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1. Introduction

The first step towards an algebraic theory of specialization was the introduction of the
specialization of an ideal by Krull [8,9]. Seidenberg [17], Kuan [10–12] and Trung [20]
used specializations of ideals to prove that hyperplane sections of normal varieties are
normal again under certain conditions. Using specializations of finitely generated free
modules and of homomorphisms between them, we defined in [13] the specialization
of a finitely generated module, and we showed that basic properties and operations
on modules are preserved by specializations. In [14] we followed the same approach to
introduce and to study specializations of finitely generated modules over a local ring.

The aim of this paper is to show that specializations of finitely generated graded mod-
ules and of graded homomorphisms are also graded and that many important invariants
of graded modules and ideals are preserved by specializations. Moreover, we will show
that specializations can be used to prove Bertini Theorems for projective varieties.

This paper is divided into four sections. In § 1 we recall the definition of the special-
ization of a module. There we shall see that specializations of finitely generated graded
modules and of graded homomorphisms are also graded over the ring Rα. In § 2 we will
first prove the preservation of a graded minimal free resolution by specializations. We
shall see that various degrees and cohomological invariants of graded modules are pre-
served by specializations which include the a-invariants and the Castelnuovo regularity.
In § 3 we will give two non-trivial applications of specializations of graded ideals. Firstly,
we use a recent result of Trung [22] to study the preservation of the reduction number of
an homogeneous ideal. Secondly, we shall prove that the specialization of a filter-regular
sequence is again a filter-regular sequence. This settles a question of Herzog (personal
communication to N. V. Trung, 1998). In § 4 we will study hypersurface sections of pro-
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jective varieties. There we will give a simple proof for the global Bertini Theorem of
Flenner [5].

Throughout this paper we assume that all modules are finitely generated.

2. Definition and basic properties

Let k be an infinite field of arbitrary characteristic. Denote by K an extension field of
k. Let u = (u1, . . . , um) be a family of indeterminates and α = (α1, . . . , αm) a family of
elements of K. We denote the polynomial rings in n+1 variables x0, . . . , xn over k(u) and
k(α) by R = k(u)[x] and by Rα = k(α)[x], respectively. Let m and mα be the maximal
graded ideals of R and Rα, respectively. We shall say that a property holds for almost
all α if it holds for all points of a Zariski-open non-empty subset of Km. For convenience
we shall often omit the phrase ‘for almost all α’ in the proofs of the results of this paper.

Following [20] we define the specialization of I with respect to the substitution u → α

as the ideal Iα of Rα generated by elements of the set {f(α, x) | f(u, x) ∈ I ∩ k[u, x]}.

This definition is slightly different than that considered by Krull and Seidenberg, who
choose α ∈ km. However, if some property holds for almost all α ∈ Km in the sense of
Krull and Seidenberg, then it holds for the extensions of Iα in the polynomial ring K[x]
for almost all α ∈ Km. Since k(α)[x] → K[x] is a flat extension, we can often deduce
that this property also holds for almost all Iα in our sense.

Example 2.1. Let I = (f1, . . . , fs) be a homogeneous ideal in R, where f1, . . . , fs are
homogeneous polynomials. By [17, Appendix, Theorem 1] we have

IαK[x] = ((f1)α, . . . , (fs)α)K[x].

Since k(α)[x] → K[x] is flat, we can deduce that Iα = ((f1)α, . . . , (fs)α). As (f1)α, . . . ,
(fs)α are homogeneous, Iα is again a homogeneous ideal for almost all α.

The specialization of ideals can be generalized to modules. First, each element a(u, x)
of R can be written in the form

a(u, x) =
p(u, x)
q(u)

with p(u, x) ∈ k[u, x] and q(u) ∈ k[u] \ {0}. For any α such that q(α) �= 0 we define

a(α, x) =
p(α, x)
q(α)

.

Let F be a free R-module of finite rank. The specialization Fα of F is a free Rα-module
of the same rank. Let φ : F → G be a homomorphism of free R-modules. We can represent
φ by a matrix A = (aij(u, x)) with respect to fixed bases of F and G. Set Aα = (aij(α, x)).
Then Aα is well defined for almost all α. The specialization φα : Fα → Gα of φ is given
by the matrix Aα provided that Aα is well defined. We note that the definition of φα

depends on the chosen bases of Fα and Gα.
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Definition 2.2 (see [13]). Let L be an R-module. Let F1
φ−→ F0 → L → 0 be a

finite free presentation of L. Let φα : (F1)α → (F0)α be a specialization of φ. We call
Lα := Coker φα a specialization of L (with respect to φ).

