ON THE LOCATION OF CRITICAL POINTS OF POLYNOMIALS

ABDUL AZIZ
(Received 9 August 1982)
Communicated by W. Moran

Abstract

Let all the zeros of a polynomial $P(z)$ of degree n lie in $|z| \leqslant 1$ and a be a given complex number. In this paper we study the location of the zeros of higher derivatives of the polynomial $(z-z) P(z)$ and obtain certain generalizations of some results of Rahman and Rubinstein. We shall also extend a result of Goodman, Rahman and Ratti for the zeros of the polar derivative of the polynomial $P(z)$ given $P(1)=0$.

1980 Mathematics subject classification (Amer. Math. Soc.): 30 A 04, 30 A 06.

Let all the zeros of a polynomial $P(z)$ of degree n lie in the closed unit disk $|z| \leqslant 1$. It was asked by Rahman [3], given a complex number a what is the radius of the smallest disk centred at a containing at least one zero of the polynomial $((z-a) P(z))^{\prime} ?$ He has answered the question by showing that one and only one zero of $((z-a) P(z))^{\prime}$ lies in

$$
\begin{equation*}
|z-a| \leqslant \frac{|a|+1}{n+1} \tag{1}
\end{equation*}
$$

provided $|a|>(n+2) / n$. The remaining $(n-1)$ zeros of $((z-a) P(z))^{\prime}$ lie in $|z| \leqslant 1$.

Here we first obtain an extension of this result for the zeros of the higher derivatives of the polynomial $(z-a) P(z)$ and thereby give an independent proof

[^0]of (1) as well. We prove
Theorem 1. If all the zeros of a polynomial $P(z)$ of degree n lie in $|z| \leqslant 1$ and $F(z)=(z-a) P(z)$, then $F^{(k)}(z), 1 \leqslant k \leqslant n$, has one and only one zero in
\[

$$
\begin{equation*}
|z-a| \leqslant \frac{k(|a|+1)}{n+1} \tag{2}
\end{equation*}
$$

\]

provided $|a|>(n+k+1) /(n-k+1)$. The remaining $n-k$ zeros of $F^{(k)}(z)$ lie in $|z| \leqslant 1$. The example $P(z)=\left(z+e^{i \theta}\right)^{n}$ where $\theta=\arg a$ shows that the result is best possible.

For the proof of this theorem we need the following lemma, which is the Coincidence Theorem of Walsh [2, page 62].

Lemma. Let $G\left(z_{1}, z_{2}, \ldots, z_{n}\right)$ be a symmetric n-linear form of total degree n in $z_{1}, z_{2}, \ldots, z_{n}$ and let C be a circle containing the n points $w_{1}, w_{2}, \ldots, w_{n}$. Then there exists at least one point α belonging to C such that

$$
G(\alpha, \alpha, \ldots, \alpha)=G\left(w_{1}, w_{2}, \ldots, w_{n}\right)
$$

Proof of Theorem 1. We have $F(z)=(z-a) P(z)$, so that

$$
\begin{equation*}
F^{(k)}(z)=(z-a) P^{(k)}(z)+k P^{(k-1)}(z), \quad k=1,2, \ldots, n \tag{3}
\end{equation*}
$$

Clearly $F^{(k)}(z)$ is a polynomial of degree $n-k+1$. Since all the zeros of the polynomial $P(z)$ lie in $|z| \leqslant 1$, it follows by the Gauss-Lucas Theorem that all the zeros of the polynomial $P^{(k-1)}(z)$ of degree $n-k+1$ also lie in $|z| \leqslant 1$. Therefore, if $w_{1}, w_{2}, \ldots, w_{n-k+1}$ are the zeros of $P^{(k-1)}(z)$, then $\left|w_{j}\right| \leqslant 1, j=$ $1,2, \ldots, n-k+1$. If now w is any zero of $F^{(k)}(z)$, then from (3) we have

$$
\begin{equation*}
(w-a) P^{(k)}(w)+k P^{(k-1)}(w)=0 \tag{4}
\end{equation*}
$$

