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HOLOMORPHIC FUNCTIONS WITH POSITIVE 
REAL PART 

ERIC SAWYER 

The main purpose of this note is to prove a special case of the following 
conjecture. 

Conjecture. If F is holomorphic on the unit ball Bn in Cn and has 
positive real part, then F is in Hv{Bn) for 0 < p < \{n + 1). 

Here Hp(Bn) (0 < p < oo ) denote the usual Hardy spaces of holo
morphic functions on Bn. See below for definitions. We remark that the 
conjecture is known for 0 < p < 1 and that some evidence for it already 
exists in the literature; for example [1, Theorems 3.11 and 3.15] where it 
is shown that a particular extreme element of the convex cone of functions 

{F holomorphic on B2; Re F > 0, F(0) = 1} 

is in 2 P ( J 3 2 ) for 0 < p < 3/2. The theorem below (which is stated for 
domains more general than balls) shows that the conjecture is true at 
least for functions F = (1 + / ) / ( l — / ) where / is suitably "nice" on 
Bn. Recall that the map/—» (1 + / ) / ( l — / ) is a bijection from holo
morphic functions of modulus less than one to holomorphic functions 
with positive real part. We now introduce some definitions and notation. 

Let 12 be a bounded domain in Cn. Denote by H(Q) the collection of 
complex-valued functions holomorphic on 12. If there exists an open set 
W D d!2 and a continuously differentiate function r : W —• R satisfying 
(i) the gradient of r does not vanish on 612 and (ii) 12 H W = 
{w G W; r(w) < 0}, then r is said to be a characterizing function for 12. 
If r is in Ck(W), i.e., is k times continuously differentiate on W, then 
12 is said to have Ck boundary. Suppose that r is a C2 characterizing 
function for 12. Let 

H*($) = { / € H(Q); sup f \m\'day(z) < oo \ 

where 127 = {z 6 12; r(z) < — 7} and cry denotes the surface measure on 
d!27 induced by Lebesgue measure on Cn. The class of functions iJp(12) is 
independent of the particular characterizing function used (see [3]; 

Received November 28, 1978. The author is a fellow of the National Research Council 
of Canada. 

1 

https://doi.org/10.4153/CJM-1982-001-1 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1982-001-1


2 ERIC SAWYER 

Section 3 of Chapter I). Let 

and denote by HT(z) the hermitian form on Pz defined by 

HT(z) (w, v) == X ng !- (*)«#!»* «• » in Pz 

Thus Hr(z) is the restriction of the Hessian of r to the complex tangent 
space of dil at z. We say that il is strictly pseudoconvex if iïrOs) is positive 
definite for each z in dS2. Denote by R(z) the rank (over the complex 
field) of HT(z) and set 

Rn = min{R(z))z G oil}. 

The above definitions, save for H riz), are independent of the character
izing function r (see [2]; the proof of Theorem 2.6.12). Finally, if / is k 
times continuously differentiate on 0, we say that / is in Ck(il) if / 
together with all of its partial derivatives of order at most k admit 
continuous extensions to Q. 

THEOREM. Let SI be a bounded domain in Cn with C3 boundary. Suppose 
that fis in H (il) H C3(Ô) and that \f\<lonti. Then (1 + f ) / ( l - / ) 
is in Hp(il) for 0 < p < 1 + RQ/2. 

COROLLARY. Suppose that il C C" is strictly pseudoconvex with C3 

boundary (in particular il could be Bn). If f is in H (il) C\ Cz(il) and 
l / l < 1 on Q, then (1 + / ) / ( l - f ) is in Hp(il) for 0 < p < (n + l ) / 2 . 

The theorem will be proved by means of the following lemma. 

LEMMA. Suppose that F and G are in C3(w) where u is an open neigh
bourhood of 0 (the origin) in Rn and suppose that F(0) = G(0) = 0, 
F ^ O , and 

Let r be the rank of the quadratic form 

2 H—T~ (fyx&j 
tfi dXidXj 

restricted to the subspace {x Ç Rn; (x,VG(0)) = 0}. 
Then (F2 + G2)~vl2 (0 < p < oo) is integrable in some neighbourhood 

of the origin if and only if p < 1 + r/2. 

