice to show that the matrix -An(0n(t); t) converges uniformly in probability
to some nonrandom matrix A(t) and that the vector process nl/2/n(ft; /) con-
verges weakly.
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LEMMA 3. Under conditions (2.ii), (2.iv) and (3.i) we have for any matrix norm

sup |Mn(A>; 0) --4(01^0,
tes

where A(t) = | C(t) \2A with the p X p matrix A of condition (2.iii).

PROOF. Convergence for any matrix norm will follow if we show that

(5.5)

where al"J(/) = al^(/30; /). Because

(5.6) YJ-Y,-(xj-xr,Po)=ej-er

in expression (5.3) for the latter, we obtain, upon applying the cosine addition
formula and some rearrangements,

tss

= ReCn(/)ReU

j,

Because of (3.1) and conditions (2.ii) and (2.iv) it is enough to show that if
bx,b2,... are real numbers such that

and

then

1 , , 1
— max ft, = — max
n lifi/s;,, J n

0,

A/n
(2) = sup

res
I 2 bjeu'J - bC(t)

Pr

7=1
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This is indeed enough, since for both choices bj = xjkxjm, bj = xjk the above three
conditions are ensured by (2.ii) and (2.iv). Now

M<2>
1 "

1 "

sup
res

I 2 bjW** - c(0)
7 = 1

— 2 */ SUP
7=1 t<=S

fen>(^-c(O)

and this bound goes to zero in probability, for the latter sup has a limit
distribution by Theorem B.

We note that the third relation in condition (2.iv) was not used here, and so it is
not needed in Lemma 4 below either. Putting now together (5.2), Theorem 1 and
Lemma 3, we obtain easily the following.

LEMMA 4. Under conditions (2.i), (2.ii), (2.iv), (2.v), (2.vi) and (3.i) we have

sup U-An(0n(t); t)) — \C(t)\ A ->0.
tes

Now we are able to prove the weak convergence of B* of (5.1).

T H E O R E M 2. Assume the six conditions (2 . i ) - (2 .v i ) hold. Then B*( •) converges

weakly in GP(S) to the Gaussian process G() = (G{(-),.. .,Gp(-)) with mean

vector

and covariance matrix

Gx{t)Gx{s) ••• Gl(t)Gp(s)\

Gp(t)Gp(s)

= o(t,s)A-\

> v ' /

where, with C(t) = U{t) + iV(t),

a(t,s) =
h(t,s)

ts\C(t)\2\C(s)\ 2'

h(t, s) = \ {U(t - s)[U(t)U(s) + V(t)V(s)]

+ U(t + s)[V(t)V(s)-U(t)U(s)]

+ V(t-s)[V(t)U(s)-U(t)V(s)]

-V(t + s)[U(t)V(s) + V(t)U(s)]},

if and only if condition (3.i) holds.
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PROOF. In view of (5.4), Lemma 4 and condition (2.iii) it is enough to prove
that «l/2/n(y30; t) converges weakly in C(S) to a Gaussian process Q(t) —
(Si(O» • • • > 6 / 0 ) with z e r o mean vector and covariance matrix

A

ts

Introducing the notation

(5-7) yjk = xjk-xk, k=\,...,p;j=\,2,...,
we start out from formula (1.6) for the &th component of the process in question.
Using (5.6) and the sine addition formula and then centering the terms, that is,
following exactly the lines of Chambers and Heathcote (1981), we obtain after
some rearrangements that

"1/2UA>; 0 = 7 -iTI 2 yjk{U(t)sm(ejt) - V(t)cos(ejt)}
n 7=1

i 2 yjM-h-2 2 { n H ' ) " uO)M

- C(0)7"^ 2 ^(s i n(v) - v(t

-lm{Cn(t) - C(t)}\^- 2 ^(cos(v) - U(t)}
1 n' 7 = i

= j{U(t)lmZnk(t) - V(t)KeZnk(t)}

+ Re{Q(0 - C(r)}yImZBfc(/) - Im{Q(0 - C ( / ) } ^ R e Z ^ r ) ,

after extra centering in the first two lines of the first equation, where Dn{t) is the
process of Theorem A and

Znk(t) = n-
1/2iyjk{e^-C(t)}.