If we choose a different finite free presentation F ′
1 → F ′

0 → L → 0, we may get a
different specialization L′

α of L, but Lα and L′
α are canonically isomorphic. Hence Lα is

uniquely determined up to isomorphisms [13, Proposition 2.2].
Let R be naturally graded. For a graded R-module L, we denote by Lt the homogeneous

component of L of degree t. For an integer h we let L(h) be the same module as L with
grading shifted by h, that is, we set L(h)t = Lh+t.

Let F =
⊕s

j=1 R(−hj) be a free graded R-module. We make the specialization Fα of
F a free graded Rα-module by setting Fα =

⊕s
j=1 Rα(−hj). Let

φ :
s1⊕

j=1

R(−h1j) →
s0⊕

j=1

R(−h0j)

be a graded homomorphism of degree 0 given by a homogeneous matrix A = (aij(u, x)).
Since

deg(ai1(u, x)) + h01 = · · · = deg(ais0(u, x)) + h0s0 = h1i,

Aα = (aij(α, x)) is a homogeneous matrix with

deg(ai1(α, x)) + h01 = · · · = deg(ais0(α, x)) + h0s0 = h1i.

Therefore, the homomorphism

φα :
s1⊕

j=1

Rα(−h1j) →
s0⊕

j=1

Rα(−h0j)

given by the matrix Aα is a graded homomorphism of degree 0.

Lemma 2.3. Let L be a finitely generated graded R-module. Then Lα is a graded
Rα-module for almost all α.

Proof. This follows from the definition of Lα and the above observation. �

We now recall some facts from [13] which we shall need later. Let

F• : 0 → F�
φ�−→ F�−1 → · · · → F1

φ1−→ F0

be a complex of free R-modules finite ranks. Then we obtain a complex of free Rα-modules

(F•)α : 0 → (F�)α
(φ�)α−−−→ (F�−1)α → · · · → (F1)α

(φ1)α−−−→ (F0)α

for almost all α.

Proposition 2.4 (see Theorem 1.5 of [13]). Let F• be a finite exact complex of
free R-modules of finite ranks. Then (F•)α is an exact complex of free Rα-modules of
finite ranks for almost all α.
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Proposition 2.5 (see Theorem 4.3 of [13]). Let L, M be R-modules. Then, for
almost all α,

Exti
R(L, M)α

∼= Exti
Rα

(Lα, Mα), i � 0.

As observed in [13], the specialization of a submodule of L can be canonically identified
with a submodule of Lα for almost all α.

Proposition 2.6 (see Proposition 3.2 of [13]). Let L be an R-module and M, N

submodules of L. Then, for almost all α,

(i) (L/M)α
∼= Lα/Mα,

(ii) (M ∩ N)α
∼= Mα ∩ Nα,

(iii) (M + N)α
∼= Mα + Nα.

Proposition 2.7 (see Proposition 3.6 of [13]). Let L be an R-module and I an
ideal of R. Then, for almost all α,

(i) (IL)α
∼= IαLα,

(ii) (0L : I)α
∼= 0Lα

: Iα.

Proposition 2.8 (see Theorem 3.4 of [13]). Let L be an R-module. Then, for
almost all α,

(i) AnnLα = (AnnL)α,

(ii) dimLα = dimL.

Lemma 2.9. Let L be an R-module. Then√
AnnLα =

√
(
√

AnnL)α

for almost all α.

Proof. There exists t such that

(
√

AnnL)t ⊆ AnnL ⊆
√

AnnL.

By Proposition 2.7 (i), ((
√

AnnL)t)α = (
√

AnnL)t
α. Therefore,

(
√

AnnL)t
α ⊆ (AnnL)α ⊆ (

√
AnnL)α.

From this it follows that √
(AnnL)α =

√
(
√

AnnL)α.

Since AnnLα = (AnnL)α by Proposition 2.8,

√
AnnLα =

√
(
√

AnnL)α

for almost all α. �
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Corollary 2.10. Let L be an R-module of dimension d. If

I =
⋂

p∈Ass(L),
dim R/p=d

p,

then, for almost all α, √
Iα =

⋂
q∈Ass(Lα),
dim Rα/q=d

q.

Proof. By Proposition 2.8, dimLα = d. Denote by J the intersection of all minimal
associated primes of L of dimension < d. Then

√
AnnL = I ∩ J . By Proposition 2.6 (ii),

(I ∩ J)α = Iα ∩ Jα. Therefore,√
(
√

AnnL)α =
√

Iα ∩ Jα =
√

Iα ∩
√

Jα.

