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When a mixture of viscous oil and non-colloidal particles displaces air between two
parallel plates, the shear-induced migration of particles leads to the gradual accumulation
of particles on the advancing oil–air interface. This particle accumulation results in the
fingering of an otherwise stable fluid–fluid interface. While previous works have focused
on the resultant instability, one unexplored yet striking feature of the experiments is the
self-similarity in the concentration profile of the accumulating particles. In this paper,
we rationalise this self-similar behaviour by deriving a depth-averaged particle transport
equation based on the suspension balance model, following the theoretical framework of
Ramachandran (J. Fluid Mech., vol. 734, 2013, pp. 219–252). The solutions to the particle
transport equation are shown to be self-similar with slight deviations, and in excellent
agreement with experimental observations. Our results demonstrate that the combination
of the shear-induced migration, the advancing fluid–fluid interface and Taylor dispersion
yield the self-similar and gradual accumulation of particles.
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1. Introduction

Particle-laden flows have been studied extensively both theoretically and experimentally,
owing to their relevance in avalanches and mudflows (Savage & Lun 1988; Gray & Ancey
2009; Gray & Kokelaar 2010), three-dimensional printing of complex fluids (Lewis 2006;
Roh et al. 2017) and cell migration in biological systems (Vejlens 1938; Zhou & Chang
2005). In particular, there is much interest in understanding hydrodynamic interactions
of suspended particles that may lead to non-uniform particle distribution or particle
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accumulation on a fluid–fluid interface. For instance, Vejlens (1938) experimentally
studied blood flowing through capillary tubes and observed a much stronger red
colour in the region behind an advancing meniscus, which indicates a higher local
concentration of red blood cells. More recently, Zhou & Chang (2005) demonstrated
that the accumulation of red blood cells at the meniscus causes the penetration failure
of blood suspensions into a capillary with a diameter smaller than 100 micrometres,
which is a major obstacle in miniaturising blood diagnostic tools. The observation of
particle accumulation on the fluid–fluid interface is not limited to blood flows and even
extends to geological systems. Bhattacharji & Smith (1964) observed the concentration
gradient of minerals in rock-structure fissures, which is due to the accumulation of solid
particles.

To rationalise the mineral concentration gradient (Bhattacharji & Smith 1964),
Bhattacharji & Savic (1965) hypothesised that the accumulation of solid particles is
caused by a recirculation flow near the interface. They developed a mathematical model
to predict the velocity field of this recirculation flow in the absence of the particles, later
known as a ‘fountain flow’. Following their work, Karnis & Mason (1967) experimentally
investigated the accumulation of particles behind an advancing meniscus by tracking
aluminium trace particles to obtain the fountain flow streamlines. In qualitative agreement
with the theoretical prediction (Bhattacharji & Savic 1965), their results indicate that
particles entering the fountain flow region at the meniscus move radially away from the
axis towards the wall and are directed radially inwards again as they exit the fountain flow
region. At the same time, the particles close to the wall are trapped in the slow-moving
region and remain at the wall, resulting in the accumulation of particles at the meniscus.
In addition, Karnis & Mason (1967) claimed that the particle accumulation must vanish
when the wall effects are eliminated.

Despite the apparent success of the fountain flow model, Chapman (1990) proposed
that shear-induced migration be an alternative mechanism for particle accumulation, the
effect of which does not vanish with wall effects. Shear-induced migration refers to the
tendency of particles to move from high-shear to low-shear regions (Leighton & Acrivos
1987; Phillips et al. 1992; Nott & Brady 1994), which has been considered experimentally
(Hookham 1986; Abott et al. 1991; Koh, Hookham & Leal 1994) and theoretically
(Cook 2008; Ward et al. 2009; Murisic et al. 2011, 2013; Lee, Stokes & Bertozzi 2014;
Mavromoustaki & Bertozzi 2014; Wang & Bertozzi 2014; Lee, Wong & Bertozzi 2015;
Snook, Butler & Guazzelli 2016). In particular, a number of recent studies have focused
on building the theoretical framework for particle transport in the axial direction, while
capturing the effects of shear-induced migration normal to the flow direction. Select
examples include modelling of particle dispersion in different configurations (Griffiths
& Stone 2012; Ramachandran 2013; Christov & Stone 2014), while others considered the
effects of particle friction (Lecampion & Garagash 2014) and a yield-stress interstitial fluid
(Hormozi & Frigaard 2017).

Then, connecting shear-induced migration to particle accretion, particles migrate
towards the channel centreline in pressure-driven flow and assume a higher particle
average velocity than that of the fluid upstream of the interface. This velocity differential
results in a net flux of particles towards the meniscus and causes particle accumulation
(Xu, Kim & Lee 2016; Luo, Chen & Lee 2018). Chapman demonstrated that while the
accumulation rate increases with the particle size, there exists a non-zero asymptote
when the particle size approaches zero. More recently, Ramachandran & Leighton (2007)
supported the mechanism proposed by Chapman and confirmed that particle accumulation
is observed even when the wall effects vanish. Therefore, we conjecture that particle
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Self-similarity in particle accumulation

accumulation is governed primarily by the shear-induced migration far upstream, while
the fountain flow near the meniscus may play a secondary role.

One of the consequences of particle accumulation on the fluid–fluid interface is the
emergence of the interfacial instability. For instance, Tang et al. (2000) first observed
viscous fingering, when a mixture of particles and viscous fluid displaces air inside a
Hele-Shaw cell. This surprising phenomenon, or ‘particle-induced viscous fingering’,
contrasts with the stable case of a pure viscous liquid displacing air. Following their work,
Ramachandran & Leighton (2010) observed a similar fingering instability upon squeezing
the particle suspension between two parallel plates. More recently, Xu et al. (2016)
experimentally characterised fingering patterns for varying particle volume fractions.
They also successfully validated the effects of shear-induced migration that leads to the
accumulation of particles on the advancing oil–air interface, which was followed by the
exploration of the role of channel confinement (Kim, Xu & Lee 2017) and linear stability
analysis to predict the critical wavenumber (Hooshanginejad, Druecke & Lee 2019).

Despite the recent development in particle-induced viscous fingering, one of the
fundamental phenomena that leads to fingering remains unexplained. While particle
accumulation on the interface has been attributed to shear-induced migration, Xu et al.
(2016) noted that particles accrete on the advancing interface in such a way that
the depth-averaged particle volume fraction φ̄ is independent of time when scaled
appropriately. In this paper, we focus on understanding this self-similar behaviour of
particle accumulation both experimentally and theoretically. In § 2, we first quantitatively
show the self-similar behaviour by defining an inner radius of the suspension, Rin,
which separates the quasi-steady region far upstream of the interface from the particle
accumulation region. In § 3, we mathematically model the suspension flow as a continuum
and obtain a depth-averaged particle transport equation, based on the theoretical
framework developed by Ramachandran (2013). The numerical solutions to the transport
equation are also presented in § 4 and the paper is concluded in § 5.