This is an equation which is linear and symmetric in the zeros of $P^{(k-1)}(z)$, that is in $w_{1}, w_{2}, \ldots, w_{n-k+1}$. Hence an application of the lemma above shows that w will also satisfy the equation obtained by substituting into equation (4)

$$
P^{(k-1)}(z)=(z-\alpha)^{n-k+1}
$$

where α is a suitably chosen point in $|z| \leqslant 1$. That is, w satisfies the equation

$$
(n-k+1)(w-a)(w-\alpha)^{n-k}+k(w-\alpha)^{n-k+1}=0
$$

or equivalently

$$
(w-\alpha)^{n-k}\{(n-k+1)(w-a)+k(w-\alpha)\}=0 .
$$

Thus w has the values

$$
w=\alpha \quad \text { or } \quad w=\frac{(n-k+1) a+k \alpha}{n+1} .
$$

Since $|\alpha| \leqslant 1$, it follows that all the zeros of $F^{(k)}(z)$ lies in the union of the two circles

$$
\begin{equation*}
|z| \leqslant 1 \quad \text { and } \quad\left|z-\frac{(n-k+1) a}{n+1}\right| \leqslant \frac{k}{n+1} \tag{5}
\end{equation*}
$$

and hence also lie in the union of the two circles

$$
\begin{equation*}
|z| \leqslant 1 \quad \text { and } \quad|z-a| \leqslant \frac{k(|a|+1)}{n+1} \tag{6}
\end{equation*}
$$

Since $|a|>(n+k+1) /(n-k+1)$, it follows that the closed interiors of the two circles defined by (6) have no point in common and we show that $F^{(k)}(z)$ has one and only one zero in $|z-a| \leqslant k(|a|+1) /(n+1)$. Since

$$
\frac{z P^{(k)}(z)}{P^{(k-1)}(z)}=\sum_{j=1}^{n-k+1} \frac{z}{z-w_{j}}
$$

and $\left|w_{j}\right| \leqslant 1, j=1,2, \ldots, n-k+1$, we have

$$
\begin{aligned}
\operatorname{Re} \frac{e^{i \theta} P^{(k)}\left(e^{i \theta}\right)}{P^{(k-1)}\left(e^{i \theta}\right)} & =\sum_{j=1}^{n-k+1} \operatorname{Re} \frac{e^{i \theta}}{e^{i \theta}-w_{j}} \\
& \geqslant \sum_{j=1}^{n-k+1} \frac{1}{2}=\frac{n-k+1}{2},
\end{aligned}
$$

for points $e^{i \theta}, 0 \leqslant \epsilon<2 \pi$, other than the zeros of $P^{(k-1)}(z)$. This implies

$$
\left|e^{i \theta} P^{(k)}\left(e^{i \theta}\right)-(n-k+1) P^{(k-1)}\left(e^{i \theta}\right)\right| \leqslant\left|P^{(k)}\left(e^{i \theta}\right)\right|
$$

for points $e^{i \theta}$ other than the zeros of $P^{(k-1)}(z)$. Since this inequality is trivially true for points $e^{i \theta}$ which are the zeros of $P^{(k-1)}(z)$, it follows that

$$
\begin{equation*}
\left|z P^{(k)}(z)-(n-k+1) P^{(k-1)}(z)\right| \leqslant\left|P^{(k)}(z)\right| \quad \text { for }|z|=1 \tag{7}
\end{equation*}
$$

Now the degree of the polynomial $z P^{(k)}(z)-(n-k+1) P^{(k-1)}(z)$ is at most equal to the degree of the polynomial $P^{(k)}(z)$ and $P^{(k)}(z)$ does not vanish in $|z|>1$, we conclude with the help of the Maximum Modulus Principle that the inequality (7) holds for $|z|>1$ also. Thus

$$
\left|z-\frac{(n-k+1) P^{(k-1)}(z)}{P^{(k)}(z)}\right| \leqslant 1 \quad \text { for }|z|>1
$$