By Lemma 2.9, √
AnnLα =

√
(
√

AnnL)α =
√

Iα ∩
√

Jα.

Since Iα is an unmixed ideal with dimRα/Iα = d [20, Lemma 1.1] and since dim Rα/Jα =
dim R/J < d,

√
Iα is the intersection of the minimal primes of dimension d, and

√
Jα is

the intersection of minimal primes of dimension < d. Hence
√

Iα is the intersection of all
minimal associated primes of Lα of dimension d. �

3. Preservations of graded invariants

In this section we want to prove that specializations of graded modules preserve Betti
numbers, various notions of degrees and the Castelnuovo–Mumford regularity.

Let L be a finitely generated graded R-module. Let

F• : 0 → F�
φ�−→ F�−1 → · · · → F1

φ1−→ F0 → L → 0

be a minimal graded free resolution of L, where each free module Fi may be written
in the form

⊕
j R(−j)βij , and all graded homomorphisms have degree 0. The integers

βij �= 0 are called the graded Betti numbers of L. The following theorem shows that the
graded Betti numbers are preserved by specializations.

Theorem 3.1. Let F• be a minimal graded free resolution of L. Then the complex

(F•)α : 0 → (F�)α
(φ�)α−−−→ (F�−1)α → · · · → (F1)α

(φ1)α−−−→ (F0)α → Lα → 0

is a minimal graded free resolution of Lα with the same graded Betti numbers for almost
all α.

Proof. By Proposition 2.4 and by the definition of Lα, (F•)α is also exact. Since all
(Fi)α are graded free Rα-modules and all homomorphisms are graded, (F•)α is a graded
free resolution of Lα. Since every homogeneous element of the represented matrix of
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φi belongs to m, every (φi)α has a represented matrix with the elements in mα. Hence
(F•)α is a minimal graded free resolution of Lα. If Fi =

⊕
j R(−j)βij , then (Fi)α =⊕

j Rα(−j)βij . Therefore, the graded Betti numbers are preserved by specializations. �

Corollary 3.2. For almost all α, dimk(α)(Lα)t = dimk(u) Lt for all t ∈ Z.

Proof. Let F• be a minimal graded free resolution of L, with Fi =
⊕

j Rα(−j)βij .

Then (F•)α is also a minimal graded free resolution of Lα by Theorem 3.1. Since
(Fi)α =

⊕
j Rα(−j)βij , dimk(α)((Fi)α)t = dimk(u)(Fi)t. Therefore,

dimk(α)(Lα)t =
�∑

i=0

(−1)i dimk(α)((Fi)α)t =
�∑

i=0

(−1)i dimk(u)(Fi)t = dimk(u) Lt.

�

Let L be a graded R-module of dimension d. Let hL(t) and PL(z) denote the Hilbert
polynomial and the Hilbert series of L.

Corollary 3.3. Let L be a graded R-module. Then, for almost all α, we have

(i) hLα
(t) = hL(t),

(ii) PLα(z) = PL(z).

Proof. By definitions we have

hL(t) = dimk(u) Lt for t � 0,

PL(z) =
∑
t∈Z

dimk(u) Ltz
t.

Hence the conclusions follow from Corollary 3.2. �

Let L be a finitely generated graded R-module and I a homogeneous ideal of R. We
set

ΓI(L) :=
⋃

m�0

(0L : Im).

For each prime ideal ℘ of R, we denote the length �(Γ℘(L℘)) by multL(℘). We will denote
by Ass(L) the set of the associated prime ideals of L and by Min(L) the set of the minimal
associated prime ideals of L. The degree deg(L) is the multiplicity of the graded module
L. By the associativity formula we have

deg(L) =
∑

℘∈Ass(L),
dim R/℘=d

multL(℘) deg R/℘.

The arithmetic degree and the geometric degree of L are defined as

adeg(L) :=
∑

℘∈Ass(L)

multL(℘) deg R/℘,

gdeg(L) :=
∑

℘∈Min(L)

multL(℘) deg R/℘.
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See, for example, [18] or [23] for more information on these generalizations of the degree
of a module. To prove the preservation of the arithmetic degree, we need the following
lemma.

Lemma 3.4. Let L be a graded R-module and I a homogeneous ideal of R. Then
ΓI(L)α

∼= ΓIα(Lα) for almost all α.