2. Experiments

2.1. Materials and methods
We hereby describe the experimental method and data that were previously included in
(Xu et al. 2016; Luo et al. 2018). The experiments are performed by radially displacing
air with a particle suspension inside a Hele-Shaw cell, as depicted in the schematic
in figure 1(a). The cell consists of two plates of plexiglass, each with dimensions of
30.5 × 30.5 × 3.8 cm, that are separated by a gap thickness h with standard shims
(McMaster) secured at four corners. The suspension is prepared by mixing PDMS
silicone oil (United Chemical, viscosity ηl = 0.096 Pa · s, density ρl = 0.96 g cm−3)
with fluorescent polyethylene particles (Cospheric, diameter d = 125–150 μm, density
ρp = 1.00 g cm−3) inside a syringe to an initial volume fraction of φ0. The suspension
is left to sit for a sufficient time to allow entrapped air bubbles to escape with minimal
particle settling.

A complete list of experimental parameters (i.e. h and φ0) is summarised in table 1.
A syringe pump (New Era Pump Inc., model NE-1010) is used to inject the suspension
into the Hele-Shaw cell through a hole drilled at the centre of the bottom plate via a clear
vinyl tube. For all the experiments discussed herein, the volumetric flow rate Q is kept
constant at 150 mL min−1. A light-emitting diode (LED) panel (EnvirOasis, 75 W, 4200
Lumin) is placed under the cell to provide uniform illumination. All the experiments are
recorded with a digital camera (Canon 60D, resolution 1920 × 1080, field of view 64◦)
directly from above, at a rate of 30 frames per second.
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Figure 1. (a) A schematic of the experimental set-up. (b) Time-elapsed images of the suspension injected into
a Hele-Shaw cell with gap thickness h = 1.4 mm, at φ0 = 0.2 (a) and φ0 = 0.3 (b). Here, the particle diameter
d and the injection flow rate Q correspond to d = 125 μm and Q = 150 ml min−1, respectively.

h (mm) φ0(×100 %)

1.4 8, 11, 14, 15, 17, 20–35
1.3 8, 11, 14, 17, 20–35
1.2 14, 15, 17, 20–28, 30–35

Table 1. Experimental parameters of the gap thickness, h and particle concentration, φ0. The φ0 range that is
denoted as ‘# – #’ increases by an increment of 1 %.

We process the videos collected from experiments in MATLAB with two specific
goals: to track the suspension–air interface and to measure the depth-averaged particle
concentration, φ̄, in each experimental image. To track the interface, we use the built-in
edge detector in MATLAB, which takes the smoothed images from median filter as an
input. The detector utilises the ‘Canny’ method (Canny 1986) to identify changes in local
intensity gradient to find maxima, which are treated as edges. As indicated in figure 2(c),
R(t) corresponds to the radius of the circle fitted from all data points on the suspension–air
interface at a given time t.

Next, to extract φ̄, we first systematically subtract the background image from all
the experimental images. This allows us to eliminate any inherent non-uniformity in
lighting and to obtain the light intensity matrix I from the processed images. Then, the
depth-averaged concentration φ̄ is correlated to I, based on the following relationship
(Grasa & Abanades 2001; Xu et al. 2016):

φ̄(r) = k
ln I(r)− ln Imin

ln Imax − ln Imin
, (2.1)

where Imin and Imax are the minimum and maximum light intensity values of the given
image, respectively. The empirical parameter, k, is acquired from mass conservation:
φ̄(r) is integrated from the centre to the suspension–air interface such that 2

∫ R
δ
φ̄r dr =

φ0(R2 − δ2). Note that the lower bound of the integral, δ, is chosen to be approximately
6d in order to account for the injection hole.

Based on the extracted values of φ̄(r, t), we calculate the radial particle flux, f (r, t),
across a given cylindrical surface inside the suspension. As illustrated in the schematic in
figure 1(a), we consider a cylindrical control volume whose radius is given by the arbitrary
radial position, r, between the inlet and the interface, R(t). Conservation of particles inside
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Figure 2. (a) The depth-averaged concentration profile φ̄ of the suspension with the initial concentration φ0 =
0.25 plotted as a function of the radial distance, r, at different times, t. (b) The plots of φ̄ at different times
collapse into a single curve, when r is normalised by the instantaneous interfacial radius, R. Below (b) is a
close-up plot of φ̄ versus r/R in Region III. (c) The colour map of the measured particle concentration, φ̄, for a
suspension at φ0 = 0.25 at t = 3 s. The schematic illustrates three regions of the suspension during injection.
Region I is the transient region near the injection centre where the particles are undergoing shear-induced
migration in the z-direction. Region II corresponds to the region where the suspension has reached a quasi-fully
developed flow with constant φ̄, while φ̄ increases near the interface in Region III.

the control volume yields f (r, t) = φ0Q − dVp/dt, which balances the rate of particle
injection at the inlet with the time rate of change of the total volume of particles inside the
control volume, or Vp = ∫ r

δ
2πr̃φ̄(r̃)h dr̃. Hence, to obtain f (r, t), we compute the change

in Vp for all r (at an increment of δr) between two adjacent times, t1/2 = t ∓ δt/2. Here,
δr is a small radial distance, while δt corresponds to a small temporal deviation from the
reference time t. For the given set of experimental data, we set δr ∼ 3d and δt = 1/30 s,
which are limited by the spatial resolution of the image and the video frame rate.

2.2. Experimental observations
Figure 1(b) shows the time-elapsed images from two experimental runs at h = 1.4 mm:
φ0 = 0.2 (a) and φ0 = 0.35 (b). Interfacial deformations associated with viscous fingering
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are clearly observed at φ0 = 0.35, while the suspension–air interface remains stable and
circular at φ0 = 0.2. We further quantify this particle accumulation on the interface by
experimentally measuring φ̄, see figure 2(a), which shows an increase with r at φ0 = 0.25,
where r is the radial coordinate defined from the injection centre. Furthermore, a colour
map of the experimental image at t = 3 s in figure 2(c) shows a higher colour intensity
close to the interface, corresponding to a local increase in φ̄ at φ0 = 0.25. Both the plot
of φ̄ and the colour map verify the accumulation of particles on the interface even in the
stable regime (i.e. φ0 < 0.3), which is the focus of our current study.

