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Abstract

We discuss near-perfect numbers of various forms. In particular, we study the existence of near-perfect
numbers in the Fibonacci and Lucas sequences, near-perfect values taken by integer polynomials and
repdigit near-perfect numbers.
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1. Introduction

Let σ(n) and ω(n) denote the sum of the positive divisors of n and the number of
distinct prime factors of n, respectively. A natural number n is perfect if σ(n) = 2n.
More generally, given a fixed integer k, the number n is called multiperfect or k-fold
perfect if σ(n) = kn. The famous Euclid–Euler theorem asserts that an even number is
perfect if and only if it has the form 2p−1(2p − 1), where both p and 2p − 1 are primes.
It is not known if there are odd perfect numbers.

In 2012, Pollack and Shevelev [10] introduced the concept of near-perfect numbers.
A positive integer n is near-perfect with redundant divisor d if d is a proper divisor
of n and σ(n) = 2n + d. Note that when d = 1, we get a special kind of near-perfect
numbers called quasiperfect.

Pollack and Shevelev constructed the following three types of even near-perfect
numbers.

Type A. n = 2p−1(2p − 1)2 where both p and 2p − 1 are primes and 2p − 1 is the
redundant divisor.

Type B. n = 22p−1(2p − 1) where both p and 2p − 1 are primes and 2p(2p − 1) is the
redundant divisor.

Type C. n = 2t−1(2t − 2k − 1), t ≥ k + 1 where 2t − 2k − 1 is prime and 2k is the
redundant divisor.
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In 2013, Ren and Chen [12] proved that all near perfect numbers n with ω(n) = 2
are of types A, B and C together with 40. It is an open problem to classify all
even near-perfect numbers. However, from the definition, it is easy to see that all
odd near-perfect numbers are squares. Tang et al. [14] showed that there is no odd
near-perfect number n with ω(n) = 3 and Tang et al. [13] proved that the only odd
near-perfect number n with ω(n) = 4 is 173369889 = 34 · 72 · 112 · 192. Thus, for any
other odd near-perfect number n, if it exists, we have ω(n) ≥ 5.

There are several papers discussing perfect and multiperfect numbers of various
forms. For example, Luca [7] proved that there are no perfect Fibonacci or Lucas
numbers, while Broughan et al. [2] showed that no Fibonacci number (larger than 1)
is multiperfect. Assuming the ABC-conjecture, Klurman [5] proved that any integer
polynomial of degree ≥ 3 without repeated factors can take only finitely many
perfect values. Pollack and Shevelev [9] studied perfect numbers with identical
digits in base g, g ≥ 2. He found that in each base g, there are only finitely
many examples and that when g = 10, the only example is 6. Later, Luca and
Pollack [8] established the same results for multiperfect numbers with identical
digits.

In this short note, we study near-perfect numbers in the Fibonacci and Lucas
sequences, near-perfect values taken by integer polynomials and near-perfect numbers
with identical digits. Recall that the Fibonacci sequence (Fn)n≥0 is given by F0 = 0,
F1 = 1 and Fn+2 = Fn+1 + Fn for all n ≥ 0 and the Lucas sequence (Ln)n≥0 is given by
L0 = 2, L1 = 1 and Ln+2 = Ln+1 + Ln for all n ≥ 0. A natural number is called a repdigit
in base g if all of the digits in its base g expansion are equal.

Here we prove the following results.

THEOREM 1.1

(a) There are no odd near-perfect Fibonacci or Lucas numbers.
(b) There are no near-perfect Fibonacci numbers Fn with ω(Fn) ≤ 3.
(c) The only near-perfect Lucas number Ln with two distinct prime factors is

L6 = 18.

THEOREM 1.2. Suppose P(x) ∈ Z[x] with deg P(x) ≥ 3 has no repeated factors. Then
there are only finitely many n such that P(n) is an odd near-perfect number. Further-
more, if we assume that the ABC-conjecture holds, then P(n) takes only finitely many
near-perfect values with two distinct prime factors.

THEOREM 1.3. Let 2 ≤ g ≤ 10.

(a) There are only finitely many repdigits in base g which are near-perfect and have
two distinct prime factors. All such numbers are strictly less than (g3 − 1)/(g − 1).
In particular, when g = 10, the only repdigit near-perfect number with two distinct
prime divisors is 88.

(b) There are no odd near-perfect repdigits in base g.
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2. Preliminary results

In this section, we collect several auxiliary results. We begin with the famous and
remarkable theorem of Bugeaud et al. [4] about perfect powers in the Fibonacci and
Lucas sequences.

THEOREM 2.1 (Bugeaud–Mignotte–Siksek). The only perfect powers among the
Fibonacci numbers are F0 = 0, F1 = F2 = 1, F6 = 8 and F12 = 144. For the Lucas
numbers, the only perfect powers are L1 = 1 and L3 = 4.

In [11], Pongsriiam gave the description of the Fibonacci numbers satisfying
ω(Fn) = 3. We state his results in the following theorems.

