
2 Adaptive Filtering for Sparse
Models

2.1 Introduction

In adaptive filtering, as well as in other areas requiring learning from data,

there is a current trend of employing complex models relying on a large number

of coefficients/parameters, meaning that the parameters form a vector, called

coefficient vector or parameter vector, that lives in a high-dimensional space. In

general, as the parameter space enlarges (has more dimensions), the training

process becomes more difficult, and it is expected that the coefficient vector

takes more time to converge to an acceptable estimate, that is, a longer training

period is required. However, slow convergence is a critical issue in adaptive

filtering, as its most interesting and practical applications very often deal with

the tracking of nonstationary processes, thus requiring fast adaptation of the

filter coefficients.

One way of overcoming this slow convergence issue is by exploiting some

structure that the coefficients should have. The idea is adding prior knowledge

about the problem so that the algorithm can explore the parameter space (or

search space) wisely, like if the algorithm had a clue of where to search for

the solution, instead of performing a simple uninformed search throughout the

parameter space. Clearly, the impact on convergence speed provided by exploit-

ing the parameters’ structure increases with the number of parameters, that is,

with the dimension of the search space.

There are many different parameter structures that can be exploited; some

examples can be found in [1–6]. But one of the most important structures, which

is the subject of this chapter, is the sparsity. Intuitively, a sparse parameter

vector means that only a subset of the inputs is required to explain/model

the data (later we will define the concepts of sparse and compressible vectors

precisely) and, therefore, is very likely to happen when using complex models

with a considerable amount of coefficients.

Exploiting sparsity in adaptive filtering has been a very active research topic

since the early twenty-first century, as the classical algorithms have become in-

appropriate to deal with such a large set of coefficients. The goal of this chapter

is to equip the reader with the fundamentals of this field. That is, instead of

covering a huge number of adaptive filtering algorithms that exploit sparsity

(there are hundreds of them), we opted for a unified presentation in which we
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divide these algorithms into two classes. We present each class’s fundamental

ideas, discuss the pros and cons, and introduce the most important or pioneer

algorithms of each class.

This chapter is organized as follows. In Section 2.2, we provide a thor-

ough explanation of the sparsity-promoting functions frequently used as regu-

larizations, the so-called sparsity-promoting regularizations. This section is of

paramount importance to fully understand the algorithms employing sparsity-

promoting regularizations, which is an important class of algorithms that exploit

sparsity, covered in Section 2.3. In Section 2.4, we present the proportionate-type

algorithms, another class of algorithms widely used to exploit sparsity. The con-

clusions are drawn in Section 2.5. We hope the reader can appreciate the art of

developing algorithms during the exposition of these two classes of algorithms.

That is, while the development of the algorithms employing sparsity-promoting

regularizations relies on optimization theory and geometric aspects, the devel-

opment of the proportionate-type algorithms relies more on numerical analysis

and intuition/heuristics.

2.2 Exploiting Sparsity through Regularization

Regularization has been widely used in areas like statistics, machine learning,

and adaptive filtering. Regularization can be regarded as a way of adding prior

information about the model/parameters to be estimated or of encouraging them

to have some structure. Of course, adding a regularization changes the original

(nonregularized) optimization problem and, therefore, the solutions of these two

distinct problems are not necessarily equal. However, the discrepancy between

these two solutions can be controlled by the regularization parameter, a positive

real number that determines the weight given to the regularization term.

There are many benefits of using regularization, among which we highlight:

preventing the overfitting problem of the parameters and enhancing the problem

conditioning. Preventing the overfitting problem is crucial for the learning tech-

nique to perform well using new data, that is, data not belonging to the training

set; this characteristic is known in machine learning as generalization [7]. The

conditioning, or condition number, is related to the problem (and not the al-

gorithm employed to solve it) and determines how the errors/uncertainties in

the observations are propagated to the unknowns/estimates [8]. If the prob-

lem is ill-conditioned (i.e., has large condition number), then these errors can

be severely amplified to the outputs no matter the algorithm that is used to

solve it. In this case, it is better to make a slight modification to the original

optimization problem, in order to enhance its conditioning, before solving it.

Besides, the condition number also impacts the learning rate of gradient-based

algorithms [9].

In addition to the aforementioned benefits, by employing regularization it

might be possible to obtain estimators with reduced mean squared error (MSE)
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in comparison with unbiased solutions. As explained in [10], these estimators

can “trade a little bias for a large reduction in variance.”1

From the optimization point of view, the regularization term is simply a

penalty function of the parameters. In adaptive filtering, in most cases, this

penalty function is a vector norm, for example, the �2 norm of the coefficientsw.

In this section, we are interested in the regularizations used to exploit sparsity,

frequently called sparsity-promoting regularizations [11].

Recalling that a finite-dimensional vector, herein also called signal, is said to

be sparse if it can be represented as a linear combination of a small number of

basis vectors for some basis of the related vector space [12]. For instance, the

vector [0 . . . 0 1 0 . . . 0]
T

is sparse as it requires a single basis vector for its

representation; the nonzero entry being equal to 1 or 1, 000 does not change this

fact. Therefore, it is natural to think of the �0 norm, which essentially counts the

number of nonzero entries in a vector, when modeling or measuring the sparsity

of a signal. However, minimizing this norm is challenging since it leads to an NP-

hard problem, which turns its use prohibitive in many cases, especially in online

applications [12]. Due to the practical limitations of using the �0 norm, several

alternatives have been proposed, like the �1 norm, the reweighted �1 norm, and

the approximation of the �0 norm [11]. In this section, all of these approaches to

model sparsity are described, their gradient expressions are shown (as gradient-

based optimization is widely used), and their pros and cons are discussed.

2.2.1 The �0 Norm

As previously explained, the �0 norm is the natural function to model/measure

the sparsity of a vector. So, why searching for alternatives to the �0 norm

instead of working directly with it? Here, we answer this question by pointing

out the practical limitations of this norm.

The �0 norm of a given vector w = [w0 w1 . . . wN ]
T ∈ R

N+1 is defined as

‖w‖0 � #{i ∈ I : wi 	= 0} ∈ N, (2.1)

where I � {0, 1, . . . , N} ⊂ N is the set of indexes for the entries of w and

# denotes the cardinality (i.e., the number of elements) of a finite set. Thus,

the �0 norm of a vector is the number of its nonzero entries. Observe that

the �0 norm is not really a norm as the homogeneity property fails, that is,

‖αw‖0 	= |α|‖w‖0 in general.2

A major issue related to the �0 norm concerns the computational complexity

involving its minimization. Indeed, the problem of minimizing ‖w‖0 subject to

some constraints onw is said to be NP-hard and, in general, requires a combina-

torial search over all possible coordinate combinations; there are (N+1) choose

1 Recall that (MSE) = (bias)2 + (variance).
2 Also, the �0 norm is not a pseudo-norm nor a quasi-norm, as sometimes stated

erroneously, since both of these concepts relax other properties of a norm, but not
homogeneity [13, 14].
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k possible combinations, for each k ∈ {1, 2, . . . , N + 1}. Clearly, a tough prob-

lem with a prohibitive complexity for vectors belonging to high-dimensional

spaces or when dealing with online and real-time processing requirements.