Notably, as shown in figure 2(b), all φ̄(r, t) profiles approximately collapse on to a single
curve, when r is normalised by the instantaneous position of the suspension interface R(t).
This plot of φ̄ with r/R provides direct evidence that particles accumulate on the advancing
interface in a self-similar manner, despite some deviations in the normalised curve near the
interface. To further analyse this, we presently divide φ̄(r/R(t)) into three distinct regions
(I, II and III), as labelled in figure 2(b).

In Region I near the injection point, φ̄(r/R(t)) is shown to decrease slightly with
increasing r/R. We conjecture that the suspension is initially uniform upon exiting
the injection hole (near r = 0), with the volume fraction of φ0 = 0.25. Then, as the
suspension flows radially out inside the channel, suspended particles gradually migrate
across streamlines and focus near the centreline (i.e. shear-induced migration). This
gradual transition from uniform to non-uniform particle concentration in the z-direction
causes the average particle velocity to increase, which leads to a drop in φ̄ from φ0. Hence,
Region I is characterised by the transient migration of particles across the streamlines
owing to the gradient in shear rate.

In Region II, the suspension flow has reached a quasi-fully developed limit, so that φ̄ is
relatively constant, independent of r/R. We presently refer to this value of φ̄ in Region
II as φ̄up, where φ̄up(φ0) < φ0. Then, in Region III, φ̄ starts to increase with r/R, as
particles start accumulating near the fluid–fluid interface. As evident in figure 2(a), the
maximum value reached in φ̄ consistently increases with time. Hence, the close-up plot of
Region III below figure 2(b) reveals that φ̄ does not collapse into a single curve, when r
is normalised by R. However, while φ̄ may not be self-similar over the entire domain of
r/R, the relative sizes of Regions II and III and the general trend in φ̄ strongly suggest
that particles accumulate in a self-similar way. In addition, following this peak, φ̄ steeply
decreases towards the outer edge of the interface. While this could partly be attributed
to the curved shape of the meniscus which affects the measurements, the decrease in φ̄
covers a distance that is consistently larger than the size of the meniscus, h, and again
follows a self-similar trend. Hence, the gradual increase and a subsequent decrease in φ̄
are important features of our experimental results, which will be explored in our model.

Despite our characterisation of each region, the boundary between Regions II and III
is difficult to determine based on the experimental results in figure 2(b), as φ̄ increases
gradually when approaching the interface. Hence, instead of φ̄, we consider the extracted
values of the radial particle flux, f , as a function of r. Figure 3(a) shows the flux profile for
φ0 = 0.25 over r at t = 6 s. Consistent with the plot of φ̄ in figure 2(b), f also maintains a
constant value away from both the inlet and the interface. However, f increases sharply at
a certain radial position, which we currently define as Rin(t). Then, Rin(t)must correspond
to the boundary between Regions II and III, as it clearly separates the quasi-steady region
and the particle accumulation region downstream of the interface.

Finally, we characterise the temporal evolution of Rin(t) for varying φ0 at
h = 1.4 mm. As plotted in figure 3(b), Rin(t) increases linearly with t1/2 for all values of
φ0 considered. From the volume conservation of the mixture (i.e. πR(t)2h = Qt), we have
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Figure 3. (a) Particle flux, f , plotted as a function of r when φ0 = 0.25. Here, Rin(t) is defined at the
location that f starts increasing from a constant value upstream. In (b), Rin(t) increases linearly with t1/2 for
varying φ0 .

R(t) ∝ (Q/h)1/2t1/2, where Q and h remain constant in the data plotted. Hence, the linear
scaling of Rin(t) and R(t) with t1/2 confirm that the size of the particle accumulation zone
must also grow proportionately with R(t), which is consistent with self-similarity in φ̄.

3. Theory

3.1. Theoretical formulation: suspension balance model
In order to rationalise the self-similar behaviour of the φ̄ profile, we hereby treat the
particle–oil mixture as a continuum and develop a thin-film suspension model of our
system. We consider the injection of a suspension inside a Hele-Shaw cell from the
centre O and define a z–r cylindrical coordinate system as illustrated in the schematics
of figure 2(c). The present model is based on the suspension balance model by Nott &
Brady (1994), which includes a two-phase formulation expressed for the bulk suspension
and particulate phase.

The mass and momentum conservation equations for the mixture are given as

∇ · u = 0, (3.1a)

∇ · T = 0, (3.1b)

where u is the velocity of the suspension and T is the total stress tensor. Similarly, the
governing equations for the particle phase correspond to

∂φ

∂t
+ ∇ · (φup) = 0, (3.2a)

∇ · T p + F = 0, (3.2b)

where the superscript ‘p’ refers to the particle phase; hence, up and T p represent the
particle velocity and stress tensor, respectively.

The inter-phase drag force depends on the relative velocity between the particle and the
bulk suspension:

F = −18
μl

d2
φ

H(φ)
(up − u), (3.3)

where the hindrance function corresponds to H(φ) = (1 − φ)5 (Richardson & Zaki 1954);
μl is the viscosity of the suspending liquid. By combining with (3.1a), we can rewrite
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(3.2a) as

∂φ

∂t
+ u · ∇φ = −∇ · [φ(up − u)]. (3.4)

The bulk suspension and particle phase are coupled through the constitutive equations
for stress tensors

T = −pI + T p + 2μlE, (3.5a)

T p = T p
n + 2(μs(φ)− μl)E, (3.5b)

where I is the identity matrix, and E is the bulk suspension rate of strain tensor. We take
the following form of the normal stress of the particulate phase in each direction as

T p
n = −μn(φ)γ̇

⎛
⎝1 0 0

0 λ2 0
0 0 λ3

⎞
⎠ (flow)

(velocity gradient)
(vorticity)

, (3.6)

where λ2 and λ3 are scalar parameters first defined by Bird, Armstrong & Hassager
(1987) independent of φ, which can be determined from rheological measurements of
the suspension (Morris & Brady 1998; Zarraga, Hill & Leighton 2000; Boyer, Guazzelli
& Pouliquen 2011). Note that γ̇ = (2E : E)1/2 is the strain rate; μs(φ) and μn(φ) are the
effective shear and normal viscosities of the bulk suspension, respectively.