THEOREM 2.2. The only solutions to the equation ω(Fn) = 3 are given by

(a) n = 16, 18 or 2p for some prime p ≥ 19,
(b) n = p, p2 or p3 for some prime p ≥ 5,
(c) n = pq for some distinct primes p, q ≥ 3.

THEOREM 2.3. Assume that ω(Fn) = 3 and n = p1 p2, where p1 < p2 are odd primes.
Then Fp1 = q1, Fp2 = q2 and Fn = qa1

1 q2qa3
3 , where q1, q2, q3 are distinct primes, q3 is

a primitive divisor of Fn (that is, a prime divisor which does not divide any Fm for
0 < m < n), a3 ≥ 1 and a1 ∈ {1, 2}. Furthermore, a1 = 2 if and only if q1 = p2.

Let us also recall the ABC-conjecture. For n ∈ Z \ {0}, the radical of n is defined by
rad(n) =

∏
p|n p.

CONJECTURE 2.4 (ABC-conjecture). For each ε > 0, there exists Mε > 0 such that
whenever a, b, c ∈ Z \ {0} satisfy the conditions

gcd(a, b, c) = 1 and a + b = c,

then

max{|a|, |b|, |c|} ≤ Mε rad(abc)1+ε .

The next lemma is important for the proof of Theorem 1.2.

LEMMA 2.5 [5, Corollary 2.4]. Assume that the ABC-conjecture is true. Suppose that
f (x) ∈ Z[x] is nonconstant and has no repeated roots. Fix ε > 0. Then,

∏
p| f (m)

p � |m|deg f−1−ε . (2.1)

We also need the finiteness result for the solutions of the hyperelliptic equation.

THEOREM 2.6 (Baker [1]). All solutions in integers x, y of the diophantine equation

y2 = a0xn + a1xn−1 + · · · + an,

https://doi.org/10.1017/S0004972723000072 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972723000072


[4] Near-perfect numbers 369

where n ≥ 3, a0 � 0, a1, . . . , an are integers and where the polynomial on the
right-hand side possesses at least three simple zeros, satisfy

max(|x|, |y|) < exp exp exp{(n10nH)n2},

whereH = max0≤j≤n |aj|.

The next two theorems characterise those perfect powers which are also repdigits.

THEOREM 2.7 (Bugeaud–Mignotte [3]). Let a and b be integers with 2 ≤ b ≤ 10 and
1 ≤ a ≤ b − 1. The integer N with all digits equal to a in base b is not a pure power,
except for N = 1, 4, 8 or 9, for N = 11111 written in base b = 3, for N = 1111 written
in base b = 7 and for N = 4444 written in base b = 7.

THEOREM 2.8 (Ljunggren [6]). The only integer solutions (x, n, y) with |x| > 1, n > 2
and y > 0 to the exponential equation

xn − 1
x − 1

= y2

are (x, n, y) = (7, 4, 20) and (x, n, y) = (3, 5, 11).

3. Proofs

PROOF OF THEOREM 1.1. (a) Since any odd near-perfect number is square, the result
follows from Theorem 2.1.

(b) It is easy to show that there are no near-perfect numbers of the form pk, k ≥ 0,
where p is prime. Suppose that there exists an even near-perfect number of type A
belonging to the Fibonacci sequence. For p = 2 or p = 3, one gets the numbers 18 and
196 which do not belong to the Fibonacci sequence.

Assume now that p ≥ 5. The equation Fn = 2p−1(2p − 1)2 implies that 16 | Fn. From
this, it follows that 12 | n. Hence, 3 = F4 | Fn = 2p−1(2p − 1)2, which is impossible
because p ≥ 5 and 2p − 1 is prime. A similar argument can be used to show that there
are no type B or type C near-perfect Fibonacci numbers.

Suppose now that Fn is a near-perfect Fibonacci number with ω(Fn) = 3. Since Fn
is even, by Theorems 2.2 and 2.3, n = 3p, p > 3 and Fn = 2q1qα2 , where Fp = q1 and
q2 is a primitive divisor of Fn and α ≥ 1. If q1 ≥ 7, then

2 =
σ(Fn)

Fn
− d

Fn
<

3
2
· q1 + 1

q1
· q2

q2 − 1
<

3
2
· 8

7
· 11

10
< 2,

which is impossible. Thus, q1 = 5. Then Fn = F15 = 2 · 5 · 61, which is not a
near-perfect number.

(c) Clearly L6 = 18 is a near-perfect number of type A. Using the fact that no
member of the Lucas sequence is divisible by 8, it is easy to verify that there are
no other near-perfect Lucas numbers with two distinct prime divisors. �

PROOF OF THEOREM 1.2. For odd near-perfect numbers, the result follows uncondi-
tionally from Baker’s Theorem 2.6. Note that if m is a sufficiently large near-perfect
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number with ω(m) = 2, then rad(m) �
√

m. Assume P(n) is a near-perfect number
with a large value of n, deg P = d ≥ 3 and ω(P(n)) = 2. Fix ε > 0. Applying (2.1),

nd−1−ε � rad(P(n)) � nd/2,

which gives
1
2 d ≥ d − 1 − ε

or d ≤ 2 + ε < 3. This contradiction implies the result. �

PROOF OF THEOREM 1.3. Fix g ≥ 2. Let Un = (gn − 1)/(g − 1).
(a) First we consider the near-perfect numbers of type A. We may assume that g > 2

(since every binary repdigit is odd). Thus, to find repdigit near-perfect numbers, we
need to solve the equation

N = aUn = 2p−1(2p − 1)2, where a ∈ {1, . . . , g − 1} and 2p − 1 is prime.