Still considering the optimization problem, but from another perspective, the

use of the �0 norm leads to an ill-conditioned problem since the �0 norm is very

sensitive to nonzero coordinates due to its discontinuity. For example, consider

the following two vectors belonging to R
N+1

0 = [0 . . . 0]T (the vector of zeros),

1 = [1 . . . 1]T (the vector of ones).

Clearly, ‖0‖0 = 0. If you add a tiny perturbation to this vector, the result

changes by a significant amount, that is,

‖0+ δ1‖0 = N + 1,

for any δ 	= 0. This characteristic hinders the use of the �0 norm in most practi-

cal applications since typically there are several sources of errors/uncertainties

due to noise, quantization, numerical approximations, limited accuracy of the

measurement devices, etc.

From the discussion in the previous paragraph, one may conclude that sparse

signals (in the mathematical sense) are not frequently found in practice.3

Actually, many times in the literature, the term sparse is used with a slightly

different meaning; it is used for vectors having their energy concentrated mostly

on a few entries, whereas their remaining elements have small or negligible en-

ergy. This kind of vector/signal is herein called compressible [12]. Roughly, the

main difference between sparse and compressible signals is that the negligible

coefficients of the latter are not required to be 0.

Even though there is a strong relationship between sparsity and the �0 norm,

its practical use is very limited due to the severe drawbacks presented here.

Next, we present the classical alternatives to the �0 norm.

2.2.2 The �1 Norm

Undoubtedly, the �1 norm is the most widely used substitute for the �0 norm.

It has been used in areas like geophysics since the 1970s [15, 16], but it was

in the 1990s that it became widely used due to the advent of techniques like

the basis pursuit [17] and the least absolute shrinkage and selection operator

(LASSO) [10, 18]. Since 2006, the �1 norm has also been used to recover sparse

signals, the so-called compressed sensing (CS) [19]. The CS theory explained

that under certain conditions, the �1 minimization is capable of finding the

sparsest solution (i.e., the solution to the �0 minimization).

3 Sparse signals are usually obtained by replacing the small coefficients of a real signal (like
an image, audio, or the impulse response of a system) with zeros. That is, the real and
compressible signal goes through a lossy compression process to generate a sparse signal.
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20 Adaptive Filtering for Sparse Models

The �1 norm of a given signal w ∈ R
N+1 is defined as

‖w‖1 �
N∑

i=0

|wi|. (2.2)

The �1 norm is, therefore, a continuous and convex function, meaning that there

exist several efficient methods to solve the �1 minimization problem, and it is

almost everywhere (a.e.) differentiable, thus turning gradient-based methods

very suitable to its minimization. This simplicity and mathematical tractability

have played a central role in the widespread use of the �1 norm.

The derivative of ‖w‖1 with respect to a given entry wi is
4

∂‖w‖1
∂wi

= sign(wi) �

⎧
⎪⎪⎨

⎪⎪⎩

1 if wi > 0,

0 if wi = 0,

−1 if wi < 0,

(2.3)

that is, the standard sign function applied to a real scalar. Thus, the gradient

of ‖w‖1 with respect to w, denoted by ∇‖w‖1 or f�1(w), is

∇‖w‖1 � f�1(w) = sign(w) � [sign(w0) sign(w1) . . . sign(wN )]
T
, (2.4)

that is, when the operator sign is applied to a vector, it results in a vector with

the standard sign function applied to each of its entries.

Despite the aforementioned advantages, the �1 norm has some critical draw-

backs that motivated the search for other functions to exploit sparsity. These

main drawbacks are as follows [11, 20–22]:

1 The �1 norm penalizes the larger coefficients more heavily than the smaller

ones.

2 For gradient-based methods, the update term given by −∇‖w‖1 pushes all

entries of w toward 0 with the same strength, instead of prioritizing those

which are closer to 0.

3 The effectiveness of the �1 norm depends on the existence of high sparsity

degree.

Observe that a good sparsity-promoting function should act in the small

magnitude coefficients, pushing them toward 0 to encourage sparse solutions,

without interfering in the large magnitude coefficients, which are relevant to

explain/model the data [11]. The need to discriminate between low and high

magnitude entries in order to force the former ones to 0 without shrinking the

latter ones paved the way for further developments.

4 Formally, ‖w‖1 is not differentiable at the points wi = 0; therefore, one must use the
concept of subderivative at these points. For instance, the subdifferential of the function
|w| at w = 0 is the interval [−1, 1], and any point w0 ∈ [−1, 1] is called a subderivative of

|w| at w = 0.
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2.2.3 The Reweighted �1 Norm

The reweighted �1 (r�1) norm proposed in 2008 aims to mitigate the problem of

shrinking the large magnitude coefficients [20]. To do so, instead of penalizing

each coefficient based on its magnitude |wi|, as the �1 norm does, the r�1 norm

uses a function that grows less quickly for the large magnitude coefficients.

The r�1 norm of a given signal w ∈ R
N+1, denoted by Fr�1 : RN+1 −→ R+,

is defined as

Fr�1(w) � 1

log (1 + ε)

N∑

i=0

log (1 + ε|wi|) , (2.5)

where ε ∈ R+. Like the �0 norm, the r�1 norm also is not really a norm. To

better understand the role of ε, observe that Fr�1 tends to the �1 norm as ε→ 0,

whereas Fr�1 tends to the �0 norm as ε→ ∞. The r�1 norm is a continuous and

a.e. differentiable function, but it is not convex anymore due to the logarithm.

Nonetheless, gradient-based methods can still be used in its minimization [20].

The derivative of Fr�1(w) with respect to a given entry wi is

∂Fr�1(w)

∂wi
=

ε

log(1 + ε)
× sign(wi)

1 + ε|wi|
. (2.6)

Notice that the first fraction on the right-hand side of Equation (2.6) does not

depend on i and, therefore, it only modifies the length of the gradient vector,

not its direction. Moreover, there already exists a parameter, the regularization

parameter, which controls the weight given to Fr�1 , and thus the length of its

gradient. Therefore, it is very common to discard this fraction and write the

gradient vector as [19, 23]:

∇Fr�1(w) � fr�1(w) � [fr�1(w0) fr�1(w1) . . . fr�1(wN )]
T
, (2.7)

where fr�1(wi) is a simplified version of Equation (2.6) given by

fr�1(wi) =
sign(wi)

1 + ε|wi|
. (2.8)

The r�1 norm given in Equation (2.5), therefore, mitigates the problem of

heavy penalization of the large magnitude coefficients. Besides, observe in Equa-

tion (2.8) that fr�1(wi) decreases as |wi| increases, meaning that gradient-based

algorithms employing the r�1 norm attract the smaller coefficients to 0 more

strongly than the large magnitude ones. However, it still affects/shrinks the

large magnitude coefficients, a problem that is solved by the function presented

in Subsection 2.2.4.

