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The m a x i m a l r ing of quot ients (in the s e n s e of Johnson [4] and 
Utumi [5]) of the r ing C(X) of r e a l valued continuous functions on a 
comple te ly r e g u l a r Hausdorff space X has been studied in [1] and [2] . 
The a im of the p r e s e n t pape r is to p rov ide some addi t ional r e s u l t s to 
those , and to study the r e l e v a n t ex tens ions on the a b s e n c e of the r e a l 
m a x i m a l i d e a l s . 

In the f i r s t p a r t of this pape r , it wil l be shown that, for the set Q 
of r a t i o n a l n u m b e r s , C(4Q) is not a r ing of quot ients of C(R) with 
r e s p e c t to the n a t u r a l r e s t r i c t i o n h o m o m o r p h i s m . In the second p a r t of 
this pape r , i t is shown that, for a s e p a r a b l e m e t r i c space X without 
i so la ted po in t s , the m a x i m a l r ing of quot ients of C(X) is to ta l ly u n r e a l ; 
i . e . , it does not have any r e a l m a x i m a l i dea l . 

1 . D i r e c t l im i t . Let $ be a f i l ter b a s e of dense subse t s of X . 
F o r each D e $, let C (X) denote the r ing of a l l r e a l valued functions 

f on X which have continuous r e s t r i c t i o n f | D to D , and Z (X) the 

subse t of C (X) cons i s t ing of f with f | D = 0 . Pu t C (X) 

= U {C (X) : D e « } and Z (X) = U {Z (X) : D € $ } . Evident ly 
D $ D 

CL.(X) is a r ing of functions on X containing Z (X) as an idea l . Denote 

Q (X) = C (X) /Z (X), and, by a s t r a igh t fo rward checking, one p r o v e s 

the following l e m m a . 

LEMMA 1. 1) C (X) Pi Z (X) = Z
D ( X ) for each D € fl . 

2) The r e s t r i c t i o n J ? ^ , defined by ?D(f) = f | D 

induces an i s o m o r p h i s m C (X) /Z (X) -*• C(D) for each D e & ., 

#The author would like to thank P r o f e s s o r B . B a n a s c h e w s k i for h i s help 
and guidance, and a lso the r e f e r e e for his va luable s u g g e s t i o n s . 
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3) The natural homomorphism v : CQ(X) -> Q$(X) 

determines, for each D e & , an embedding j : C(D) -> Qn(x) s_ach_ 

that v(f) = JD(f|D) fQr each f € C^X) . 

4) For any D, E G « with D C E, j _ (f|D) = j_(f) 

for ail f e C(E) . 

5) C(X) O Zfi(X) = 0 . 

The following is the immediate consequence of the above lemma. 

PROPOSITION 2. Q„(X) is the direct limit of the direct system 

(C(D))(D £ $) , with respect to the restriction homomorphisms 
f -> f |D, f e C(E) , D C E _in_ $, with (j ) (D € &) as a family of the 

limit homomorphisms, in the category of all rings with unit and unitary 
ring homomorphisms. 

Now suppose a ring A is a subring of a ring B , then we call B 
a ring of quotients of A provided that for b , 0 £ b ! e B , there exists 
a G A such that ba e A and b'a i- 0 . To say that a ring B is a ring 
of quotients of A with respect to an embedding e : A -*• B means 
that the ring B is a ring of quotients of the subring e(A) of B . It is 
evident that QQ(X) is a ring of quotients of C(X) with respect to the 

embedding v (in virtue of (5) of Lemma 1) if and only if each C(D) , D e &, 
is a ring of quotients of C(X) with respect to the embedding given by the 
restriction f -> f | D . By making use of [2, Theorem 1.5], we prove the 
following: 

PROPOSITIONS. A necessary and sufficient condition for Q^(X) 

to be a ring of quotients of C(X) with respect to v is that: for each 
-D € »̂ for any f e C(D) and open subset U of_ D , there exists an 
open subset V oi_ X such that V O D C U and f|V H D has a 
continuous extension to V . 

Proof. Take any D e &. Put C(X) | D = {f |D : f e C(X)} . It 
suffices to show that C(D) is a ring of quotients of C(X)[D . Let 
0 + f £ C(D). Put U = {x € D : f(x) + 0} . Then there is an open 
subset V of X such that V D D C_ U, and f|V D D has a continuous 
extension f to V . Now for an element c £ V D D we find an h e C(X) 
such that h(c) i 0 and h|X - V = 0 for some neighborhood V of c 
whose closure is in V . Define a function u on X by u(x) = f(x) • h(x) 
for x € V and u(x) = 0 for x £ X - V . Then u £ C(X) , and clearly 
0 + f . h|D = u|D € C(X)|D . 