We write

$$
\delta(z)=z-\frac{(n-k+1) P^{(k-1)}(z)}{P^{(k)}(z)}
$$

then $\delta(z)$ is an analytic function defined for all $|z|>1$ and $|\delta(z)| \leqslant 1 \cdot$ for $|z|>1$. If $|a|>1$, then

$$
\frac{P^{(k)}(z)}{P^{(k-1)}(z)}=\frac{(n-k+1) \beta(z)}{(z-a) \beta(z)-1}
$$

where $\beta(z)=1 /(\delta(z)-a)$ is analytic in $|z|>1$ and

$$
\begin{equation*}
\frac{1}{|a|+1} \leqslant|\beta(z)| \leqslant \frac{1}{|a|-1} \tag{8}
\end{equation*}
$$

Since for $|z|>1$

$$
\frac{(z-a) P^{(k)}(z)+k P^{(k-1)}(z)}{P^{(k-1)}(z)}=\frac{(n+1)(z-a) \beta(z)-k}{(z-a) \beta(z)-1}
$$

the zeros of $F^{(k)}(z)=(z-a) P^{(k)}(z)+k P^{(k-1)}(z)$ in $|z|>1$ are the same as the zeros of $(n+1)(z-a) \beta(z)-k$. Now if

$$
|a|>\frac{n+k+1}{n-k+1} \quad \text { and } \quad \frac{k(|a|+1)}{n+1}<|z-a|<|a|-1
$$

then from (8) we have

$$
k<|(n+1)(z-a) \beta(z)|
$$

Applying Rouche's theorem we conclude that $(n+1)(z-a) \beta(z)-k$ and $(n+$ 1) $(z-a) \beta(z)$ have the same number of zeros in $|z-a| \leqslant k(|a|+1) /(n+1)$, namely one. Now it easily follows from (6) that the remaining $n-k$ zeros of $F^{(k)}(z)$ lie in $|z| \leqslant 1$. This completes the proof of the theorem.

Remark. Since $|a|>(n+k+1) /(n-k+1)$, it can be easily seen that the two circles defined by (5) have no point in common. Hence it follows by the similar reasoning as above that, in fact, $F^{(k)}(z)$ has one and only one zero in the circle

$$
\left|z-\frac{(n-k+1) a}{n+1}\right| \leqslant \frac{k}{n+1}
$$

Next we prove the following result which is valid for $|a| \geqslant 1$. For simplicity we assume that a is real and $a \geqslant 1$.

Theorem 2. If all the zeros of a polynomial $P(z)$ of degree n lie in $|z| \leqslant 1$ and $F(z)=(z-a)^{r} P(z), a \geqslant 1$, then $F^{(k)}(z), 1 \leqslant k \leqslant n+r-1$, has at least one zero in both the circles

$$
\begin{equation*}
\left|z-a+\left(\frac{a+1}{2}\right)\left(1-\frac{r}{k+1}\right)\right| \leqslant\left(\frac{a+1}{2}\right)\left(1-\frac{r}{k+1}\right) \tag{9}
\end{equation*}
$$

and

$$
\begin{equation*}
|z-a| \leqslant(a+1)\left(1-\frac{r}{k+1}\right) \tag{10}
\end{equation*}
$$

Proof. First we observe that the circle defined by (9) is contained in the circle defined by (10). So to prove the theorem it suffices to show that $F^{(k)}(z)$ has a zero in the circle defined by (9).