2.2.4 The �0-Norm Approximation

The �0-norm approximation is also known as smoothed �0 norm because it is a

continuous/smoothed version of the �0 norm. Although the functions commonly

used as �0-norm approximations are known for a long time, only recently they
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have been used for the purpose of exploiting sparsity. For instance, the �0-

norm approximation has been used in image processing [22], in medical image

reconstruction [24], and in system identification [11, 21, 25]. Most of these

works present results pointing out the superior performance of the �0-norm

approximation over the �1 norm and the r�1 norm.

The �0-norm approximation is a continuous and a.e. differentiable function

Fβ : RN+1 −→ [0, N + 1] ⊂ R+, in which β ∈ R+ is a parameter that con-

trols the smoothness of the approximation. A common practice is to define

analytically a continuous function Fβ such that

lim
β−→∞

Fβ(w) = ‖w‖0, (2.9)

or equivalently,

lim
β−→∞

Fβ(wiei) =

{
1 if wi 	= 0,

0 if wi = 0,
(2.10)

for all w ∈ R
N+1, where ei is the i-th vector of the canonical basis of RN+1

(i.e., ei has only zero elements, except for a 1 in its i-th coordinate, i ∈ I). For
finite values of β, we add the following property:

Fβ(wiei) =

{
1 if |wi|  1/β,

0 if wi = 0.
(2.11)

In words, a valid �0-norm approximation must be a continuous function whose

value is equal to 0 at wi = 0 and rapidly (depending on the value of β) saturates

at 1 as wi gets further from 0, for every coordinate wi. Clearly, Fβ is nonconvex.

It is worth noticing that the reweighted �1 norm, denoted by Fr�1 , also converges

to the �0 norm as ε → ∞. However, for finite ε, Fr�1 increases with |wi|, thus
not satisfying the saturation property given in Equation (2.11). Therefore, Fr�1

is not a particular case of Fβ .

There are many functions Fβ that can be used as �0-norm approximations,

as illustrated in [11]. Here, we focus on the two most commonly used:

Fβ(w) =
∑

i∈I

(
1− e−β|wi|

)
, (2.12a)

Fβ(w) =
∑

i∈I

(

1− 1

1 + β|wi|

)

. (2.12b)

The Fβ given in Equation (2.12a) is the so-called Laplace function (LF) [24,

26], and is probably the most widely used �0-norm approximation. In addi-

tion, Equation (2.12b) describes the Geman–McClure function (GMF) [24, 27].

Notice that both approximations satisfy the properties in Equations (2.10)

and (2.11).
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(d) GMF’s gradient

Figure 2.1 Functions Fβ(x) and their gradients ∇Fβ(x), with x ∈ R, for different
values of β: (a) Laplace function (LF); (b) Geman–McClure function (GMF); (c)
LF’s gradient; and (d) GMF’s gradient.

Defining fβ(wi) � ∂Fβ(w)
∂wi

, the derivatives corresponding to Equation (2.12a)

and Equation (2.12b) are, respectively,

fβ(wi) = βsign(wi)e
−β|wi|, (2.13a)

fβ(wi) =
βsign(wi)

(1 + β|wi|)2
, (2.13b)

where the function sign :R−→{−1, 0, 1} is defined in Equation (2.3). Thus,

we can define the gradient of Fβ(w) with respect to w as

∇Fβ(w) � fβ(w) � [fβ(w0) fβ(w1) . . . fβ(wN )]T. (2.14)

Figure 2.1 depicts the LF, the GMF, and their respective gradients∇Fβ(x) =

dFβ(x)/dx, for x ∈ R, using different values of β. Observe that the functions

Fβ are nonconvex and also that low values of β lead to smoother functions,

whereas high values of β turn these functions more similar to the �0 norm.

Besides, due to the exponential function, the LF goes from 0 to 1 faster than

the GMF, at least for the same value of β, thus being a better approximation of

the �0 norm. On the other hand, the GMF is smoother and simpler to compute.

Also, observe that the gradients of both the LF and GMF are very strong (high
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(a) LF surface
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(b) Top view of the LF surface

Figure 2.2 Laplace function Fβ for β = 5 and w ∈ R
2: (a) LF surface and (b) top

view of the LF surface.

magnitude) at values of x close to 0 and they vanish (i.e., ∇Fβ(x) = 0) as |x|
grows. Clearly, the gradient of the LF vanishes faster than that of the GMF,

for a fixed β.

Figure 2.2 illustrates the surface of the LF Fβ(w), with w ∈ R
2 and β =

5. Observe that such function has a single global minimum at w = 0 and

there are infinitely many local minima at the axes, more precisely, when one

of the coordinates is equal to 0, and the other one is sufficiently large. It is

worth mentioning that most of the parameter space is covered by vast plateaus,

whereas the concave part of the function occurs when any of the coefficients wi

approaches 0, as can be clearly observed in Figure 2.2(b).

From the previous discussion, it must be clear that the �0-norm approxima-

tion Fβ does not have the drawbacks of the previous functions. Indeed, due

to its saturation property, the high magnitude (relevant) coefficients are not

heavily penalized, and a gradient-based minimization pushes only the small

magnitude coefficients to 0, keeping the relevant coefficients unaltered. Also,

the �0-norm approximation works well even when the sparsity degree is very

low, as corroborated by the results and theoretical analysis in [28].

Gradient-Based Training
As illustrated in Figure 2.1, the parameter β represents a tradeoff between

smoothness and quality of approximation. Therefore, this parameter can be

used to avoid gradient-descent techniques from getting trapped in a local min-

imum of Fβ , simply by reducing the value of β in order to obtain a smoother

approximation. For instance, by decreasing the value of β in Figure 2.2, one

can obtain a LF surface that does not exhibit local minima within the [−2, 2]×
[−2, 2] region and, therefore, gradient-based techniques will work well within

this region.5 The price to be paid is to have a slower convergence due to the

5 Fβ will always have local minima, but as you set β closer to 0, these local minima occur
much further from the origin. That is, one can always set β so that the local minima

appear in a part of the parameter space that is of no interest.
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smaller gradients since, for a given x close to 0, the magnitudes of the gradients

decrease as β decreases, as can be observed in Figure 2.1.

To overcome the aforementioned issue, a fast algorithm for overcomplete

sparse decomposition, called SL0, was proposed in [29]. Essentially, the SL0

algorithm uses an increasing sequence β1 < β2 < · · · < βJ , applies the steepest-

descent technique (or steepest-ascent, if the problem is written in the form of

maximization, as in [29]) to solve approximately the minimization of Fβi
, and

then uses the approximate solution of the i-th problem as the initialization

of the next problem Fβi+1
. The process is repeated until FβJ

is solved. It is

assumed that βJ is sufficiently large so that FβJ
is a good approximation of

the �0 norm. The work in [29] also provides some theoretical guarantees that

the SL0 solution is indeed the sparsest solution, that is, the one that mini-

mizes the �0 norm. However, the choice of the sequence of β’s is addressed only

heuristically.

The same idea of the SL0 algorithm could be adapted for adaptive filtering

by employing an iteration-dependent parameter β(k), where k ∈ Z is the iter-

ation index and defining some adaptation rule for it. Indeed, unlike in sparse

decomposition applications, in which the SL0 is satisfactorily used, working

with a predefined and always increasing sequence of β’s is usually not possible

in adaptive filtering since very often the problem involves nonstationary signals.