For the proof of the converse, let f e C(D) and U be a non-void 
open subset of D. Then there is an open subset W of X with 
U = W O D . We may assume f |U i 0 , for otherwise it is trivial. 
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Now we show that f is continuous at each point q e Q . Clear ly , 

l im f(x) = f(q) ; 
x-> q 

on the o ther hand 

l im f (x) 
x->q 

inf 2 Î/X (a) 
x > q a < x 

inf J S 1/X2(a) + 2 1/X2(a)! 

x > q a < q q < a < x 

f(q) + inf 2 1/x (a) 
x > q I q < a < x 

Let n ( ,> 1 ) be a given n a t u r a l number , and take a point 

1 1 
a e A O [q , q + - ] such that x(a ) < X(a) for a l l a e A O [q , q + - ]; 

no no no " no 
A 

next, take n, ( > n^) such that a | A H fq , q -f - 1, and pick a point 1 0 n ^ Li T. J 

1 1 
a e A H [ q , q + " ~ ] such that X (a ) < x(a) for a l l a e A D [q , q + — ] . 

n i n i n i " n i 
Now, inductively, take a na tu r a l number n, ( > n, ,) such that 

k k -1 
1 1 

a < | A ^ [ q > q + ~ ] and a e A O [q, q + — ] such that "k-1 \ 
1 

X(a ) < X(a) for a l l a e A H q , q + - . Let P be the set of a l l 
n, — Ln ^ n, 

k k 
n (k = 0 , 1 2 , . . . ) defined by the above p r o c e s s . Then it is c l e a r 
that x(a ) < X(a ) for any n and n belonging to P with 

n, n, , k k 
k k1 

\ < \ - Clearly 

inf 
n>l i 

S l / \ 2(a ) ] 
n > n \ | 

. nk € P J 
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Let a e U with f(a) + 0 . Then there exists h e C(X) such that 

h(a) t 0 and h | x - W = 0 . Clearly, 0 f f . h | D € C(D) . Then, 

by the assumption, there exists h1 e C(X) such that f • (h . h ') |D 

= u|D + 0 for some u e C(X) . Note that if f(c) • h(c)• h'(c) ^ 0, 

then c £ W. Hence there exists a neighborhood V of c in W such 

that hh' |V ^ 0, and f|V D D = / h u ) ) | v f~\ D • Consequently the 

function „ , ,\ • , r is the desired extension of f lv D D to V . 
(hh1) I V ' 

Remark. It is known [1; 2] that if & is the set of all dense open 
subsets of X, then Q (X) is the maximal ring of quotients of C(X) 

with respect to y. Evidently the condition in Proposition 3 holds for 
every dense open subset D of X . 

LEMMA 4. Let A be a countable dense subset of irrational 
numbers and let X : A - > { 1 , 2 , 3 , . . . } be a one-to-one mapping . 
For each x e R, define a function f _by_ 

f(x) = S 1/X2(a); 

a < x 
a ç A 

then f is continuous at each point of 4Q but f(a ) > f(a) for each 
a £ A . 

Proof. F i rs t we show f(a ) > f(a) for each a £ A. Take 
a e A , then 

lim f(x) = lim 2 l / \ 2 ( a ) 
x-»- a x-> a a < x 

S 1/X2(a) = f(aQ) ; 
a < a Q 

on the other hand 

l im + f(x) = lim + S 1/X2(a) = S l /x2(a) + 

x-*aQ
 x " * a o a < x a < a 
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Hence inf J 2 1 / \ (a) V = 0 . This impl ies that the 

x > q | q < a < x 
function f is cont inuous at the point q . 

COROLLARY. C(C) is not a r ing of quot ients of C(R) with 
r e s p e c t to the embedding f -> f | Q . 

Proof . If f is the function defined in L e m m a 4 , then 
g - f | C € C(Q). Since every open se t V in R conta ins a point of A , 
the function g |V O 4Q cannot be cont inuously extended to V . By the 
p r e v i o u s p ropos i t ion , C(Q) is not a r ing of quotients of C(R) with 
r e s p e c t to the r e s t r i c t i o n h o m o m o r p h i s m . 

2 . Total ly u n r e a l r i n g s . 

Defini t ion. A m a x i m a l idea l M in a r ing A is said to be r e a l 
iff i ts quotient field A / M is i s o m o r p h i c with R . A r ing is said to be 
total ly u n r e a l iff it does not have any r e a l idea l . 

It is of n a t u r a l i n t e r e s t to know whether the m a x i m a l r ing of 
quot ients of C(X) has r e a l m a x i m a l i d e a l s . We sha l l p rovide a 
sufficient condit ion for the m a x i m a l r ing of quot ients of C(X) to be 
total ly u n r e a l . In the following, A (QQ(X)) denotes the se t of un i t a ry 

r ing h o m o m o r p h i s m s f rom QQ(X) into R . Also note that each 

cj> G A (Q-(X)) is onto . We prove the following r e s u l t . 