7 = 1

We have

•0,(5-8) [~ 2 ^t I sup Uv(t)KeDH(t) - U(t)lm Dn(t)}
\ n j=\ / r e s l
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since by (5.7) and the condition (2.ii) the average of theyJk converges to zero and
the sup in (5.8) has a limit distribution, under condition (3.i), by Theorem A. So
the problem is reduced to the weak convergence problem of the Znk(t) processes.

Consider the normalised process
ZnM 1

with

{{\/n)l"j=xyfk)

bnj{k) =

1/2
bnJ(k){e"-J - C(t)}

v 1 / 2 '

The third relation of condition (2.iv) ensures that the array bnJ(k) satisfies the
conditions of Theorem B for any k, 1 < k < p. Therefore, under condition (3.i),
Dn(k)(-) converges wesHy in G(S) — G2(S) to the Gaussian process £>(•) of
Theorems A and B. Consequently, Znk(-) converges weakly in 6(5) to the
process (akk)

l/2D(-), k = \,...,p, by condition (2.ii). Hence, the second sup
possessing a limit distribution,

(5.9) sup | c ; ( ; ) - c (* ) | sup
tes tes

-znk(t)
*

Pr
>0

for any k, 1 < k < p, by (3.i). The above formula for the kth component, (5.8)
and (5.9) imply that under (3.i) the weak limit in QP(S) of the processes
nl/2ln(fi0; t) is identical to that of the processes

Zn(t) — (Zn,(r),.. .,Znp(t)), if the latter converges weakly. But the sequences of
the individual components of Qn converge weakly in S(5), hence they are tight.
This obviously implies the tightness of the vector valued sequence {Qn( •)}. As to
the convergence of its finite-dimensional distributions to those of Q{ •) it is
enough to note that with Hn(t) = (Hnl(t),... ,Hnp(t)) we have

' s) ••• Hnl(t)Hnp(s)

\ Hnp(t)Hjs) H,
np

h(t,s)A

by condition (2.ii), since the third relation of condition (2.iv) ensures this
convergence via Liapunov's central limit theorem for a triangular array of
row-wise independent random vectors referred to in the proof of Theorem B.
Hence the sufficiency part of the theorem is proved.
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The necessity of condition (3.i) is trivial, since the limit process G{t) is
sample-continuous if and only if H(t), the limit process of Hn{t), is such. But the
individual components of H(t) can be represented as

(5.10) Hk(t) = (akk)
l/2{U(t)lmD(t)-V(t)RcD(t)}, k=\,...,p.

with D(t) of (3.2), and this is sample-continuous if and only if (3.i) holds.

REMARK. (5.10) is equality in distribution for the two processes for each
single k = \,...,p. It does not mean that the distribution of H(t) =
((au)1/2{ },. • • ,(app?

/2{ }) would coincide with that of H(t) in ep(S). In fact a
representation in the form of H for H is impossible because the covariance matrix
of H is of rank 1. I owe this remark to Peter Hall.

6. The variance function and its estimator

Chambers and Heathcote (1981) call

(6.1) o2(t)=o(t,t)

_ U2{t) + V2(t) + U(2t)[v2(t) - U2(t)] - 2V(2t)U(t)V(t)

2t2[u2(t) + V2(t)f

= ~g(U(t),V(t),U(2t),V(2t))

the variance function. Consider the random complex function

Q(t) = Q(t; # ( / ) ) = Un*(t; ft(t

= Un*(t) + iVn*(t)

defined by

(6.2) C^=l 2e''W-<'J-
7 = 1

and form the estimator

(6.3) o2{t) = ^g(Un*(t), V:(t), Un*(2t), V:(2t))

where we adopted the convention C*(2t) - C*(2t; /?*(0).

THEOREM 3. Under conditions (2.i), (2.v) and (2.vi) we have
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PROOF. It is clearly enough to show that

(6.4) "
res

This is easy now since

sup |c,f(O - c(0*('(A> - p;(t)))\
res

sup
tes

tes

where An is of Lemma 1, converging to zero almost surely. The argument of <f>
converges almost surely uniformly to zero by Theorem 1, </>(0,...,0) = 1, and
since <f>, being a characteristic function, is uniformly continuous on the whole Rp,
the second term also goes to zero almost surely.

Since o2{t) is always an even function, from now on we shall use only positive
t 's. Let t0 be the smallest number for which the infimum of o2(t) is attained, that
is,

: o2(s) - i
rs»o

We assume
(6.i) /„ > 0.