In this way, a recursion capable of increasing and decreasing the value of β(k)

would be necessary, a topic that, to the best of our knowledge, has never been

addressed. In what follows, we explain how β is usually chosen.

Choice of β
For the proper choice of β, we must introduce the concept of zero-attraction

region, which is a region of the parameter space where the gradient is non-null,

thereby any point inside this region is pushed/forced toward 0 by a gradient-

descent technique. In Figure 2.2, for example, there are four plateaus in which

Fβ(w) = 2, for any w belonging to the interior of these plateaus and, con-

sequently, ∇Fβ(w) = 0 for these w’s. The remaining points of the parame-

ter space, excluding the global minimum and the local minima, are such that

∇Fβ(w) 	= 0 and, therefore, they belong to the zero-attraction region. In ulti-

mate analysis, the choice of β concerns the size of the zero-attraction region,

that is, it defines a threshold for the magnitude of the coefficients; coefficients

below this threshold are pushed to 0, whereas the ones that are above this

threshold remain unaltered.

Since Fβ(w) treats all entries wi uniformly, it is easier to set β based on

the univariate case depicted in Figure 2.1. Observe in Figures 2.1(c) and 2.1(d)

that, for large values of β, the gradient ∇Fβ(x) converges to 0 very fast as |x|
grows, meaning that the zero-attraction interval is short. On the other hand,

the zero-attraction interval expands as β decreases. Thus, to set β properly,

one must have some prior knowledge about the magnitude of the optimal co-

efficients. More precisely, one must have a clue about the magnitudes of the
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relevant and irrelevant coefficients. Ideally, β should be chosen such that the ir-

relevant coefficients fall inside the zero-attraction interval, whereas the relevant

coefficients fall outside such range, thus not being affected by Fβ .

When dealing with sparse vectors, it is easy to set β because we know that

the irrelevant coefficients are precisely equal to 0 and, therefore, a small zero-

attraction interval suffices. Although high values of β could be used in this

case, it is preferable to use moderate values of β, like β ∈ [5, 10] (typically

β = 5 [11]), because smoothness is important to guarantee the effectiveness of

gradient-based optimization methods, as previously explained.

For compressible signals, on the other hand, the task of choosing β is more

complicated. In this case, one should set β such that the low magnitude coeffi-

cients are pushed to 0, but the relevant (high magnitude) coefficients should not

be severely affected. As a simple example, suppose that the optimal coefficients

have some negligible entries with magnitudes ranging from 0 to 0.5, whereas its

relevant entries are greater than 1 in magnitude. In this example, considering

the LF function depicted in Figure 2.1(a), one should not use β = 50. Actually,

it would be better to choose β equal to 2 or 5 to guarantee that coefficients

with magnitudes up to 0.5 are pushed to 0 while producing little or no effect

in the relevant coefficients.

2.2.5 Remarks

Let us summarize the main points about sparsity-promoting functions covered

in this section. First, we learned that although the �0 norm is the natural

function to model sparsity, it has critical issues, due to its discontinuity, that

prevent its use in practical applications. Then, we studied three functions that

are frequently used to replace the �0 norm in optimization problems, namely,

the �1 norm, the reweighted �1 norm Fr�1 , and the �0-norm approximation Fβ ,

which are illustrated in Figure 2.3 for the case of a scalar independent variable

x ∈ R. These three functions are continuous and almost everywhere differen-

tiable, thus allowing the use of gradient-based optimization techniques, meaning

that the training technique is simple, an important feature when dealing with

high-dimensional problems. However, only the �1 norm is convex, being, there-

fore, easier to deal with than the other two. On the other hand, the �1 norm has

three significant drawbacks: (i) heavy penalization of the large coefficients, (ii)

its gradient pushes all coefficients to 0 with equal strength which results in the

shrinkage of relevant coefficients, and (iii) high sparsity degree is necessary to

obtain its benefits. Next, we explained that Fr�1 mitigates these issues, while Fβ

eliminates them. On the other hand, both of these functions are nonconvex, but

only Fβ satisfies the saturation property, as can be verified in Figure 2.3, which

is key to solving the drawbacks (i) and (ii) mentioned above. These functions

have been compared experimentally in some works, and the results are usu-

ally the same: The �0-norm approximation Fβ provides the best performance,

followed by Fr�1 , and the �1 norm comes in third place [11, 21, 22, 24, 25].
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Figure 2.3 Sparsity-promoting regularizers applied on x ∈ R: �1 norm; Fr�1 with
ε = 10 [20]; Fβ as the Laplace Function with β = 5 [11].

However, when working with nonconvex regularizers (that is, regularization

functions), the possibility of introducing some undesired local minima or, even

worse, changing the position of the global minimum exists. In this subsection,

we elaborate more on this.

In Subsection 2.2.4, we showed an example of Fβ surface containing some

local minima (see Figure 2.2) and explained that by reducing β we could make

these local minima as further from the origin as we want. We also mentioned

the SL0 algorithm [29] as an efficient way to minimize Fβ(w), subject to some

constraints on the parameters w, using the steepest-descent method.

In adaptive filtering, however, Fβ is usually employed as a regularizer, that

is, a penalty function applied to the original objective function that we want

to minimize, leading to the following regularized objective function R:

R =

(
Original objective

function

)

+ α

(
Sparsity-promoting

regularizer

)

, (2.15)

where α ∈ R+ is the regularization parameter, responsible for determining the

weight given to the regularizer. While the original objective function aims to

find the coefficientsw that best explain/model the data, the sparsity-promoting

regularizer aims to sparsify w, by maximizing the number of entries of w equal

to 0. Since the regularization is used to help in the minimization of the original

objective function (and not the other way around), the regularization must be

much weaker in terms of magnitude; thus, α must be small. If this rule is not

satisfied, then the regularization will have a high impact on R and will possibly

generate a local or global minimum at w = 0. It is worth noticing that, once

again, the saturation property of Fβ helps us since we know its maximum value,

that is, for w ∈ R
N+1, maxFβ(w) = N + 1. This implies that, for any point

w in the parameter space, the value of R is equal to the value of the original

objective function plus α × (N + 1), in the worst case (i.e., this corresponds

to the most significant change on the original objective function due to Fβ).

Therefore, a sufficient condition to guarantee that no undesired global minimum

appears at w = 0 is
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(
Original objective function

evaluated at w = 0

)

>

(
Original objective function

evaluated at w	

)

+ α(N + 1),

where w	 is the minimizer of the original objective function. Observe that

Fβ(0) = 0, which means that R and the original objective function are equal

at w = 0, whereas α(N + 1) corresponds to the maximum value of αFβ(w
	),

which occurs only when w	 does not have coefficients close to 0 (i.e., within

the zero-attraction region).

In addition, adaptive filtering algorithms are very often derived based on an

original objective function that is convex, for example, the MSE or the mini-

mum disturbance criterion, both introduced in Chapter 1. The next example

illustrates that by choosing α correctly, the regularized objective function R
may remain convex, albeit Fβ is nonconvex.