THEOREM 5. J£ x £ D Ê, then the re ex i s t s a unique 
<b G A(QA(X)) such that (cb o i" ) (f) = f(x) for a l l f e C(D) and for 
T x $ x D 
each D e $, and x -*- <|> is a o n e - t o - o n e c o r r e s p o n d e n c e f rom D & 

into A(Q„(X)) . M o r e o v e r , if each D £ B is r e a l c o m p a c t , then x -*- cb g x 

i s on to . 

Proof . Let x e O {D : D e $ } be a fixed point . F o r each 
D £ J8, define a mapping cb : C(D) -> R by <t>D(f) = f(x) , then <h 

is a un i t a ry r ing h o m o m o r p h i s m , and, for each pa i r D , E in $ with 
D C E and f € C(E) , we have cb (f) = f(x) = ( f |D)(x) = cf>_(f|D). 

This imp l i e s that the family (<\> ) (D e &) is compat ib le with r e s p e c t 

to the d i r e c t s y s t e m (C(D)) (D £ & ) . Hence the re exis ts a unique r ing 
h o m o m o r p h i s m cj> : QQ(X) -* R such that <\> o j = cj) for each 

X w* X J_/ ±J 

D £ & ( see P r o p . 2) . Since, for each D e $, C(D) s e p a r a t e s the 
points of D , f = cf> imp l i e s x = y ; i . e . , x -> <|> i s o n e - t o - o n e . 

F ina l ly , let each D £ ê be r e a l - c o m p a c t , and cj> £ A ( Q (X)) . Then 

c l e a r l y cj) o j is a un i t a ry r ing h o m o m o r p h i s m f rom C(D) into R 

for each D G $ . Since each D is r e a l c o m p a c t , to the h o m o m o r p h i s m 
cj> o j , t h e r e c o r r e s p o n d s a point x of D such that 

D cb 
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(c|>o j )(f) = f(x ) for all f e C(D) [3]. We claim that x belongs to 
D § 9 

each member of $. Let E be a member of $. Then there exists a 
member D' in 8 such that D' C_ D O E ; and hence j (f) = j f ( f |D ' ) 

for all f G C(D) . Similarly, cj> o j is a unitary ring homomorphism 

from C(D') into R . Hence there exists y e D' such that 
(+o j ,)(f») = f'(y) for all f» e C(D') . In par t icular (cj) o j ) (f | D ') 

= (f|D«)(y) = f(y) for all f e C(D) ; i . e . , f(x ) = (cj> o JD) (f) 

= +(JD(f» = 4>(JD,(f|D')) = (^o J D , ) ( f |D ' ) = f(y) for all f e C(D) . 

This implies that x, = y e E ; i . e . , x ç O {D : D e $} . Since, 
4> * 

for each D G $, cj) o j = c|) o j ( = c|>' ) and the family (c|>' ) (D e .$) 
x J_) D JL) iJ 

9 
is compatible with respect to the direct system (C(D)) (D e $) , and 
cj) is unique, hence § = cj) . Q . E . D . 

X* X4> 

COROLLARY 1 . If QQ(X) is totally unreal , then H Ô = fa , and 

the converse holds, provided each member of $ is rea lcompact . 

COROLLARY 2. Let X be a separable rea lcompact space without 
isolated points such that every closed subset is a Gr - set; then the 

maximal ring of quotients of C(X) is totally unreal . 

Proof. Note that if X is realcompact , and each point of X is a 
G , then every subspace of X is realcompact [3]. Let A be a 

countable dense subset of X, say A = U {a.} where the index set 

i e I 1 

I = { 1 , 2 , 3 , . . . } . For each i c i , let J. be a countable index set; 

then {a.) = O V. . , where V . is an open set containing a. 
i • T i , J i , J i 

for each j . Then A = U / 0 V. . \ = H / U V / V 

i ^V * e $ l i e I l-*M 
where $ is the set of all functions 4> with domain I such that cj)(i) e J. 

for each i c i . Hence A itself is an intersect ion of dense open se t s . 
On the other hand, the set X - { a , , a . . . . , a } , a. e A(i = 1 2 , . . . , n) 

1 2 nJ l ' 
00 00 

is a dense open subset of X . O (X - {a , . . . , a.} ) = X - U {a , . . . , a.} 
i = l 1 i i = 1 i 

= X - A; thus X - A is an intersect ion of dense open subsets of X . 

Let & be the set of all dense open subsets of X . Then clear ly H D = 0 . 

Hence the maximal ring of quotients of C(X) is totally unrea l . 

COROLLARY 3. For a separable me t r i c space X without isolated 
points, the maximal ring of quotients of C(X) is totally unrea l . 
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