Proof. There is an integer t such that ΓI(L) = 0L : It and 0L : It = 0L : Im for all
m � t. By Proposition 2.7 (ii), (0L : Im)α

∼= 0Lα
: Im

α . Therefore, ΓI(L)α = (0L : It)α =
0Lα : It

α and 0Lα : It
α = 0Lα : Im

α for m � t. Hence ΓI(L)α
∼= ΓIα(Lα) for almost all

α. �

Theorem 3.5. Let L be a graded R-module of dimension d. Then, for almost all α,

we have

(i) deg(Lα) = deg(L),

(ii) adeg(Lα) = adeg(L),

(iii) gdeg(Lα) = gdeg(L).

Proof. (i) Because the degree of L (respectively, Lα) is obtained from the Hilbert
polynomial of L (respectively, Lα), (i) follows from Corollary 3.3 (i).

(ii) Set Li = Exti
R(Exti

R(L, R), R) and Mi = Exti
Rα

(Exti
Rα

(Lα, Rα), Rα) for all i � 0.

From Proposition 2.5 it follows that (Li)α
∼= Mi for all i � 0. By [23, Proposition 9.1.2],

this implies

adeg(Lα) =
n+1∑
i=0

deg(Mi) =
n+1∑
i=0

deg(Li) = adeg(L).

(iii) Set d = dimL. Then dimLα = d by Proposition 2.8. We first consider the case
where all the minimal associated primes of L have dimension d. Since

√
AnnL is unmixed

of dimension d, (
√

AnnL)α is again unmixed of dimension d by [8, Satz 5]. By Lemma 2.9,√
AnnLα is unmixed of dimension d. Since the geometric degree and the degree coincide

for this case, we have

gdeg(Lα) = deg(Lα) = deg(L) = gdeg(L)

for almost all α. Suppose now that not all the minimal associated primes of L have
dimension d. Denote by I the intersection of all minimal associated primes of L with
dimension d. Since {℘ ∈ Min(L) | dim R/℘ < d} = Min(L/ΓI(L)) and multL(℘) =
multL/ΓI(L)(℘) for all ℘ ∈ Ass(L/ΓI(L)), we have

gdeg(L/ΓI(L)) =
∑

℘∈Min(L),
dim R/℘<d

multL(℘) deg R/℘.
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Since

deg(L) =
∑

℘∈Min(L),
dim R/℘=d

multL(℘) deg R/℘,

gdeg(L) =
∑

℘∈Min(L),
dim R/℘=d

multL(℘) deg R/℘ +
∑

℘∈Min(L),
dim R/℘<d

multL(℘) deg R/℘

= deg(L) + gdeg(L/ΓI(L)).

By Corollary 2.10,

{q ∈ Min(Lα) | dim R/q < d} = Min(Lα/ΓIα(Lα)).

Since multLα(q) = multLα/ΓIα (Lα)(q) for all q ∈ Ass(Lα/ΓIα(Lα)), we have

gdeg(Lα/ΓIα
(Lα)) =

∑
q∈Min(Lα),
dim Rα/q<d

multLα
(q) deg Rα/q.

Therefore,
gdeg(Lα) = deg(Lα) + gdeg(Lα/ΓIα(Lα)).

From (i) we obtain deg(Lα) = deg(L). By Proposition 2.6 (i) and by Lemma 3.4,

(L/ΓI(L))α
∼= Lα/ΓI(L)α

∼= Lα/ΓIα
(Lα).

Since dimL/ΓI(L) < d, gdeg(Lα/ΓIα(Lα)) = gdeg(L/ΓI(L)) by induction on the dimen-
sion. Therefore,

gdeg(Lα) = deg(Lα) + gdeg(Lα/ΓIα
(Lα))

= deg(L) + gdeg(L/ΓI(L)) = gdeg(L).

�

Let M be a finitely generated graded module over the graded algebra A and let B be a
Gorenstein graded algebra mapping onto A. Assume that dim B = n, dim M = d. In [23]
the homological degree of M is defined as the integer

hdeg(M) := deg(M) +
n∑

i=n−d+1

(
d − 1

i − n + d − 1

)
hdeg(Exti

B(M, B)).

We note that the homological degree is defined recursively on the dimension of the
support of M. If dimM = 0, then hdeg(M) = deg(M). If dimM = 1, hdeg(M) =
deg(M) + �(Ext1B(M, B)).