We assume $k \geqslant r$. Since $F(z)=(z-a)^{r} P(z)$, it is easy to see that

$$
\begin{equation*}
\frac{F^{(k+1)}(a)}{F^{(k)}(a)}=\frac{k+1}{k-r+1} \frac{P^{(k-r+1)}(a)}{P^{(k-r)}(a)} \tag{11}
\end{equation*}
$$

Now $F^{(k)}(z)$ and $P^{(k-r)}(z)$ are polynomials of degree $n+r-k$ and therefore, if $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n+r-k}$ are the zeros of $F^{(k)}(z)$ and $\beta_{1}, \beta_{2}, \ldots, \beta_{n+r-k}$ are those of $P^{(k-r)}(z)$, then from (11) we have

$$
\sum_{j=1}^{n+r-k} \frac{1}{a-\alpha_{j}}=\frac{k+1}{k-r+1} \sum_{j=1}^{n+r-k} \frac{1}{a-\beta_{j}}
$$

Since by the Gauss-Lucas theorem all the zeros of $P^{(k-r)}(z)$ lie in $|z| \leqslant 1$, therefore $\left|\beta_{j}\right| \leqslant 1$ for all $j=1,2, \ldots, n+r-k$ and thus

$$
\operatorname{Re} \frac{1}{a-\beta_{j}} \geqslant \frac{1}{a+1} \quad \text { for all } j=1,2, \ldots, n+r-k
$$

Now

$$
\begin{aligned}
\sum_{j=1}^{n+r-k} \operatorname{Re} \frac{1}{a-\alpha_{j}} & =\frac{k+1}{k-r+1} \sum_{j=1}^{n+r-k} \operatorname{Re} \frac{1}{a-\beta_{j}} \\
& \geqslant \frac{(k+1)(n+r-k)}{(k-r+1)(a+1)}
\end{aligned}
$$

and therefore,

$$
\begin{aligned}
\operatorname{Re} \frac{1}{a-\alpha} & \equiv \operatorname{Max}_{1 \leqslant j \leqslant n+r-k} \operatorname{Re} \frac{1}{a-\alpha_{j}} \\
& \geqslant \frac{1}{n+r-k} \sum_{j=1}^{n+r-k} \operatorname{Re} \frac{1}{a-\alpha_{j}} \\
& \geqslant \frac{(k+1)}{(a+1)(k-r+1)}
\end{aligned}
$$

This implies

$$
\left|\alpha-a+\left(\frac{a+1}{2}\right)\left(1-\frac{r}{k+1}\right)\right| \leqslant\left(\frac{a+1}{2}\right)\left(1-\frac{r}{k+1}\right),
$$

which is equivalent to (9) and the theorem is established.

The following corollary is obtained from Theorem 2 by taking $r=k$.

Corollary 1. If all the zeros of a polynomial $P(z)$ of degree n lie in $|z| \leqslant 1$ and $F(z)=(z-a)^{k} P(z), a \geqslant 1$, then at least one zero of $F^{(k)}(z)$ lies in both the circles

$$
\left|z-a+\frac{a+1}{2(k+1)}\right| \leqslant \frac{a+1}{2(k+1)},
$$

and

$$
|z-a| \leqslant \frac{a+1}{k+1} .
$$

In particular when $k=1$ and $a=1$, then the Corollary 1 states that if all the zeros of a polynomial $F(z)=(z-1) P(z)$ lie in $|z| \leqslant 1$, then $F^{\prime}(z)$ has at least one zero in both the circles

$$
\begin{equation*}
\left|z-\frac{1}{2}\right| \leqslant \frac{1}{2} \tag{12}
\end{equation*}
$$

and

$$
\begin{equation*}
|z-a| \leqslant 1 \tag{13}
\end{equation*}
$$

The result (12) is due to Goodman, Rahman and Ratti [1] and (13) was proved by Rubinstein [4].

Finally we prove the following result which extends (12) for the zeros of the polar derivative with respect to $\alpha \geqslant 1$ of the polynomial $P(z)$ having all its zeros in the closed unit disk.