The proof of the relevant half of the lemma is given at the end of the 
paper. 
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Proof of theorem. Fix p such that 0 < p < 1 + Ra/2 and fix r, a C3 

characterizing function for 0. We claim that the conclusion of the theorem 
will follow once we have shown that Jan |1 — f(z)\~~p da(z) < oo. Indeed, 
it is easy to see that there exists 8 > 0 such that for each 0 < y g ô and 
z in d£2 there is a unique zy in dUy satisfying 

(a) The vector z — zy is perpendicular to the tangent space of d£2 at z. 
(b) The open ball with centre zy and radius \z — 27| is contained in 0. 
If 0 < 7 < 5, then using the pluriharmonicity of 1 — R e / together 

with the Poisson kernel inequality Pr(0) ^ (1 — r) /2, we have 

(1) 1 - Ref(zy) = ^ J * [1 - Ref(zs + eie(z - *,))]Pr(*)d* 

21* - si| 
(1 - Re/(*i)) è X|z - «,1 

where 

"{%£$•••*»}><>• 2d(z, XI) 

If A = sup{|V/(s)|; s € 0}, then by (1) 

1 ~f(Zy) 1 + 
l - / ( * y ) 

^ 1 + 4 /X 

and hence 

(2) |1 - / & ) ! - * g (1 + 4 /X) ' | l - f(z)\~p zindûy0<y<è. 

The claim made at the beginning of the proof now follows from (2) and 
the fact that for small 7, the map z —» zy is "close" to being an isomor
phism of the measure spaces (d£2, a) and (dQyi <ry). 

Fix z in 50. We shall now use the lemma to show that |1 — / \~p is 
cr-integrable in some dS2-neighbourhood of z. This, together with the com
pactness of dQ and the claim just established, will complete the proof of 
the theorem. Without loss of generality we suppose z = e = (1, 0 , . . . , 0), 
Vr(e) = e, and f(e) = 1. Set zk = x2jfc-i + i%n for 1 ^ fe ^ w. For z in an 
appropriate (small) neighbourhood N of e, define 2 :N —• N by 

S (2) = 08 (x2, 22, . . . zn) + ix2, z2, . . . 2») 

where the function {$ (defined on the tangent space of d!2 at e) is chosen 
so that S(2) is in dil for 2 in iV. Set u(z) = 1 — Re/(2) and 0(2) = 
Im/(2). Let F = u o 2 and G = vo 2. If we can show that (F2 + G2)-p /2 

= |1 — / o 2|~p is Lebesgue integrable in some (^-neighbourhood of e, 
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then it will follow that 11 — / | ~v is <7-integrable in some «^-neighbourhood 
of e and we will be done. 

Clearly the function ft is C3. Applying the chain rule to the equation 
T O 2 = 0 and recalling that dr/dxi(e) = l w e obtain 

(3) f £ W = - £ W - 0 2Z,*n 

(4) •ik(e) = -^k{e) 2^'"^w-
Let a = —du/dxi(e). Setting z = e in (1) we see that 

a = — T—* (e) = hm —— — ^ = hm ; ~-- è X > 0. 
dxi t_>i I — t t_>i 1 — t 

A simple calculation yields 

/c\ ^G , v i dG , . i dv , . i bu ( . ia 
( 5 ) ^ ( e ) = 2 ^ ( e ) = 2 ^ ( e ) = - 2 ^ ( e ) = T ^ ° 

dG , v dfl , v . du , . . dF , . 
_ ( e ) = - (e) = - , — (e) = - * - («) = 0 2 ^ ^ » 

since F achieves a relative minimum at e. Applying the chain rule to F 
and using (3) and (5) yields 

d2F , v d2fi , , , d2w , v 0 . . 

i^i: ( e ) = - a ^ i ; ( e ) + éMi:(e) 2 ^ " ^ w 

and now using (4) and the pluriharmonicity of u we obtain 

Equation (6) shows that up to multiplication by a positive constant, the 
restriction of the Hessians of F and r to the complex tangent space of 
dU at e are identical. This is the main step of the proof. 