Proposition 3.6. Let L be a graded R-module. Then, for almost all α,

hdeg(Lα) = hdeg(L).
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Proof. We want to prove the assertion by induction on the dimension of L. The rings
Rα and R are Gorenstein rings. Set d =: dimL. By Proposition 2.7, dimLα = d. If
d = 0, we have hdeg(Lα) = deg(Lα) and hdeg(L) = deg(L). Then hdeg(Lα) = hdeg(L)
by Theorem 3.5. Now we consider the case d � 1. Assume that the assertion is true
for all modules of dimension strictly less than d. We see that if i � n − d + 2, then
n + 1 − i � d − 1. By [2, Corollary 3.5.11],

dim Exti
Rα

(Lα, Rα) = dim Exti
R(L, R) � n + 1 − i � d − 1.

By the induction hypothesis,

hdeg(Exti
Rα

(Lα, Rα)) = hdeg(Exti
R(L, R)).

Hence, for almost all α,

hdeg Lα = deg Lα +
n+1∑

i=n−d+2

(
d − 1

i − n + d − 2

)
hdeg(Exti

Rα
(Lα, Rα))

= deg L +
n+1∑

i=n−d+2

(
d − 1

i − n + d − 2

)
hdeg(Exti

R(L, R)) = hdeg(L).

�

For a graded R-module L =
⊕

t∈Z
Lt, the number a(L) is defined as

a(L) :=

{
max{t | Lt �= 0} if L �= 0,

−∞ if L = 0.

Let Hi
m(L) denote the ith local cohomology module of L with respect to m. We set

ai(L) = a(Hi
m(L)),

reg(L) = max{ai(L) + i | i � 0},

a∗(L) = max{ai(L) | i � 0}.

The number reg(L) is called the Castelnuovo–Mumford regularity [4,16], and a∗(L) the
a∗-invariant of L [21] (cf. [6]). Note that the Castelnuovo–Mumford regularity and the
a∗-invariant can be viewed as special cases of the more general invariants

reg p(L) := max{ai(L) + i | 0 � i � p},

a∗
p(L) := max{ai(L) | i � p}, p = 0, . . . , d.

If Fi =
⊕

j R(−j)βij is the ith term of a minimal graded free resolution of L, then

reg p(L) = max{j − i | i � n + 1 − p, βij �= 0},

a∗
p(L) = max{j | i � n + 1 − p, βij �= 0} − n − 1

(see, for example, [22]). It will be shown that these invariants are preserved by special-
izations.
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Proposition 3.7. Let L be a graded R-module. Then, for almost all α, we have

(i) ap(Lα) = ap(L),

(ii) regp(Lα) = regp(L),

(iii) a∗
p(Lα) = a∗

p(L).

Proof. Since R is a Gorenstein ring, the local duality theorem of Grothendieck says
that Hp

m(L) ∼= Extn+1−p
R (L, R)v, where v is the Matlis dual functor (see [2, Theorem

3.5.8]). Since Extn+1−p
Rα

(Lα, Rα) ∼= Extn+1−p
R (L, R)α by Proposition 2.5,

ap(Lα) = max{t | Extn+1−p
Rα

(Lα, Rα)−t−n−1 �= 0}
= max{t | Extn+1−p

R (L, R)−t−n−1 �= 0} = ap(L).

This proves (i). Clearly, (ii) and (iii) follow from (i). �

4. Specialization of reductions and filter-regular sequences

In this section we will show that the reduction number and filter-regular sequences are
preserved by specialization.

Let I be an arbitrary homogeneous ideal of R. Set d = dimR/I. Then dimRα/Iα = d

by Proposition 2.6. We denote by n and nα the maximal graded ideals of R/I and Rα/Iα,

respectively. Let a be a homogeneous ideal of R/I. Recall that a is said to be a reduction
of n if anr = nr+1 for some non-negative integer r and the least integer r with this
property is called the reduction number of R/I with respect to a [15]. This number is
denoted by ra(R/I), and it is the largest non-vanishing degree of R/I. A reduction of
n is said to be minimal if it does not contain any other reduction of n. Since k is an
infinite field, a reduction of n is minimal if and only if it is generated by d elements.
The reduction number r(R/I) of R/I is defined as the minimum ra(R/I) of all minimal
reductions a of n.

Now we will prove that the reduction number r(R/I) does not change when we spe-
cialize u to α. The main difficulty is how to locate a reduction which gives the reduction
number of R/I and of Rα/Iα by specializations. We overcome this difficulty by taking
the generic reduction. The following result is due to Trung (see the proof of Lemma 4.2
in [22]).