Amongst different empirical models for the effective viscosities (Krieger 1972; Morris
& Boulay 1999; Zarraga et al. 2000), we presently employ those developed by Morris &
Boulay (1999), written as

μs(φ)

μl
= 1 + 2.5φ

(
1 − φ

φm

)−1

+ 0.1
(
φ

φm

)2 (
1 − φ

φm

)−2

, (3.7a)

μn(φ)

μl
= 0.75

(
φ

φm

)2 (
1 − φ

φm

)−2

, (3.7b)

where φm = 0.6 is the maximum packing fraction of particles.
Our experiments are performed by injecting the mixture at a constant volumetric flow

rate Q. Hence, the incompressibility of the mixture requires the following constraint for
local volume conservation:

Q = 2πr
∫ h/2

−h/2
ur dz, (3.8)

where the subscript ‘r’ corresponds to the radial component of the velocity field and h
is the channel gap thickness. In addition, the condition of no particle flux at the walls
corresponds to

φup
z |z=±h/2 =

[
d2H(φ)

18μl
[∇ · T p]z + φuz

]
z=±h/2

= 0, (3.9)

where the subscript ‘z’ is the vertical component.
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We hereby introduce dimensionless variables (denoted with an asterisk) to simplify the
governing equations:

r∗ = r
R0
, z∗ = z

εR0
, μ∗

s/n = μs/n

μl
, p∗ = p

μlU0R0/h2 ,

u∗
r = ur

U0
, u∗

z = uz

εU0
, T p∗ = T p

μlU0/h
, t∗ = t

R0/U0
,

⎫⎪⎪⎬
⎪⎪⎭ (3.10)

where R0 is the characteristic radial distance and ε ≡ h/R0, while the characteristic radial
velocity is defined as U0 ≡ Q/(πR0h). In particular, since R(t) = (Q/(πh))1/2t1/2, the
time-dependent location of the interface can be expressed as R∗ = t∗1/2 based on the
dimensionless variables defined.

3.2. Model assumptions and multiple-time-scale expansion
Our model rests on a few assumptions based on the experimental set-up and our
observations. First, we reasonably assume ε = h/R0 � 1, as R0 ∼ O(10−1) m and h ∼
O(10−3) m based on our experiments. Next, we consider two important time scales that
characterise the current system: τz, the time scale of particle migration across the thin gap
and τr, the time scale of particle advection in the r-direction. While τr ∼ R0/U0, τz can be
derived as τz ∼ (h2/d2)γ̇−1, where γ̇ ∼ U0/h, by examining (3.4) and (3.3). Alternatively,
τz = h2/D, where D is the shear-induced diffusivity that scales as d2γ̇ (Leshansky, Morris
& Brady 2008; Griffiths & Stone 2012). Then, the ratio of the time scales corresponds to
τz/τr = εχ , where χ = (h/d)2 	 1.

Based on the characteristic experimental parameters, the typical value of εχ ranges
from 0.6 to 1. Nonetheless, we consider the limit where εχ is a small parameter, such that
ε � εχ � 1, for the following reasons. First, assuming εχ � 1 allows us to simplify our
present analysis and to systematically add the effects of Taylor dispersion into our transport
equation, in the manner of Ramachandran (2013). Second, the disparity of the time scales
is evident in the experimental plot of φ̄ (see figure 2b), in which the size of Region I – the
transient region near the injection centre – is consistently small compared to the overall
radial distance. This implies that the time it takes for particles to migrate across the thin
gap must be small compared to that of particle transport in the radial direction. Hence, it is
reasonable to assume τz � τr, or ε � εχ � 1, as a starting point in the present analysis.
Finally, we neglect the transient region near the injection centre (Region I) and only focus
on Regions II and III in our model.

Given the assumptions above, we first employ the lubrication approximations and reduce
the governing equations based on ε � 1. Second, we follow the multiple-time-scale
expansion by Ramachandran (2013) and break up the time variable into the short (i.e.
t∗1 = t∗) and long (i.e. t∗2 = εχ t∗) time scales, such that

∂

∂t∗
= ∂

∂t∗1
+ (εχ)

∂

∂t∗2
+ O((εχ)2). (3.11)

Then, the dependent variables can be expanded in the order of εχ . We denote the
leading order term with the superscript ‘(0)’ and the term linear in εχ with ‘(1)’ (e.g.
φ = φ(0) + (εχ)φ(1) + O((εχ)2)). Note that all dependent and independent variables
henceforth are presented in their dimensionless form unless otherwise noted; the asterisk
(∗) is subsequently dropped for brevity.
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Specifically, we model our current system in two steps. First, we compute the particle
concentration profiles (e.g. φ(0), φ(1)) and radial velocity profiles (e.g. u(0)r , u(1)r ) in the
order by order fashion. This yields the expression for the particle flux with respect to
the local depth-averaged particle concentration, up to O(εχ). Second, we utilise the
expression for the particle flux and derive an evolution equation for φ̄ based on the particle
volume conservation, which is solved numerically with appropriate initial and boundary
conditions. Overall, our model procedure closely follows the derivation of Ramachandran
(2013), which we frequently refer to for more details.

3.3. Leading order solutions
Combining (3.1b) and (3.5a), the momentum conservation equations of the bulk
suspension can be obtained to the leading order in ε and in εχ as

∂rp(0) = ∂

∂z
[μs(φ

(0))∂zu(0)r ], (3.12a)

∂zp(0) = 0. (3.12b)

Note that we have assumed the flow to be axisymmetric; hence, the equation in the
θ -direction is neglected. Also, at the leading order, the particle transport equation (3.4),
combined with (3.2b), (3.3), (3.5b) and (3.6), yields

∂

∂z

[
H(φ(0))

∂

∂z

(
λ2μn(φ

(0))
∂u(0)r

∂z

)]
= 0, (3.13)

while the no-flux boundary condition (3.9) reduces to

∂

∂z

(
λ2μn(φ

(0))
∂u(0)r

∂z

)∣∣∣∣∣
z=±h/2

= 0. (3.14)

By integrating (3.13) subject to (3.14), we obtain

μn(φ
(0))∂zu(0)r = const. (3.15)

Similarly, based on (3.12b) and the condition ∂zur(z = 0) = 0, we can integrate (3.12a)
with respect to z to obtain

μs(φ
(0))∂zu(0)r = ∂rp(0)z. (3.16)

Next, by combining (3.16) and (3.15), we can obtain an implicit expression for φ(0)(z)
as

1
g(φ(0)(z))

= ∂rp(0)z
const.

= C0z. (3.17)

where g(φ(0)) ≡ μn(φ
(0))/μs(φ

(0)) and C0 is a constant independent of z but may have a
dependence on r. Then, we integrate (3.16) again and apply no-slip boundary conditions
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Figure 4. (a) Local particle concentration profile φ(0) and (b) the normalised velocity profile, u(0)r /ū, as a
function of z for varying depth-averaged concentrations φ̄.