Example 2.1 (The Role of α)

Let us consider an example in which the original objective function is the

MSE. It is widely known that the MSE surface is a paraboloid in the param-

eter space [30], and we assume that it has circular contours as depicted in

Figure 2.4(a).6 In addition, let us assume that the sparsity-promoting regular-

izer is the �0-norm approximation given in Equation (2.12a), that is, the LF

with β = 5, and the minimum MSE solution is wo = [1 0]T, marked with a

circle in Figure 2.4, which depicts the surface of R for different values of the

regularization parameter α.

In Figure 2.4(a), we have α = 0 and, therefore, we observe only the MSE con-

tours. As α increases from 0 to 0.1, we observe that the pattern of the contours

change gradually, becoming similar to ellipses with minor axis aligned with the

vertical coordinate w1. This pattern is the effect of the regularizer Fβ over the

coordinate w1, corresponding to the zero-entry of wo, while the coordinate w0,

which corresponds to the relevant/nonzero entry of wo, is almost not affected.

In Figure 2.4(c), we set α = 1 so that the regularization starts to compete

against the original objective function, thus generating a local minimum at

w = 0, represented with a triangle in the figure. Finally, in Figure 2.4(d), we

use α = 10 to illustrate a case in which the regularization becomes dominant

in R, leading to a global minimum at w = 0.

Observe that the colorbar ranges in Figure 2.4 can be used to indicate a bad

choice of α. Indeed, when α is properly chosen, like in Figure 2.4(b), this range

is very similar to the range obtained when α = 0, see Figure 2.4(a), meaning

that the regularization is not competing against the original objective function.

On the other hand, if α is such that the regularization is capable of changing

6 The contours of a surface correspond to the geometric places in which the surface has
constant values. The MSE surface exhibits circular contours for uncorrelated inputs
whose covariance matrix is σ2

xI, where σ2
x is the variance of the input signal and I is the

identity matrix.
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Figure 2.4 Contours of R for different values of the regularization parameter α:
(a) α = 0 (just the MSE contours); (b) α = 0.1; (c) α = 1; and (d) α = 10. The
circle denotes the minimum MSE solution wo = [1 0]T, the cross is placed at the
global minimum of R, and the local minimum is represented by a triangle.

the colorbar range, like in Figures 2.4(c) and 2.4(d), then α might be too high

and it would be wise reducing its value.

Note: The values of α used in Figure 2.4 are just for illustration purposes and

should not be taken as guidelines. Usually, the choice of α changes from problem

to problem. For instance, in the case of α = 0.1, a local minimum might appear

(just like in Figure 2.4(c)) if the value of β is increased or if the variance of the

input signal σ2
x is decreased; in this case, one would have to reduce α to avoid

the local minimum issue. Mathematically, to guarantee that R preserves the

convexity of the original optimization problem, one must calculate its Hessian

matrix and force it to be positive definite by selecting α and β properly.

2.3 Algorithms Employing Sparsity-Promoting Regularizations

In this section, we apply the sparsity-promoting regularization functions studied

in Section 2.2 to some classical algorithms in order to enable them to exploit
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Table 2.1 Summary of the sparsity-promoting regularizers F and their gradients

F(w) i-th entry of f(w) � ∇F(w)

�1 norm ‖w‖1, see Equation (2.2) f�1(wi) = sign(wi)

Reweighted Fr�1(w), see Equation (2.5) fr�1(wi) =
sign(wi)

1 + ε|wi|
�1 (r�1) norm

�0-norm approx. Fβ(w), see Equation (2.12) fβ(wi) =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

βsign(wi)e
−β|wi| for the LF

βsign(wi)

(1 + β|wi|)2
for the GMF

the sparsity of a vector/signal. To provide a concise and unified exposition of

regularization-based algorithms, we use the symbol F to denote any sparsity-

promoting regularizer, and we postpone its choice as much as possible aiming

at emphasizing the similarities among the several algorithms. For the reader’s

convenience, Table 2.1 summarizes the possible choices of F as well as their

gradient expressions, covered in detail in Section 2.2.

The classical algorithms considered in this section are the LMS, the NLMS,

and the AP algorithms, each of which was briefly discussed in Chapter 1. To

generate the regularized versions of these algorithms, we follow the standard

procedure: We take the original objective function used to derive each of these

algorithms and we add F(w) as a penalty function. We also define the gradient

of F(w) as

∇F(w) � f(w) = [f(w0) f(w1) . . . f(wN )]T ∈ R
N+1. (2.16)

After selecting the function F , we include a subscript on f to inform of this

choice. For example, if we choose F = Fβ(w), then its gradient vector will be

denoted by fβ(w) whose i-th entry is fβ(wi), as given in Table 2.1.

In the adaptive filtering literature, the prefixes zero-attractor (ZA), reweighted

zero-attractor (RZA), and �0 are very often used to indicate that the �1 norm,

the r�1 norm, and the �0-norm approximation, respectively, were chosen as the

sparsity-promoting regularization. For the LMS algorithm, for example, this

leads to the following three sparsity-aware LMS-based algorithms: the zero-

attractor LMS (ZA-LMS), the reweighted zero-attractor LMS (RZA-LMS), and

the �0-norm approximation LMS (�0-LMS) algorithms.

2.3.1 Regularized LMS Algorithms

As explained in Chapter 1, the LMS algorithm uses a gradient-descent method

to minimize the squared error |e(k)|2, which can be regarded as an instan-

taneous and stochastic approximation of the MSE [30]. Thus, the regularized
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objective function corresponding to the LMS algorithm is given by

RLMS(w(k)) � |e(k)|2 + αF(w(k)), (2.17)

where F is any of the sparsity-promoting regularizers given in Table 2.1 and α ∈
R+ is the regularization parameter, which is usually chosen as a small number

in order for the regularization to be less important than the original objective

function in the regularized problem RLMS, as explained in the Subsection 2.2.5.

Since the LMS algorithm employs a gradient-descent method, its recursion

depends on the gradient of RLMS with respect to w(k), denoted by

∇RLMS(w(k)), and is given by

w(k + 1) = w(k)− μ ∇RLMS(w(k))

= w(k)− μ ∇|e(k)|2 − μα ∇F(w(k))

= w(k) + 2μe(k)x(k)
︸ ︷︷ ︸
LMS correction

− μαf(w(k)),
︸ ︷︷ ︸

Regularization correction

(2.18)

where we recognize a correction term corresponding to the standard LMS algo-

rithm, whereas the regularization introduces a new correction term that encour-

ages the filter coefficientsw(k+1) to be sparse. The expressions for the gradient

vector f(w(k)) � ∇F(w(k)) can be found in Table 2.1 for the �1 norm, the r�1
norm, and the �0-norm approximation. The LMS-based algorithms employing

the �1 norm, the r�1 norm, and the �0-norm approximation are known as ZA-

LMS [23], RZA-LMS [23], and �0-LMS [25], respectively.7 These algorithms are

summarized in Algorithm 2.2.