This is the case (Chambers and Heathcote (1981), Theorem 2) if e lacks a
variance, or if its distribution function is leptokurtic. In these cases there is a
unique 5 for which the inside infimum is attained in the definition of t0. Let now
So — [a0, b0] be any such interval that 0 < a0 < t0 < b0 and o2(t0) < o2(t) for
any other t in So, and introduce the random variable

tn = hd[s:o;(s)=Mo?(t)}.

Condition (6.i) and the choice of SQ, hence the definition of tn itself, leads to the
following simple result.

a.s.
LEMMA 5. ?„ -> rn.

PROOF. Let 8 > 0 be any such number that the set S(S) - S0\{t G So: 11 - t0

< 8} is non-empty. Then by Theorem 3 we have

a2(tn)= i n f a » a 4 inf o\t) = o2(t0)
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and

inf an
2(/)a4 inf o\t)>o\t0).

t£S(S)

Using these relations the proof can be completed along the lines of those of
Theorem 1.

7. The adaptive least squares estimator

Throughout in this section condition (6.i) will be assumed and So will be the
interval of the preceding section. Accordingly, conditions (2.v) and (2.vi) will be
interpreted on this So instead of the general S. We call B*(tn) the adaptive least
squares estimate for /?0. It is obvious from Theorem 1 that B*(tn) ^ Bo, that is,
this estimator is strongly consistent provided conditions (2.i), (2.v) and (2.vi) hold.
The main result of this paper is the following.

THEOREM 4. / / conditions (2.i)-(2.vi) and (3.i) hold, then the distribution of
nl/2([i*(tn) — )80) converges to the p-variate normal distribution with zero mean
vector and covariance matrix o2(t0)A~l.

PROOF. Under the conditions stated, B*( •) of (5.1) converges weakly in GP(SO)
to G( •) of Theorem 2. According to a well-known theorem of Skorohod (1956),
the original sequence {ey} can be redefined, without changing its distribution, on
some probability space (S2,6E, P) carrying a copy of G ( ) such that for the
resulting /?*( •) we have

a.s.sup \B?(t) - G(t)\ - 0 .

We work on this probability triple and claim that

Indeed,

M?^\B;(tn)-G(tn)\+\G(tn)-G(t0)\

< sup |5*(0 - G(t)\ +\G(tn) - G(ro)|a4o.
ies0

Here the first term goes to zero by construction, while the second by Lemma 5
and the sample-continuity of G. (7.1) implies that B*(tn) converges in distribution
to G(tQ). But this statement is independent of the choice of the underlying
probability space and is therefore identical to the claim of the theorem.
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8. Concluding remarks

Chambers and Heathcote (1981) and Heathcote (1982) propose methods for the
computation of /J*(f) and tn. If the user finds tn very close to zero, then this
indicates that ordinary least squares estimation can be used. Otherwise the
following procedure may be used. If the data contains a suspected outlier, then
upon eliminating it one computes a new tn_l to see whether it is 'zero'. If so, then
reject the eliminated value and use the ordinary least squares estimate /?„_,. If not
and there are more suspected outliers, then this procedure, proposed by Cham-
bers and Heathcote (1981) and Heathcote (1982) who also demonstrate it on a
concrete example, can be continued. If after k steps tn_k is still not zero but there
are no more suspected outliers, then it is perhaps best to conclude that the
removed data points are not outliers, or gross errors, but represent essential
features of the actual error distribution such as long tail, asymmetry, or lepto-
kurtic behaviour. In this case the proposed estimator is P*(tn).

Heathcote (1982) explains that if the sample size is not too large, then
(n/(n - p))of(t) (or (n/(n — p — \))of(t) if an intercept term is present) is to
be preferred for estimating o2(t), and this should be minimised to find tn. Of
course, the asymptotic theory remains the same.

However large samples we are given in practice, it is always impossible of
course to check all the conditions (2.i)-(2.vi). But this is in fact the case with the
fewer conditions ((2.ii), (2.iii), part of (2.iv)) for the asymptotic normality of
ordinary least squares. It is hard to imagine practical situations where condition
(3.3) (sufficient for (3.i)) would be violated. Nevertheless this condition can be
checked empirically. If in a small neighborhood of the origin the curve of the
function 1 - Re C*(t), with C*(t) of (6.2), lies under the curve of l/log(l/ | 11),
then by (6.4) and the discussion following formula (1.17) in Csorgo (1981a) we
may well conclude that (3.i), or even (3.3), is satisfied.
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