Now let D denote the complex (n — I) X (n — 1) matrix 

/ d*F M \ 

and let I f denote the real (2» — 2) X (2w — 2) matrix 

(sSr/«>) ^ M * 2 » -
For any ff = (x3, . . . x2n) in R2W~2 let x = (ff3 + iff4, . . • , x2n-i + ix2n). 
Clearly the map x —» x is a (real) linear isomorphism between R2n~2 and 
C""1. If Dk (respectively Mk) denotes the &th row of D (respectively Af), 
then 4:Dk = M2k-\ — iM2k. Thus the rank of the real matrix M is at least 
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as large as the rank (over C) of the complex matrix D which by (6) and 
our hypothesis is at least RQ. Taking into account (5), this shows that 
the rank of the quadratic form S o d2F/dxidxj(e)xixj restricted to the 
subspace {x £ R2W; (x,VG(e)) = 0} is at least RQ. The lemma now 
shows that (F2 + G2)~vl2 is Lebesgue integrable in some neighbourhood 
of e and by remarks made earlier, this completes the proof of the theorem. 

Remark. Let hn(z) = 2^=i(s*)2 for z in Bn. Clearly hn is in H{Bn) C\ 
Cz(Bn) and \hn\ < 1 on Bn. A simple calculation shows that (1 + hn)/ 
(1 — hn) is not in H(n+1) /2(Bn) and thus the range of p given in the con
clusion of the above theorem cannot in general be extended. 

Proof of Lemma. We shall only prove the "if" half of the lemma. 
Clearly the hypotheses and conclusion of the lemma are invariant under 
non-singular linear changes of variable. Thus we may assume that the 
matrix (d2F/dXidXj(0))ij is diagonal and, since F achieves a relative 
minimum at 0, that the entries are either 0 or 1. Furthermore, by re
numbering the co-ordinate functions we may assume that 

^ dXidxj^ l0 i^j 

d*F fa\ _ 1l l = i = 3 = r 

and 

(ii)fn(0)^0. 

By the implicit function theorem, the equations VF(0) = 0 and (i) 
show that there are neighbourhoods U and V of the origins in R r and 
Kn~r respectively (U X F C w ) and a function a : V —» U such that 

dF 
(7) — (a(w), w) = 0 w in V, 1 ^ i S r. 

OXi 

Similarly G(0) = 0 and (ii) imply that there are neighbourhoods M and 
N of the origins in Rw_1 and R respectively (M X i V C w ) and a function 
f3:M —» Nsuch that G(w, /3(w)) = 0 for w in M. For x = (xi, . . . , xn) in 
Rw, set x' = (xr+i, . . . xn) and x" = (xi, . . . #n_i). By Taylor's formula 
with x in (U X V) H (M X N) we thus have 

(8) F(x) = F(a (*'),*') 

l ^ i . ^ r OXiOXj 

G(x) = j£ {%'•', p(x"))(xn - /?(*")) + «,(*) 
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where a = («i, . . . ar) and 

sup ' -' —^-J- !*»(*)! 
J'\ I 2 î 

( g l ^ - ^ ) | 2 ) 3 / 2 , K " ^ 

xG (f /X F ) H ( M X i V ) | < oo. 

By further shrinking the neighbourhoods U, V, M, and iV (if necessary) 
and using F ^ 0 together with (i), (ii), (8), and continuity, we can 
obtain 

(9) F(x) è i I ) (*< - «*(*'))* 

|G(*)| ^ i a | x n - 0(*") | , a = 
dG 

(0) >o 
f o r a i n (£ /X F) Pi (M X iV). 

Now make the change of variables y = Tx defined by 

Ixi — oLi(x') 1 ^ i S r 
(10) yt = Ixi r < i < n 

\xn — fi{x") i = n. 

Applying d/dxj to (7) and using (i) shows that 

~ (0) = 0 for 1 ^ i ^ r < j :§ n 
ox j 

and hence that 

^ ( o ^ j 1 * = >. 
dxj K } lO i < j 

Thus det / (0 ) = 1 where / (x ) denotes the Jacobian matrix of T at x. 
Let P be a neighbourhood of the origin in Rn such that P C (U X V) C\ 
(M X N) and det J(x) > | for x in P . Then if m denotes Lebesque 
measure on Rn, we have from (9) and (10) that 

/ . 
(F(«) + G(x)TP ' dm{x) 

f (F(r-V)2 + G{T-lyfrTn |det / ( ^ y ) r \M:y) 

^2^lf \(±yA\a*yn* dm(y) 

and this last integral is easily seen to be finite for a > 0 and £ < 1 + r/2. 
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