(i.e. u(0)r (z = ±1/2) = 0) to obtain an expression for the mixture velocity,

u(0)r (z) =
∫ z

−1/2

∂rp(0)z̃
μs(φ(0)(z̃))

dz̃, (3.18)

where

∂rp(0) =
[

2r
∫ 1/2

−1/2

∫ z

−1/2

z̃
μs(φ(0)(z̃))

dz̃ dz

]−1

(3.19)

can be determined from the volume conservation of the suspension as

1 = 2r
∫ 1/2

−1/2
u(0)r dz. (3.20)

Finally, we compute the resultant local particle concentration profile φ(0)(z) from
(3.17), by treating the depth-averaged particle concentration, φ̄ = ∫ 1/2

−1/2 φ
(0) dz, as a known

parameter. By systematically varying the value of φ̄, we obtain a complete set of solutions
for u(0)r (z) and φ(0)(z), examples of which are plotted in figure 4. The plot of φ(0)(z) in
figure 4(a) shows that there is a higher concentration at the centreline, z = 0, owing to
the shear-induced migration of particles. Then, the corresponding velocity profiles, u(0)r ,
are normalised by the local mean velocity, ū = ∫ 1/2

−1/2 u(0)r dz, and plotted for varying φ̄.
As shown in figure 4(b), the velocity profile becomes more blunt at z = 0 for increasing
φ̄. This is consistent with the physical picture of particle aggregation near the centreline.
With u(0)r (z) and φ(0)(z) thus known, we subsequently compute the dimensionless particle
flux, f (0), as a function of φ̄:

f (0) = 2r
∫ 1/2

−1/2
u(0)r (z)φ(0)(z) dz. (3.21)
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3.4. O(εχ) solutions
Within the lubrication framework, we consider the governing equations at O(εχ) to derive
u(1)r and φ(1). At O(εχ), the momentum conservation of the mixture leads to

∂rp(1) = ∂

∂z
[μs∂zur](1), (3.22a)

∂zp(1) = 0, (3.22b)

while (3.4) reduces to

∂φ(0)

∂t1
+ u(0)r

∂φ(0)

∂r
+ u(0)z

∂φ(0)

∂z
= 1

18
∂

∂z

[
H(φ(0))

∂

∂z

(
λ2μn

∣∣∣∣∂ur

∂z

∣∣∣∣
)(1)]

. (3.23)

We then integrate (3.23) from z = −1/2 to z = 1/2. With no particle flux condition at
the walls (i.e. (3.9) at O(εχ)), the right-hand side of (3.23) vanishes upon integration, such
that ∫ 1/2

−1/2

∂φ(0)

∂t1
dz +

∫ 1/2

−1/2

[
u(0)r

∂φ(0)

∂r
+ u(0)z

∂φ(0)

∂z

]
dz = 0. (3.24)

On the left-hand side, we apply the chain rule and integration by parts to the second and
third terms, respectively, so that∫ 1/2

−1/2
u(0)r ∂rφ

(0) dz = 1
r
∂r

(
r
∫ 1/2

−1/2
u(0)r φ(0) dz

)
−
∫ 1/2

−1/2

1
r
∂r(ru(0)r )φ(0) dz, (3.25a)

∫ 1/2

−1/2
u(0)z ∂zφ

(0) dz = (φ(0)u(0)z )|z=1/2 − (φ(0)u(0)z )|z=−1/2 −
∫ 1/2

−1/2
φ(0)∂zu(0)z dz.

(3.25b)

Based on the impermeability boundary condition and continuity, we derive the following
particle transport equation at O(εχ):

∂φ̄

∂t1
+ 1

2r
∂f (0)

∂r
= 0. (3.26)

By combining (3.23) with (3.26) and employing chain rules (e.g. ∂r = ∂rφ̄∂φ̄), we
re-write the left-hand side of (3.23) as

− ∂φ(0)

∂φ̄

df (0)

dφ̄
1
2r
∂φ̄

∂r
+ u(0)r

∂φ(0)

∂φ̄

∂φ̄

∂r
+ u(0)z

∂φ(0)

∂z
, (3.27)

where u(0)z = r−1∂r
∫ 1/2

z ru(0)r dz̃ based on continuity. After some algebraic manipulation,
(3.23) becomes

S2(φ̄, z)
1
r
∂φ̄

∂r
= 1

18
∂

∂z

[
H(φ(0))

∂

∂z

(
λ2μn(φ)

∣∣∣∣∂ur

∂z

∣∣∣∣
)(1)]

, (3.28)

where

S2(φ̄, z) = ∂φ(0)

∂φ̄

[
ru(0)r − 1

2
∂f (0)

∂r

]
+ ∂φ(0)

∂z
∂

∂φ̄

∫ 1/2

z
ru(0)r (φ̄, z̃) dz̃. (3.29)
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Figure 5. Here, (a) S7 and (b) S11 plotted as a function of z for varying depth-averaged concentrations φ̄.

Finally, integrating (3.28) and applying appropriate boundary conditions leads to

φ(1) = S7(φ̄, z)
∂φ̄

∂r
, (3.30)

where S7 is a function of z for given φ̄. In addition, combining (3.30) with the momentum
equations (3.22a) and (3.22b) yields the expression for the perturbation velocity, u(1)r :

u(1)r = S11(φ̄, z)
1
r
∂φ̄

∂r
. (3.31)

The detailed derivations of φ(1) and u(1)r , as well as the expressions of S7 and S11, are
included in the appendix.

Notably, φ(1) and u(1)r depend on the gradient of φ̄ in the radial direction and on φ̄,
as distinct from the leading order terms. To probe the physical meaning of φ(1) and u(1)r
more closely, we plot the functions, S7 and S11, in figure 5. The plot of S7 in figure 5(a)
shows that φ(1) is positive near the walls (z = 1/2) and negative near the centreline before
sharply vanishing at z = 0; these effects are increasingly less pronounced at higher φ̄. This
suggests that when φ̄ increases with r (i.e. ∂rφ̄ > 0), the effects of shear-induced migration
may become mitigated, as the particle concentration is reduced near the centreline and
increases near the walls. Similarly, as shown in the plot of S11 in figure 5(b), u(1)r is positive
near z = 0 and becomes negative for increasing z before reaching zero at the walls. While
this trend is consistent for all φ̄, it is reduced at larger φ̄. This implies that for ∂rφ̄ > 0, the
velocity profile becomes less blunt near the centreline, where the corresponding particle
concentration decreases.