Algorithm 2.2 The sparsity-aware LMS algorithms

Initialization:

x(0) = w(0) = [0 0 . . . 0]T

choose μ and α as small positive numbers

choose the regularizer F (and related parameters):

If F =

⎧
⎪⎪⎨

⎪⎪⎩

‖w(k)‖1, then we have the ZA-LMS algorithm [23]

Fr�1(w(k)), then we have the RZA-LMS algorithm [23]

Fβ(w(k)) then we have the �0-LMS algorithm [25]

For k ≥ 0 (i.e., for every iteration) do

e(k) = d(k)−wT(k)x(k)

Compute f(w(k)) corresponding to the selected F (see Table 2.1)

w(k + 1) = w(k) + 2μe(k)x(k)− μαf(w(k))

7 The �0-LMS algorithm proposed in [25] uses the LF as Fβ . However, instead of using the
gradient fβ(w(k)), whose entries are specified in Table 2.1, it uses the Taylor series to
approximate the exponential function by a first-order polynomial, for small values of
|wi(k)|. In this case, the algorithm exchanges quality of approximation (of the �0 norm),

thus performance, for reduced computational burden.
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Note:When we provide the step-by-step of an algorithm, like in Algorithm 2.2,

we are focusing on didactic rather than computational efficiency. For example,

we could avoid two multiplications at every iteration by defining and storing

the auxiliary variables μ′ = 2μ and α′ = μα during the initialization stage.

2.3.2 Regularized AP Algorithms

Let us start by revisiting the notation of the main variables related to the AP

algorithm (for more details, check Chapter 1):

x(k) = [x(k) x(k − 1) . . . x(k −N)]T ∈ R
N+1,

X(k) = [x(k) x(k − 1) . . . x(k − L)] ∈ R
(N+1)×(L+1),

w(k) = [w0(k) w1(k) . . . wN (k)]T ∈ R
N+1,

d(k) = [d(k) d(k − 1) . . . d(k − L)]T ∈ R
L+1,

e(k) = [e0(k) e1(k) . . . eL(k)]
T ∈ R

L+1,

(2.19)

where x(k) is the input vector (in tapped-delay line format), X(k) is the input

matrix that includes the current input vector x(k) and also L previous input

vectors, w(k) is the adaptive filter coefficient vector, d(k) is the desired vector,

and e(k) = d(k) −XT(k)w(k) is the error vector. In addition, N is the order

of the adaptive filter, and L is the data reuse factor, that is, the amount of

data from previous iterations that is to be used in the current iteration. Ob-

serve that e0(k), the 0-th entry of e(k), is computed using the data from the

current iteration (d(k),x(k)) and, therefore, it is equivalent to e(k) in the LMS

algorithm.

As explained in Chapter 1, the AP algorithm is derived by minimizing

the minimum disturbance criterion (or principle) subject to some constraints

related to the a posteriori errors being equal to 0. Thus, the regularized AP

algorithms solve the following optimization problem

minimize RAP(w(k + 1)) � ‖w(k + 1)−w(k)‖22 + αF(w(k + 1)),

subject to d(k)−XT(k)w(k + 1) = 0, (2.20)

where RAP(w(k + 1)) represents the regularized objective function related to

the AP algorithm. As explained in Subsection 2.3.1, F is any of the sparsity-

promoting regularizers given in Table 2.1 and α ∈ R+ is the regularization

parameter.

In order to solve this optimization problem, we form the Lagrangian L as

L(w(k + 1),λ) =‖w(k + 1)−w(k)‖22 + αF (w(k + 1))

+ λT
[
d(k)−XT(k)w(k + 1)

]
, (2.21)

which is a function of both the parametersw(k+1) and the Lagrange multipliers

λ ∈ R
L+1. Then, we differentiate L with respect to w(k+1) and λ and equate
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the results to 0 (i.e., ∇L = 0) to obtain

w(k + 1) = w(k) +X(k)
λ

2
− α

2
∇F (w(k + 1)) , (2.22)

XT(k)w(k + 1) = d(k), (2.23)

respectively. Then, the left multiplication of Equation (2.22) by XT(k) followed

by the substitution of Equation (2.23) into the resulting equation leads to

λ

2
=
(
XT(k)X(k)

)−1
e(k)

+
α

2

(
XT(k)X(k)

)−1
XT(k) ∇F (w(k + 1)) , (2.24)

where it is assumed that XT(k)X(k) is invertible. By substituting Equation

(2.24) into Equation (2.22) we obtain

w(k + 1) = w(k) +X(k)
(
XT(k)X(k)

)−1
e(k)

+
α

2

[
X(k)

(
XT(k)X(k)

)−1
XT(k)− I

]
f(w(k + 1)), (2.25)

where f(w(k + 1)) � ∇F (w(k + 1)), as already defined. To transform the

previous equation in a recursion, we replace f(w(k+1)) with f(w(k)) to obtain

the recursion of the regularized AP algorithms:

w(k + 1)=w(k) + μX(k)S(k)e(k)
︸ ︷︷ ︸

AP correction

+μ
α

2

[
X(k)S(k)XT(k)− I

]
f(w(k))

︸ ︷︷ ︸
Regularization correction

,

(2.26)

where, just like in the classical AP algorithm, we included a relaxation param-

eter μ that acts like a step size, and we defined S(k) �
(
XT(k)X(k) + γI

)−1
,

where γ ∈ R+ is a small positive number used to prevent matrix S(k) from

becoming singular or ill-conditioned. In Equation (2.26), we recognize a correc-

tion term corresponding to the standard AP algorithm, whereas the regular-

ization introduces a new correction term that encourages the filter coefficients

w(k + 1) to be sparse.

Once again, the expressions for the gradient vector f(w(k)) can be found

in Table 2.1 for the �1 norm, the r�1 norm, and the �0-norm approximation.

The AP-based algorithms employing the �1 norm, the r�1 norm, and the �0-

norm approximation are known as zero-attractor AP (ZA-AP) [31], reweighted

zero-attractor AP (RZA-AP) [31], and �0-norm approximation AP (�0-AP) [21],

respectively.8 These algorithms are summarized in Algorithm 2.3.

8 Actually, the authors in [21, 31] use ZA-APA and RZA-APA, instead of ZA-AP and
RZA-AP, where APA stands for affine projection algorithm. Moreover, the herein called
�0-AP algorithm was proposed in [21] by the name of affine projection algorithm for
sparse system identification, abbreviated both as AP-SSI or APA-SSI in [11, 28]. In this
chapter, we opted for using �0-AP instead of APA-SSI since the latter name is not

informative of which sparsity-promoting regularizer is being used.
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Algorithm 2.3 The sparsity-aware AP algorithms

Initialization:

x(0) = w(0) = [0 0 . . . 0]T

choose μ ∈ (0, 1]

choose α and γ as small positive numbers

choose the regularizer F (and related parameters):

If F =

⎧
⎪⎪⎨

⎪⎪⎩

‖w(k)‖1, then we have the ZA-AP algorithm [31]

Fr�1(w(k)), then we have the RZA-AP algorithm [31]

Fβ(w(k)) then we have the �0-AP algorithm [21]

For k ≥ 0 (i.e., for every iteration) do

e(k) = d(k)−XT(k)w(k)

S(k) =
(
XT(k)X(k) + γI

)−1

Compute f(w(k)) corresponding to the selected F (see Table 2.1)

w(k + 1) = w(k) + μX(k)S(k)e(k) + μα
2

[
X(k)S(k)XT(k)− I

]
f(w(k))

It is interesting to interpret the optimization problem given in Equation (2.20)

from the geometric point of view. Its solution w(k + 1) must satisfy the con-

straint XT(k)w(k + 1) = d(k), meaning that w(k + 1) must lie on the inter-

section of (L + 1) hyperplanes, denoted by Π(L+1). If α = 0, then w(k + 1) is

generated as an orthogonal projection of w(k) onto Π(L+1), which is the min-

imum Euclidean norm solution; this corresponds to the standard AP update

(with μ = 1). For α 	= 0, the update process can be explained as a two-step

procedure: (i) the standard AP update transports w(k) to a point w′ ∈ Π(L+1)

and (ii) the regularization correction maps w′ to w(k+1) ∈ Π(L+1) by encour-

aging w(k + 1) to be sparser than w′, but still restricted to belong to Π(L+1).