Lemma 4.1. Let J be a homogeneous ideal of S = k[x] and d = dimS/J. Define
zi = vi0x0+· · ·+vinxn, i = 1, . . . , d, where v = (vij) is a family of d(n+1) indeterminates.
Put Sv = k(v)[x], Jv = JSv, a = (Jv, z1, . . . , zd)/Jv. Then

r(S/J) = ra(Sv/Jv).

Lemma 4.2. If a homogeneous ideal a is a minimal reduction of n, then aα is also a
minimal reduction of nα with raα(Rα/Iα) = ra(R/I) for almost all α.
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Proof. We first note that a reduction a is a minimal reduction of n if and only if
it is generated by d homogeneous elements of R/I of degree 1 and there exists a non-
negative integer r such that ar+1 = (R/I)r+1 and as �= (R/I)s for all s � r. Suppose
that y1, . . . , yd ∈ R1 such that a = (I, y1, . . . , yd)/I. Then

dimk(u)(I, y1, . . . , yd)r+1 = dimk(u) Rr+1,

dimk(u)(I, y1, . . . , yd)s < dimk(u) Rs

for all s � r. By Corollary 3.2,

dimk(α)(Iα, (y1)α, . . . , (yd)α)r+1 = dimk(α)(Rα)r+1,

dimk(α)((I)α, (y1)α, . . . , (yd)α)s < dimk(α)(Rα)s

for all s � r. By Proposition 2.8, aα = (Iα, (y1)α, . . . , (yd)α)/Iα is again a minimal
reduction of nα and we obtain raα(Rα/Iα) = ra(R/I) for almost all α. �

Theorem 4.3. Let I be a homogeneous ideal of R. Then, for almost all α, we have

r(Rα/Iα) = r(R/I).

Proof. Define zi =
∑n

j=0 vijxj , i = 1, . . . , d, where all vij are indeterminates. Put
Sv = k(α, v)[x], Jv = IαSv and a = (Jv, z1, . . . , zd)/Jv. By Lemma 4.1 we have

r(Rα/Iα) = ra(Sv/Jv).

Similarly, if we put Rv = k(u, v)[x], Iv = IRv, and b = (Iv, z1, . . . , zd)/Iv, then

r(R/I) = rb(Rv/Iv).

By Lemma 4.2,
ra(Sv/Jv) = rb(Rv/Iv)

for almost all α. Summing up we get r(Rα/Iα) = r(R/I). �

Let f1, . . . , fh be a sequence of homogeneous elements of a finitely generated graded
algebra A =

⊕
i�0 Ai over a field A0. Let A+ denote the ideal generated by the elements

of positive degree of A. Let L be an A-module. The sequence f1, . . . , fh is called filter-
regular for L if fi /∈ P for all associated prime ideals P of (f1, . . . , fi−1)L, P �= M,

where M denotes the maximal graded ideal of A. This is equivalent to saying that the
A-modules

(f1, . . . , fi−1)L : fi/(f1, . . . , fi−1)L, i = 1, . . . , h,

are of finite lengths. The notion of filter-regular sequences plays an important role in the
theory of generalized Cohen–Macaulay rings [3].

Proposition 4.4. Let f1, . . . , fh be a filter-regular sequence of homogeneous elements
of R/I with h � 1. Then the sequence (f1)α, . . . , (fh)α is also a filter-regular sequence of
Rα/Iα for almost all α.
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Proof. Assume that f1, . . . , fh is a filter-regular sequence of R/I. Then

(I, f1, . . . , fi−1) : fi/(I, f1, . . . , fi−1), i = 1, . . . , h,

are of finite length. The R-modules

(I, f1, . . . , fi−1) : fi/(I, f1, . . . , fi−1)

will be denoted by Ni for all i = 1, . . . , h. By Proposition 2.6,

(Ni)α
∼= (Iα, (f1)α, . . . , (fi−1)α) : (fi)α/(Iα, (f1)α, . . . , (fi−1)α)

for i = 1, . . . , h and for almost all α. By Proposition 2.7,

dim(Ni)α = dimNi = 0, i = 1, . . . , h,

for almost all α. Hence (Iα, (f1)α, . . . , (fi−1)α) : (fi)α/(Iα, (f1)α, . . . , (fi−1)α), i = 1, . . . ,
h, are Rα-modules of finite length. Therefore (f1)α, . . . , (fh)α is also a filter-regular
sequence of Rα/Iα. �

The following consequence of Proposition 4.4 gives a positive answer to a question
raised by Herzog (personal communication to N. V. Trung, 1998) which concerns the
existence of filter-regular sequences of homogeneous elements of degree 1 in a graded
algebra over an infinite field without taking generic elements [1, Proposition 2.1].