This dependence of φ(1) and u(1)r on ∂rφ̄ will directly impact the dynamics of particle
accumulation through the corresponding perturbation in the particle flux, or f (1). With
φ(0), u(0)r , φ(1) and u(1)r known, we compute f (1) as

f (1) = 2r
∫ 1/2

−1/2
[u(0)r (z)φ(1)(z)+ u(1)r (z)φ(0)(z)] dz = 2S12(φ̄)

∂φ̄

∂r
, (3.32)

where

S12(φ̄) =
∫ 1/2

−1/2
[S7(φ̄, z)ru(0)r (z)+ S11(φ̄, z)φ(0)(z)] dz. (3.33)
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As shown in figure 6(b), S12(φ̄) is negative and its magnitude generally decreases with
φ̄, while f (0) monotonically increases with φ̄. Hence, the particle flux must increase more
slowly owing to this perturbation in the flux, as particles accumulate on the interface, or
as ∂rφ̄ > 0. We conjecture that this mitigation in the particle flux may lead to the gradual
accumulation of particles, which will be fully examined in the next section.

4. Particle transport equation and self-similarity

In order to compute φ̄, we must consider the depth-averaged particle transport equation
that combines terms up to O((εχ)2). Hence, we start by integrating (3.4) over the thin
gap at O((εχ)2). By utilising

∫ 1/2
−1/2 φ

(1) dz = 0 and taking the same steps as O(εχ) (e.g.
(3.25a) and (3.25b)), we obtain

∂φ̄

∂t2
+ 1

2r
∂f (1)

∂r
= 0. (4.1)

Finally, we combine (3.26) and (4.1) to derive the following depth-averaged particle
transport equation:

∂φ̄

∂t
+ 1

2r
∂f (0)

∂r
+ (εχ)

1
r
∂

∂r

[
S12(φ̄)

∂φ̄

∂r

]
= 0. (4.2)

To find the similarity solution to (4.2), we seek a solution with the following structure:

φ̄ = 1
tα
ψ

(
r√
t

)
:= 1

tα
ψ(ξ), (4.3)

where α and ψ can be found. Substituting it into (4.2), we have

−αξψ(ξ)− 1
2
ψ ′(ξ)ξ2 + 1

2
f (0)

′
(φ̄)ψ ′(ξ)+ 1

tα+1/2 S′
12(φ̄)ψ

′(ξ)2 + 1√
t
S12(φ̄)ψ

′′(ξ)=0.

(4.4)

Note from the plot of f (0) in figure 6(a), we may reasonably approximate f (0) as a linear
function in φ̄, so that f (0)′(φ̄) = C1 for a constant C1. If we assume S12(φ̄) = C2φ̄

γ for
some constant C2 and γ , and choose α such that αγ + 1

2 = 0, then (4.4) reduces to

− αξψ(ξ)− 1
2ψ

′(ξ)ξ2 + C1ψ
′(ξ)+ γ (ψγ−1ψ ′(ξ)2 + ψγψ ′′(ξ)) = 0, (4.5)

which provides a rule to determine ψ . As a result, φ̄ = t1/(2γ )ψ(r/
√

t) is a self-similar
solution to (4.2). In figure 6(b), we fit S12(φ̄) with −0.0022 × φ̄−1.399 and show that the
latter approximates the former with a slight deviation. This deviation explains why our
solution is not exactly self-similar. However, as shown in figure 6(b), the deviation is so
small that particles are expected to accumulate in an approximately self-similar manner.
Hence, this approximate self-similar nature of (4.1) is consistent with the experimental
measurements of φ̄ in figure 2(b).
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Figure 6. (a) The numerical solution of the leading order flux, f (0), is plotted as a function of depth-averaged
concentration φ̄. The solid line indicates the linear fit. (b) The solution of S12 is plotted for varying
depth-averaged concentration, φ̄, and is fitted with a function −0.0022 × φ−1.399.

4.1. Simulation results: comparison with experiments
We solve (4.2) numerically using the upwind finite difference scheme, by applying the
following initial and boundary conditions:

φ̄(r > 0, t = 0) = 0, (4.6a)

φ̄(r = 0, t) = φ̄up(φ0), (4.6b)

φ̄(r > R(t), t) = 0. (4.6c)

The initial condition (4.6a) indicates that there are no particles inside the domain at
t = 0, while (4.6c) imposes zero particle concentration downstream of the immiscible
interface, R(t). The latter simultaneously satisfies the condition of zero particle flux for
r > R(t). In addition, we impose φ̄ at the inlet to be φ̄up, the constant depth-averaged
particle concentration in Region II. In the experiments, the depth-averaged concentration
is φ0 at the inlet and gradually transitions to φ̄up downstream (Region I). As the current
model considers only Regions II and III, it is reasonable to use φ̄(r = 0) = φ̄up as our
boundary condition, such that the flux at the inlet is equal to the upstream particle flux
f (φ̄up) = f (0)(φ̄up)+ (εχ)f (1)(φ̄up).

Hence, we first calculate φ̄up by revisiting the solution of φ(0)(z) in § 3.3. Specifically,
we compute φ(0)(z) from (3.17), subject to the particle volume conservation in the fully
developed limit (Region II): φ0 = 2r

∫ 1/2
−1/2 u(0)r φ(0) dz. Note that the solutions in this

regime reduce to the steady-state results of a one-dimensional channel flows, as ∂rφ̄ = 0
ensures that φ(1) = 0. Finally, we obtain φ̄up by integrating the resultant φ(0)(z) across
the thin gap. Figure 7 shows the plot of φ0 − φ̄up versus φ0 from theory (solid line),
together with the experimental measurements (symbols). The results show a qualitative
match between theory and experiments, although the theoretical prediction of φ0 − φ̄up is
persistently larger than the experimental measurements. We subsequently utilise φ̄up(φ0)
from our model as the boundary condition in (4.6b).

We examine some characteristic solutions to (4.2) for varying values of εχ . Note that
the second term in (4.2) characterises the radial advection of particles, while the last
term corresponds to the radial diffusion, or Taylor dispersion, of particles that acts to
smooth out the changes in φ̄ in the r-direction. Hence, the value of εχ determines the
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0.015
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0.010
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φ
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 –

 φ̄
up

φ0

Figure 7. The difference between the initial concentration and the depth-averaged particle concentration,
φ0 − φ̄up, in Region II is plotted as a function of φ0. The solid line represents the numerical solution from
the simplified suspension balance model with the constraint of the particle volume conservation. The square
markers indicate the experimental data for h = 1.4 mm.