Theorem 3. If all the zeros of a polynomial $P(z)$ of degree n lie in $|z| \leqslant 1$ and $P(1)=0$, then the polynomial $n P(z)+(\alpha-z) P^{\prime}(z)$ has at least one zero in the circle

$$
\begin{equation*}
\left|z-\frac{1}{2}-\frac{1}{2 \alpha}\right| \leqslant \frac{1}{2}-\frac{1}{2 \alpha} \quad \text { where } \alpha \geqslant 1 \tag{14}
\end{equation*}
$$

Proof. We write

$$
G(z)=n P(z)+(\alpha-z) P^{\prime}(z) \text { and } P(z)=(z-1) Q(z)
$$

then

$$
\begin{equation*}
\frac{G^{\prime}(z)}{G(z)}=\frac{(n-1) P^{\prime}(z)+(\alpha-z) P^{\prime \prime}(z)}{n P(z)+(\alpha-z) P^{\prime}(z)} \tag{15}
\end{equation*}
$$

The case $\alpha=1$ is trivial, so we assume $\alpha>1$. If $z=1$ is a multiple zero of $P(z)$ then $z=1$ is also a zero of $P^{\prime}(z)$ and therefore $z=1$ is a zero of $G(z)$. Since 1 lies in (14), the assertion is true in this case. Hence we assume that $z=1$ is a simple zero of $P(z)$. Now from (15) we have

$$
\begin{equation*}
\frac{G^{\prime}(1)}{G(1)}=\frac{n-1}{\alpha-1}+\frac{P^{\prime \prime}(1)}{P^{\prime}(1)}=\frac{n-1}{\alpha-1}+\frac{2 Q^{\prime}(1)}{Q(1)} \tag{16}
\end{equation*}
$$

If $w_{1}, w_{2}, \ldots, w_{n-1}$ are the zeros of $G(z)$ and $z_{1}, z_{2}, \ldots, z_{n-1}$ are those of $Q(z)$, then from (16) we have

$$
\sum_{j=1}^{n-1} \frac{1}{1-w_{j}}=\frac{n-1}{\alpha-1}+2 \sum_{j=1}^{n-1} \frac{1}{1-z_{j}}
$$

Since $\left|z_{j}\right| \leqslant 1$, so that

$$
\operatorname{Re} \frac{1}{1-z_{j}} \geqslant \frac{1}{2} \quad \text { for all } j=1,2, \ldots, n-1
$$

and therefore

$$
\begin{aligned}
\sum_{j=1}^{n-1} \operatorname{Re} \frac{1}{1-w_{j}} & =\frac{n-1}{\alpha-1}+2 \sum_{j=1}^{n-1} \operatorname{Re} \frac{1}{1-z_{j}} \\
& \geqslant \frac{n-1}{\alpha-1}+n-1=\frac{(n-1) \alpha}{\alpha-1}
\end{aligned}
$$

Hence

$$
\begin{aligned}
\operatorname{Re} \frac{1}{1-w} & \equiv \underset{1 \leqslant j \leqslant n-1}{\operatorname{Max}} \operatorname{Re} \frac{1}{1-w_{j}} \\
& \geqslant \frac{1}{n-1} \sum_{j=1}^{n-1} \operatorname{Re} \frac{1}{1-w_{j}} \geqslant \frac{\alpha}{\alpha-1}
\end{aligned}
$$

This implies

$$
\left|w-\frac{1}{2}-\frac{1}{2 \alpha}\right| \leqslant \frac{1}{2}-\frac{1}{2 \alpha}
$$

which is equivalent to (14) and the theorem is proved.

References

[1] A. W. Goodman, Q. I. Rahman and J. S. Ratti, 'On the zeros of a polynomial and its derivative', Proc. Amer. Math. Soc. 21 (1969), 273-274.
[2] M. Marden, 'Geometry of polynomials', 2nd ed., Mathematical Surveys 3 (Amer. Math. Soc., Providence, R.I., 1966).
[3] Q. I. Rahman, 'On the zeros of a polynomial and its derivative', Pacific J. Math. 41 (1972), 525-528.
[4] Z. Rubinstein, 'On a problem of Ilyeff', Pacific J. Math. 26 (1968), 158-161.

Post-graduate Department of Mathematics
University of Kashmir
Hazratbal Srinagar-190006
Kashmir, India

[^0]: (C) 1984 Australian Mathematical Society 0263-6115/84\$A2.00 +0.00