Corollary 4.5. Let J be a homogeneous ideal of k[x]. We put

yi = αi0x0 + · · · + αinxn, i = 1, . . . , d,

where α = (αij) ∈ kd(n+1) and d � 1. Then the sequence y1, . . . , yd is a filter-regular
sequence of k[x]/J for almost all α.

Proof. We define

zi = ui0x0 + · · · + uinxn, i = 1, . . . , d,

where u = (uij) is a family of d(n + 1) indeterminates. By Proposition 4.4, we only need
to show that z1, . . . , zd is a filter-regular sequence of A = k(u)[x]/Jk(u)[x]. It suffices to
prove the case d = 1. Put S = k[x]/J. We note that

Assk[v,x](S[v]) = {P = pk[v, x] | p ∈ Assk[x](S)}.

If z1 ∈ P = pk[v, x], then (x0, . . . , xn) ⊆ p. Therefore p = m and P = mk[v, x]. Since A

is a localization of S[v], we can deduce that z1 /∈ P for all associated prime ideals P of A

which are different from the maximal graded ideal of A. Therefore, z1 is a filter-regular
element of A. �
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5. Bertini Theorems

Let V be a closed subscheme of the projective space P
n
k . Let Hα be the hypersurface

defined by a form fα = α1f1 + · · · + αmfm in P
n
k , where α = (α1, . . . , αm) ∈ km and

f1, . . . , fm is a family of forms of the same degree in k[X] = k[X0, . . . , Xn]. Let I be
the defining homogeneous ideal of V in k[X]. To study V ∩ Hα means to study the
local ring of the graded ring k[X]/(I, fα) at its maximal graded ideal. This ring can
be considered as a specialization of the local ring of the graded ring R/(I, f) at its
maximal graded ideal, where R = k(u)[x], u = (u1, . . . , um) is a family of indeterminates
and f = u1f1 + · · · + umfm. Note that the latter ring corresponds to what one calls the
generic hypersurface section of V . It is not hard to find conditions on I which allow a
given property to be transferred from I to (I, f) (see [7,19]) and to check whether this
property is preserved by specializations. We will demonstrate this method by reproving
some Bertini Theorems.

Let A =
⊕

i�0 Ai be a graded algebra over a field A0. We denote the maximal homo-
geneous ideal of A by A+. We put

Proj(A) = {P ∈ Spec(A) | P is homogeneous and P �= A+}.

The non-Cohen–Macaulay locus and the singular locus of a factor ring B of A in Proj(A)
are defined by

NCM(B) = {P ∈ Proj(A) | BP is not Cohen–Macaulay},

Sing(B) = {P ∈ Proj(A) | BP is not regular}.

Given any ideal C of ring A we will denote by V+(C) the set of homogeneous prime
ideals P containing C, P �= A+, and we define D+(C) = Proj(A)−V+(C). The following
lemmas can be proved similarly as in the local case (see [14]); hence we omit the proofs.

Lemma 5.1 (cf. Lemma 4.3 of [14]). Let I be an arbitrary homogeneous ideal of
R. There is a homogeneous ideal J ⊇ I such that for almost all α,

NCM(R/I) = V+(J),

NCM(Rα/Iα) = V+(Jα).

Lemma 5.2 (cf. Lemma 4.4 of [14]). Let k be a field of characteristic zero. Let I

be a homogeneous ideal of R. There is a homogeneous ideal J ⊇ I such that for almost
all α,

Sing(R/I) = V+(J),

Sing(Rα/Iα) = V+(Jα).

Let t � 0 be a fixed integer. We say that a ring A satisfies Serre’s condition (St) if
depthAp � min{dim Ap, t} for any prime ideal p or Serre’s condition (Rt) if Ap is regular
for any prime ideal p with height p � t.
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Lemma 5.3 (cf. Theorem 4.5 of [14]). Let k be a field of characteristic zero. Let I

be a homogeneous ideal of R. Assume that R/I satisfies one of the following properties:

(i) (St),

(ii) (Rt),

(iii) R/I is reduced,

(iv) R/I is normal.

Then Rα/Iα has the same property for almost all α.

Using the above lemmas we will give simple proofs to the following Bertini Theorems.

Theorem 5.4 (see Hauptsatz of [19]). Let k be a field of characteristic zero. Let
A be a graded k-algebra generated by elements of degree 1. Let f1, . . . , fm be a family
of homogeneous elements of the same degree in A and fα = α1f1 + · · · + αmfm, where
α = (α1, . . . , αm) ∈ km. Assume that A is a normal ring and grade(f1, . . . , fm) � 3.
Then A/fαA is a normal ring for almost all α.