0.4

0.5  = 0.4

 = 0.6

 = 0.8

 = 1.00.3

0.2

0.1

0.25 0.50
r

0.75 1.000

0

φ̄

Figure 8. The numerical solution of depth-averaged particle concentration, φ̄up, as function of r is plotted for
various values of εχ at t = 14 s and φ0 = 0.2. As εχ increases, the increase in φ̄up becomes less steep.

relative importance of Taylor dispersion versus particle advection in the particle transport
equation. Figure 8 shows the plot of φ̄(r) at t = 14 s for φ0 = 0.2 with values of εχ ranging
from 0.4 to 1. As expected, the increase in φ̄ becomes less steep, as the value of εχ is
systematically increased. Following this increase, φ̄ is shown to rapidly decrease to zero at
the interface, largely independent of the value of εχ .

Next, we compare the numerical solutions to (4.2) with our experiments for φ0 = 0.2
and 0.25, respectively, which fall in the regime of clear particle accumulation and no
viscous fingering. Here we empirically set the values of εχ to best fit the experimental
results of φ̄, as shown in figure 9(a) and (b). The fitted value corresponds to εχ = 0.9 at
both concentrations. While the actual values of εχ used do not strictly meet the assumption
of εχ � 1, we note that the characteristic size of Taylor diffusion in (4.2) is still an order of
magnitude smaller than that of the advection term, as |S12| ∼ O(0.01) and f (0) ∼ O(0.1)
in figure 6. The numerical solutions of φ̄ are plotted as a function of dimensional r (in
solid lines) at six different times, t. The markers indicate the experimental measurements
of the depth-averaged particle concentrations.

The numerical solutions agree well with the experimental observation for both
concentrations except for the over-prediction of φ̄ near the interface particularly for φ0 =
0.25. This over-prediction is expected given that our current model sets φ̄(r = 0) = φ̄up
and neglects Region I in which φ̄ gradually decreases from φ0 at r = 0 to φ̄up downstream.
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Figure 9. Comparison of the numerical solutions of φ̄ to the experiments for (a) φ0 = 0.2 and (b) φ0 = 0.25,
both with εχ = 0.9. Solid lines in the plots indicate the theoretical results, while the solid symbols are
experimental measurements. The inset plots indicate the theoretical results of φ̄ versus r/R in Region III. The
solutions of the dimensional flux, f , are also compared with the experimental measurements for (c) φ0 = 0.2
and (d) φ0 = 0.25, respectively. Note that r is a dimensional radial coordinate.

We have also plotted the numerical solutions of φ̄ as a function of r/R in Region III in the
inset of figure 9(a). It clearly shows that our theoretical results are also self-similar, despite
small deviations near the interface, which is consistent with the experimental observations
in figure 2(b). In addition, the numerical solutions of the dimensional flux, f , are plotted
and compared with the experimental results in figure 9(c,d) for both concentrations at
varying t. The theoretical results are in qualitative agreement with the experiments at all
times.

Overall, our reduced model has demonstrated the shear-induced migration of the
particles far upstream and the presence of the fluid–fluid interface are barebones physical
ingredients that can lead to particle accretion on the interface in the current geometry.
Then, the gradual accumulation of particles is achieved through the inclusion of the
perturbation in the particle flux that depends on both local φ̄ and the gradient of φ̄ in
the radial direction. This perturbation appears in the particle transport equation as the
axial diffusion term, which mitigates how steeply φ̄ increases towards the interface. The
resultant particle transport equation yields solutions that are approximately self-similar
and in remarkable agreement with the experimental data.

5. Summary and conclusions

In summary, our work has focused on understanding the self-similar behaviour of particle
accumulation observed in suspension flow, through experiments and theoretical modelling.
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This particle accumulation at the advancing interface is attributed to the shear-induced
migration of particles far up stream, which causes the particles to assume a faster average
velocity than the mixture. We first carry out the experiments by injecting the suspension
into the Hele-Shaw cell with varying initial particle concentrations, φ0, at a constant
volume flow rate Q. We extract the depth-averaged particle volume fraction φ̄ and the
particle flux f (r) via image processing. The evolution of φ̄ as a function of r collapses on
to a single curve when r is normalised by the instantaneous position of the interface, R(t).
We divide the collapsed curves of φ̄(r/R(t)) into three distinct regions: Regions I, II and
III. In particular, Region II refers to the region where the suspension reaches a quasi-fully
developed flow with constant φ̄ = φ̄up, while φ̄ increases towards the interface in Region
III. We experimentally quantify the boundary between Region II and Region III as Rin(t).
The linear scaling of both Rin(t) and R(t) with respect to t1/2 also confirms the self-similar
growth of particle accumulation.

We develop a thin-film model to rationalise the self-similarity of φ̄ based on
the suspension balance model. By combining the lubrication approximations and
multiple-time-scale expansion, we obtain the depth-averaged upstream concentration, φ̄up,
as well as the particle flux (i.e. f (0) and f (1)) for given local φ̄(r) and the gradient of
φ̄(r). Then, we derive a depth-averaged particle transport equation by considering the
conservation of the particle volume. In particular, the perturbation in the flux appears in
the particle transport equation as the axial diffusion term that mitigates how steeply φ̄
increases towards the interface. The resultant particle transport equation yields solutions
that are approximately self-similar, and in remarkable agreement with the experimental
data.

The good match between theory and experiments demonstrates that our reduced model
successfully captures the self-similar behaviour of particle accumulation on the advancing
fluid–fluid interface. However, the model has a number of limitations that need to be
addressed. For instance, the validity of the model for εχ ∼ O(1) is questionable, despite
the good agreement with the experiments. In addition, the present model results suggest
that the presence of the fountain flow and the shape of the meniscus play a minimal role
in the dynamics of particle accretion, which is not well understood. Finally, resolving
the particle dynamics near the fluid–fluid interface is only the first step in predicting the
threshold particle concentration necessary to trigger particle-induced viscous fingering. In
particular, previous experimental measurements have shown that φ̄ needs to attain a critical
slope with respect to r before miscible fingering is observed (Luo et al. 2018). However,
the physical and mathematical basis for this observation is currently not well understood.
Hence, predicting the onset of fingering requires building on the current model for φ̄(r, t)
to derive a fully nonlinear two-dimensional model of the suspension flow inside a thin gap.
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Appendix A. Derivations of φ(1) and u(1)
r

Let us first define the following terms:

S1(φ̄, z) =
∫ 1/2

z
− z̃
μs(φ)

dz̃, M(φ̄) =
∫ 1/2

−1/2
S1(φ̄, z) dz (A1a,b)

so that we can rewrite ∂rp(0) and u(0)r as

∂rp(0) = 1
2rM(φ̄)