For the sake of contradiction, assume that n ≥ 3. It is clear that 2p − 1 | Un for
otherwise (2p − 1)2 | a and then

g > a ≥ (2p − 1)2 >
√

N ≥
(gn − 1

g − 1

)1/2
=

√
gn−1 + · · · + 1 > g(n−1)/2 ≥ g,

which is impossible. Thus, Un = 2b(2p − 1)2 or Un = 2b(2p − 1) for some nonnegative
integer b. Consider the first case. If g is even, then Un is odd, therefore b = 0. Hence,
Un = (2p − 1)2 which has no solutions for n ≥ 3 by Theorem 2.8. Thus, g must be odd
and n must be even. Write n = 2m. We then get

2b(2p − 1)2 =
g2m − 1
g − 1

= (gm + 1)
(gm − 1

g − 1

)
.

Note that gm + 1 > (gm − 1)/(g − 1) and 2p − 1 > 2b. Moreover,

gcd
(
gm + 1,

gm − 1
g − 1

)
≤ 2.

Therefore, gm + 1 = 2(2p − 1)2 and (gm − 1)/(g − 1) = 2b−1. The latter equation has no
solutions in view of our assumption 2 ≤ g ≤ 10 and Theorem 2.7.

Now suppose that Un = 2b(2p − 1). If g is even, then Un is odd, therefore b = 0.
Hence,

a = 2p−1(2p − 1) > 2p − 1 =
gn − 1
g − 1

= gn−1 + · · · + 1 > gn−1 > g,

which contradicts the assumption 1 ≤ a ≤ g − 1. Thus, g must be odd and n must be
even. Put n = 2m. We then obtain

2b(2p − 1) =
g2m − 1
g − 1

= (gm + 1)
(gm − 1

g − 1

)
.
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Since gm + 1 > (gm − 1)/(g − 1) and 2p − 1 > 2b, it follows that 2p − 1 | gm + 1, and
we get gm + 1 = 2(2p − 1) and (gm − 1)/(g − 1) = 2b−1. Since (gm − 1)/(g − 1) is even
and g is odd, we see that m is even. Hence, m = 2m1 and so 2(2p − 1) = gm + 1 =
g2m1 + 1 ≡ 2 (mod 8). Then 2p − 1 ≡ 1 (mod 4), but this is impossible for any prime
p ≥ 2. Observe that for this case, we did not use the assumption 2 ≤ g ≤ 10.

Suppose now aUn is near-perfect of type B, where 1 ≤ a < g and n ≥ 3. We may
write

aUn = 22p−1(2p − 1).

Suppose first that Un is odd. Since 1 < Un | 22p−1(2p − 1), it follows that Un = 2p − 1.
Thus, a = 22p−1. However, since n ≥ 3,

g2 < U3 ≤ Un = 2p − 1 < 2p, whence g < 2p/2 < 22p−1 = a,

which contradicts a < g. If Un is even, then since Un = 1 + g + · · · + gn−1, it follows
that g is odd and n is even. Write n = 2m. We have

(gm + 1)
(gm − 1

g − 1

)
= Un | 22p−1(2p − 1). (3.1)

If 2 | m, then gm + 1 has a prime divisor q ≡ 1 (mod 4) contradicting (3.1). Hence,
2 � m. Thus, Um is odd. Since m > 1 and 2p − 1 is prime, (3.1) implies that Um =

2p − 1. Hence, gm + 1 | 22p−1. So gm + 1 is a power of 2. However,

gm + 1 = (g + 1)(gm−1 − gm−2 + · · · + 1).

The second factor here is odd, so must equal 1. Thus, m = 1, which is a contradiction.
In a similar manner, one can show finiteness of repdigits in base g among

near-perfect numbers of type C.
(b) The result is an immediate consequence of Theorem 2.7. �

Theorem 1.3 asserts that repdigit near-perfect numbers of types A, B and C have
at most two digits in base g, 2 ≤ g ≤ 10. For g ∈ {2, 3, 4, 6}, there are no repdigit
near-perfect numbers with two distinct prime factors. For g = 5, the only repdigit
near-perfect numbers with two distinct prime factors are 12, 18 and 24. For g = 7,
the only repdigit near-perfect numbers with two distinct prime factors are 24 and 40.
For g = 8, the only repdigit near-perfect number with two distinct prime factors is 18.
For g = 9, the only repdigit near-perfect numbers with two distinct prime factors are 20
and 40. Finally, in base g = 10, the only repdigit near-perfect number with two distinct
prime factors is 88.
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