Proof. Let A = k[X]/I, where I is a homogeneous ideal of k[X]. Let B = k(u)[X]/(I)
and f = u1f1 + · · · + umfm. Then A/fαA = k[X]/(I, fα) is a specialization of B/fB =
k(u)[X]/(I, f). By Lemma 5.3 we only need to show that B/fB is a normal ring. But
this follows from the assumptions by [19, Korollar 4.4]. �

The following result is the global Bertini Theorem of Flenner.

Theorem 5.5 (see Satz 5.4 of [5]). Let k be a field of characteristic zero. Let
A be a graded k-algebra finitely generated by elements of degree 1. Let f1, . . . , fm be
homogeneous elements in A of the same degree. Let U ⊆ D+(f1, . . . , fm) be an open set
with one of the following properties:

(i) U satisfies (St),

(ii) U satisfies (Rt),

(iii) U is reduced,

(iv) U is normal,

(v) U is regular.

Let fα = α1f1 + · · · + αmfm, where α = (α1, . . . , αm) ∈ km. Then U ∩ V+(fα) ⊆
Proj(A/fαA) has the same property as U for almost all α.

Proof. Let A = k[X]/I, where I is a homogeneous ideal of k[X]. Let B = k(u)[X]/(I)
and f = u1f1 + · · · + umfm. Then A/fαA = k[X]/(I, fα) is a specialization of B/fB =
k(u)[X]/(I, f). By Lemma 5.1, there is a homogeneous ideal b ⊇ fB of B such that
V+(b) is the projective non-Cohen–Macaulay locus of B/fB in Proj(B) and V+(bα) is
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the projective non-Cohen–Macaulay locus of A/fαA in Proj(A). Let a be a homogeneous
ideal of A such that U = D+(a). Let P be an arbitrary homogeneous prime ideal of
V+(b : a). Then P does not contain a and the local ring (B/fB)P is not Cohen–Macaulay.
Let p denote the contraction of P in A. Then p does not contain a. Hence p ∈ U . Since
U ⊆ D+(f1, . . . , fm), p does not contain (f1, . . . , fm). Hence grade(f1, . . . , fm)Ap = ∞. If
U satisfies (St), then Ap satisfies (St). By [19, Proposition 3.1], Ap[u]/fAp[u] also satisfies
(St). Since (B/fB)P is the local ring of Ap[u]/fAp[u] at a prime ideal, depth(B/fB)P >

t. By [2, Proposition 1.2.10], this implies grade(b : a/fB) > t. By [14, Lemma 2.5]
and [14, Corollary 3.4],

grade(bα : a/fαA) = grade(b : a/fB)α = grade(b : a/fB) > t.

Thus, depth(A/fαA)q > t for any homogeneous prime ideal q ⊇ bα which does not
contain a. Since (A/fαA)q is a Cohen–Macaulay ring for any prime ideal q �⊇ bα, we get
depth(A/fαA)q > min{dim(A/fαA)q, t} for any homogeneous prime ideal q ∈ U . Hence
U ∩ V+(fα) ⊆ Proj(A/fαA) satisfies (St).

Similarly, using Lemma 5.2 we can find a homogeneous ideal c ⊇ fB of B such that
V+(c) is the projective singular locus of B/fB in Proj(B) and V+(cα) is the projective
singular locus of A/fαA in Proj(A). If U satisfies (Rt), using [19, Proposition 3.8] we
can show that height(c : a/fB) > t. By [14, Lemma 2.5] and [14, Proposition 2.6],

height(cα : a/fαA) = height(c : a/fB)α = height(c : a/fB) > t.

From this it follows that U ∩ V+(fα) ⊆ Proj(A/fαA) satisfies (Rt).
As in the above proof we see that if U satisfies (St) and (Rh), then U ∩ V+(fα) ⊆

Proj(A/fαA) also satisfies (St) and (Rh). If U is reduced (normal), then U and therefore
U ∩V+(fα) ⊆ Proj(A/fαA) satisfies (S1) and (R0) ((S2) and (R1)). Hence U ∩V+(fα) ⊆
Proj(A/fαA) is reduced (normal). Let d = dimA. If U is regular, then U satisfies (Rd).
By (ii), U ∩ V+(fα) satisfies (Rd). Since dimA/fαA � d, U ∩ V+(fα) ⊆ Proj(A/fαA) is
regular. �
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