, (A2a)

u(0)r (φ̄, r, z) = S1(φ̄, z)
2rM(φ̄)

. (A2b)

We integrate equation (3.28) from z to 1/2 using the no-particle flux condition (3.9) to
obtain

18
λ2H(φ(0))

[∫ 1/2

z
−S2(z̃, φ̄) dz̃

1
r
∂φ̄

∂r

]
= ∂

∂z

(
g(φ)μs(φ)

∣∣∣∣∂ur

∂z

∣∣∣∣
)(1)

. (A3)

After another integration from 0 to z, (A3) becomes

18
λ2

⎡
⎢⎢⎢⎣−

∫ z

0

∫ 1/2

z̃
−S2(z̃′, φ̄) dz̃′

H(φ(0))
dz̃

1
r
∂φ̄

∂r
+ B0(r, t)

⎤
⎥⎥⎥⎦ =

(
g(φ)μs(φ)

∂ur

∂z

)(1)
, (A4)

where B0(r, t) is a constant to be determined later.
We now expand the right-hand side of (A4), so that(

g(φ)μs(φ)
∂ur

∂z

)(1)
= g(φ0)

(
μs(φ)

∂ur

∂z

)(1)
+ dg(φ(0))

dφ(0)
φ(1)

(
μs(φ)

∂ur

∂z

)(0)
. (A5)

Combining (A5) with (A4), we obtain an expression for φ(1) as

φ(1) = 1

dg(φ(0))
dφ(0)

(
μs(φ)

∂ur

∂z

)(0)
{

18
λ2

[
S3(z, φ̄)

1
r
∂φ̄

∂r
+ B0(r, t)

]

−g(φ(0))
(
μs(φ)

∂ur

∂z

)(1)}
, (A6)

where

S3(z, φ̄) =
∫ z

0

∫ 1/2

z̃
S2(z̃′, φ̄) dz̃′

H(φ(0))
dz̃. (A7)

From (3.12a) and the definition of (A2a), we have(
μs(φ)

∂ur

∂z

)(0)
= z

2rM
, (A8)

925 A10-19

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

64
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.647


Y. Chen, R. Luo, L. Wang and S. Lee

while the momentum equations (3.22a) and (3.22b) yield(
μs(φ)

∂ur

∂z

)(1)
= ∂p(1)

∂r
z, (A9)

where ∂rp(1) is independent of z. Therefore, the second term on the right-hand side of (A6)
can be written as

g(φ(0))
(
μs(φ)

∂ur

∂z

)(1)
= g(φ(0))

∂p(1)

∂r
z. (A10)

Since g(φ(0))z is also independent of z according to (3.17), the second term on the
right-hand side of (A6), [−g(φ(0))(μs(φ)∂zur)

(1)], must be a function of r and t only,
which will be combined with B0(r, t) as a single constant B(r, t). Then, (A6) can be finally
simplified as

φ(1) = 1
dg(φ(0))

dφ(0)
z

2rM(φ̄)

{
18
λ2

[
S3(z, φ̄)

1
r
∂φ̄

∂r
+ B(r, t)

]}
. (A11)

The constant B(r, t) can be determined using the constraint
∫ 1/2
−1/2 φ

(1) dz = 0, such that

B(r, t) = −S5(φ̄)

S6(φ̄)

1
r
∂φ̄

∂r
. (A12)

Note that

S4(φ̄, z) = dg(φ(0))
dφ(0)

z
2M(φ̄)

, (A13a)

S5(φ̄) =
∫ 1/2

−1/2

S3(φ̄, z)
S4(φ̄, z)

dz, (A13b)

S6(φ̄) =
∫ 1/2

−1/2

1
S4(φ̄, z)

dz. (A13c)

Therefore, (A11) can be further expressed as

φ(1) = 1
S4(φ̄, z)

{
18
λ2

[
S3(φ̄, z)− S5(φ̄)

S6(φ̄)

]}
∂φ̄

∂r
. (A14)

Finally, we simplify (A14) as

φ(1) = S7(φ̄, z)
∂φ̄

∂r
, (A15)

by defining

S7(φ̄, z) = 1
S4(φ̄, z)

{
18
λ2

[
S3(φ̄, z)− S5(φ̄)

S6(φ̄)

]}
. (A16)

To compute the velocity profile at O(εχ), we expand the left-hand side of (A9) as(
μs
∂ur

∂z

)(1)
= μs(φ

(0))
∂u(1)r

∂z
+ dμs(φ

(0))

dφ(0)
φ(1)

∂u(0)r

∂z
. (A17)
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Substituting equation (A17) into (A9) and rearranging, we obtain

∂u(1)r

∂z
= z
μs(φ(0))

∂p(1)

∂r
− 1
μs(φ(0))

dμs(φ
(0))

dφ(0)
φ(1)

∂u(0)r

∂z
. (A18)

Now, we integrate (A18) from z to 1/2 and apply the no-slip boundary condition, which
yields

u(1)r = S1(φ̄, z)
∂p(1)

∂r
−
∫ 1/2

z
− 1
μs(φ(0))

dμs(φ
(0))

dφ(0)
φ(1)

∂u(0)r

∂z
dz̃, (A19)

subject to

r
∫ 1/2

−1/2
u(1)r dz = 0. (A20)

Using the previous constraint and the expression of φ(1), we can write the expression of
∂rp(1) as

∂p(1)

∂r
=

∫ 1/2

−1/2

∫ 1/2

z
− 1
μs(φ(0))

dμs(φ
(0))

dφ(0)
∂u(0)r

∂z
S7(φ̄, z̃) dz̃ dz

M(φ̄)
∂φ̄

∂r
. (A21)

Again, from (3.12a) and the definition of (A2a), we have

∂u(0)r

∂z
= 1
μs(φ(0))

z
2rM

. (A22)

Then, u(1)r can be expressed as

u(1)r = [S10(φ̄, z)− S8(φ̄, z)]
1
r
∂φ̄

∂r
(A23)

from (A21), by defining

S8(φ̄, z) =
∫ 1/2

z
− 1
μ2

s (φ
(0))

dμs(φ
(0))

dφ(0)
z̃

2M(φ̄)
S7(φ̄, z̃) dz̃, (A24a)

S9(φ̄) =

∫ 1/2

−1/2
S8(φ̄, z)

M(φ̄)
dz, (A24b)

S10(φ̄, z) = S1(φ̄, z)S9(φ̄). (A24c)

We finally simplify (A23) as

u(1)r = S11(φ̄, z)
1
r
∂φ̄

∂r
, (A25)

where

S11(φ̄, z) = S10(φ̄, z)− S8(φ̄, z). (A26)
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