The fact that the sparse solution w(k+1) is confined to Π(L+1) can be seen as

an advantage since it facilitates the choice of α (we postpone this explanation

to Subsection 2.3.3), but it can also be seen as a disadvantage since it reduces

the length of f(w(k)), as the length of a vector is always greater than or equal

to the length of its projection, and requires more computations, as explained

in [11, 21]. This issue motivated the development of a new algorithm, which

eliminates the matrix X(k)S(k)XT(k), leading to the following recursion:

w(k + 1)=w(k) + μX(k)S(k)e(k)
︸ ︷︷ ︸

AP correction

− μ
α

2
f(w(k))

︸ ︷︷ ︸
Regularization correction

. (2.27)

Observe that, for μ = 1 and γ = 0, that is, eliminating the constants that

were artificially introduced to increase the algorithm robustness, the w(k + 1)

in Equation (2.26) satisfies the constraint in Equation (2.20), but the w(k+1)

in Equation (2.27) does not. Therefore, algorithms employing the recursion

given in Equation (2.27) should not be called AP. Here, we call them quasi-AP

(qAP) following the work that first noticed this fact [21]. The qAP algorithms

employing sparsity-promoting regularizations are summarized in Algorithm 2.4.
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Algorithm 2.4 The sparsity-aware qAP algorithms [11, 21]

Initialization:

x(0) = w(0) = [0 0 . . . 0]T

choose μ ∈ (0, 1]

choose α and γ as small positive numbers

choose the regularizer F (and related parameters):

If F =

⎧
⎪⎪⎨

⎪⎪⎩

‖w(k)‖1, then we have the ZA-qAP algorithm

Fr�1(w(k)), then we have the RZA-qAP algorithm

Fβ(w(k)) then we have the �0-qAP algorithm [21]

For k ≥ 0 (i.e., for every iteration) do

e(k) = d(k)−XT(k)w(k)

S(k) =
(
XT(k)X(k) + γI

)−1

Compute f(w(k)) corresponding to the selected F (see Table 2.1)

w(k + 1) = w(k) + μX(k)S(k)e(k)− μα
2 f(w(k))

Hint: If α is properly chosen, both AP and qAP algorithms provide similar

performance in terms of convergence speed and MSE, but the qAP algorithm

is more efficient. However, when a qAP algorithm is used with nonstationary

input x(k), the problem of choosing α is considerably more difficult and maybe

even impossible. This issue will be explained in Subsection 2.3.3.

Note: To the best of our knowledge, there is no article proposing the ZA-

qAP and RZA-qAP algorithms. We opted for introducing them here only to

maintain the pattern we have been following.

2.3.3 Regularized NLMS Algorithms

As explained in Chapter 1, the NLMS algorithm is a particular case of the AP

algorithm, where L = 0, that is, only the data from the current iteration is used.

Therefore, in this subsection, we present only its related optimization problem

and the algorithms recursions. The derivation of these recursions is omitted

here because it follows precisely the same steps used in Subsection 2.3.2.

The regularized NLMS algorithms solve the following optimization problem:

minimize RNLMS(w(k + 1)) � ‖w(k + 1)−w(k)‖22 + αF(w(k + 1)),

subject to d(k)− xT(k)w(k + 1) = 0, (2.28)

where RNLMS(w(k + 1)) represents the regularized objective function related

to the NLMS algorithm, F is any of the sparsity-promoting regularizers given

in Table 2.1, and α ∈ R+ is the regularization parameter.

The solution to the optimization problem in Equation (2.28) leads to the

following recursion:
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Algorithm 2.5 The sparsity-aware NLMS algorithms

Initialization:

x(0) = w(0) = [0 0 . . . 0]T

choose μ ∈ (0, 1]

choose α and γ as small positive numbers

choose the regularizer F (and related parameters):

If F =

⎧
⎪⎪⎨

⎪⎪⎩

‖w(k)‖1, then we have the ZA-NLMS algorithm [31]

Fr�1(w(k)), then we have the RZA-NLMS algorithm [31]

Fβ(w(k)) then we have the �0-NLMS algorithm [21]

For k ≥ 0 (i.e., for every iteration) do

e(k) = d(k)− xT(k)w(k)

Compute f(w(k)) corresponding to the selected F (see Table 2.1)

w(k + 1) = w(k) +
μe(k)

‖x(k)‖22 + γ
x(k) + μ

α

2

[
x(k)xT(k)

‖x(k)‖22 + γ
− I

]

f(w(k))

w(k + 1)=w(k) +
μe(k)

‖x(k)‖22 + γ
x(k)

︸ ︷︷ ︸
NLMS correction

+μ
α

2

[
x(k)xT(k)

‖x(k)‖22 + γ
− I

]

f(w(k))

︸ ︷︷ ︸
Regularization correction

, (2.29)

where, as explained in Subsection 2.3.2, μ can be understood both as a relax-

ation factor, since it actually relaxes the constraint in Equation (2.28), or as

a step size and should be chosen as μ ∈ (0, 1], and γ ∈ R+ is a small positive

number used to avoid numerical problems that occur when ‖x(k)‖22 → 0. Algo-

rithm 2.5 summarizes the sparsity-aware NLMS algorithms employing different

regularizations.

Following the same reasoning that motivated the qAP algorithms in Subsec-

tion 2.3.2, for the NLMS algorithm we can eliminate the matrix x(k)xT(k)
‖x(k)‖2

2+γ
in

order to reduce the number of arithmetic operations required by the recursion

and also to let the sparsity-promoting term f(w(k)) to be unconstrained, lead-

ing to the recursion of the so-called quasi-NLMS (qNLMS) algorithms given

by

w(k + 1)=w(k) +
μe(k)

‖x(k)‖22 + γ
x(k)

︸ ︷︷ ︸
NLMS correction

− μ
α

2
f(w(k)).

︸ ︷︷ ︸
Regularization correction

(2.30)

The qNLMS algorithms employing sparsity-promoting regularizations are sum-

marized in Algorithm 2.6.

Note: The �0-qNLMS algorithm was proposed in [25] under the name of �0-

NLMS algorithm, but this is not an accurate name since its update equation

for μ = 1 and γ = 0, see Equation (2.30), does not satisfy the constraint in

Equation (2.28). Moreover, from the numerical point of view, just the NLMS

correction term is normalized by the energy of x(k) (assuming γ is negligible

compared to ‖x(k)‖22), whereas the regularization correction is not normalized
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Algorithm 2.6 The sparsity-aware qNLMS algorithms [11, 21]

Initialization:

x(0) = w(0) = [0 0 . . . 0]T

choose μ ∈ (0, 1]

choose α and γ as small positive numbers

choose the regularizer F (and related parameters):

If F =

⎧
⎪⎪⎨

⎪⎪⎩

‖w(k)‖1, then we have the ZA-qNLMS algorithm

Fr�1(w(k)), then we have the RZA-qNLMS algorithm

Fβ(w(k)) then we have the �0-qNLMS algorithm [21, 25]

For k ≥ 0 (i.e., for every iteration) do

e(k) = d(k)− xT(k)w(k)

Compute f(w(k)) corresponding to the selected F (see Table 2.1)

w(k + 1) = w(k) +
μe(k)

‖x(k)‖22 + γ
x(k)− μ

α

2
f(w(k))

and, as a result, it might be difficult to set α, especially in situations where the

energy of x(k) may vary. Think of this as follows. There are two correction terms

in the recursion: (i) the NLMS correction, which aims to model the data, thus

reducing the squared error and (ii) the regularization correction, which encour-

ages sparse solutions. For the NLMS versions described in Algorithm 2.5, since

both correction terms are normalized by the energy of x(k), one needs to set

just a single parameter α to determine the balance between modeling the data

and finding sparse solutions. As already explained, modeling the data should

be “more important” than sparsifying the solution, which justifies the use of

low values of α. The point is, for the qNLMS versions given in Algorithm 2.6,

as only one of these correction terms is normalized by ‖x(k)‖22, the “degree

of importance” related to this correction term is time-varying, whereas the

“degree of importance” of the other term is constant and equal to α. For exam-

ple, if at a given iteration k, the energy ‖x(k)‖22 becomes very large, then the

NLMS correction may become very small (tending to 0), whereas the regular-

ization correction is unaltered. This situation would configure a case in which

we put more emphasis on finding sparse solutions than on modeling the data

and, as a consequence, it might generate local or global minimum points as

discussed in Subsection 2.2.5.9

2.3.4 Numerical Experiments

Here, we compare the different sparsity-promoting regularizers considering that

optimal coefficients have varying degrees of sparsity. The experiments consist

9 Observe that this normalization issue in the qNLMS algorithm also happens in the qAP
algorithm. We opted for explaining it here because the NLMS algorithm is easier to
understand since it is closely related to the LMS algorithm and also because of the issue
related to the name of the algorithm.
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of identifying an unknown system wo comprised of 16 coefficients given by the

following [21, 31]:

• In Experiment 1, we set its fourth tap equal to 1, whereas the others are

equal to 0, thus the optimal coefficients have a very high sparsity degree.

• In Experiment 2, the odd taps are set to 1, while the even taps are equal to

0, thus wo has a sparsity degree of 50%.

• In Experiment 3, all the 16 taps are equal to 1, that is, the sparsity degree

in wo is 0% (this kind of signal is also called dispersive).

As for the adaptive filter, the number of coefficients is also 16 and the follow-

ing algorithms are tested: the AP, the �0-AP, the �0-qAP, the ZA-AP, and the

RZA-AP. The parameters of these algorithms were set so that the algorithms

differ only by the regularization function. Thus, we set the step size μ = 0.9, the

regularization factor γ = 10−12, the data-reuse factor L = 4, Fβ as the GMF

with β = 5, and we use α = 5×10−3 and ε = 100, in accordance with the values

used in [31]. Moreover, the reference signal d(k) is assumed to be corrupted by

an additive white Gaussian measurement noise with variance σ2
n = 0.01.

Figure 2.5 depicts the MSE results for Experiments 1–3. One can observe

that all the algorithms exhibited similar convergence speeds, as they were

adjusted with the same values of μ, γ, L, and α. In Experiment 1, depicted in

Figure 2.5(a), all the sparsity-aware algorithms outperformed the AP algorithm

due to the high sparsity degree involved in this experiment. Moreover, the ones

Number of iterations, k
0 50 100 150 200

M
SE

 [
dB

]

−20

−15

−10

−5

0 AP

0-AP

0-qAP
ZA-AP
RZA-AP
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(b) Experiment 2
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(c) Experiment 3

Figure 2.5 MSE learning curves for some sparsity-aware AP (and qAP) algorithms
considering the optimal coefficients have different sparsity degrees: (a) Experiment 1
(very sparse); (b) Experiment 2 (moderately sparse); and (c) Experiment 3
(dispersive).
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that use the �0-norm approximation (i.e., the �0-AP and the �0-qAP algorithms)

achieved the best results. In Experiment 2, depicted in Figure 2.5(b), one can

notice that the �0-AP and the �0-qAP algorithms were still better than the

others, but the improvement over the AP algorithm was reduced since the un-

known system is not very sparse. One should observe that, in this case, the

algorithms employing the �1 norm and the r�1 did not perform better than the

AP algorithm. This indicates that these two regularizers require higher values

of sparsity degree in order to bring some advantage. Finally, in Experiment 3,

we tested these regularizers in a case where the unknown system does not have

any coefficient equal to 0. One can observe that the algorithms employing the

r�1 norm and the �0-norm approximation achieved the same MSE results as the

AP algorithm, that is, these regularizers were robust to the absence of sparsity

(in the sense that they do not introduce any harm if the vector to be identified

happens to be nonsparse/dispersive). This behavior is justified by the fact that

the entries of the gradient vector corresponding to these two regularizers con-

verge to 0 as |wi| grows, as can be verified in Table 2.1. The ZA-AP algorithm,

on the other hand, employs the �1 norm, which shrinks the large coefficients

leading to the worst MSE result, as depicted in Figure 2.5(c).

2.3.5 Further Readings

In this section, we applied the sparsity-promoting regularizers studied in Sec-

tion 2.2 to the following three classical algorithms: the LMS, the NLMS, and

the AP algorithms. We also provided some numerical experiments to illustrate

the effect of each regularizer as the sparsity degree of the optimal coefficients

vary. Clearly, our presentation focused on the regularizers, thus explaining how

they can be combined to allow the exploitation of sparsity by the algorithms

and also illustrating the benefits introduced by each of the regularizers. How-

ever, the reader must be aware that sparsity-promoting regularizations can be

applied to many other algorithms, including those not belonging to the adap-

tive filtering field. Here, we provide some notes to complement the content of

this section.

Still in the adaptive filtering context, sparsity-promoting regularizers have

been combined with the recursive least squares (RLS) algorithm [32] and also

with the set-membership (SM) framework. In [11], the SM versions of the �0-

AP and �0-qAP algorithms were proposed (under the name of SSM-AP and

QSSM-AP, respectively). These algorithms combine the advantages of the �0-

norm approximation with the data selection scheme used in the SM approach,

which confers robustness against uncertainties and noise [33–35]. Indeed, in the

comprehensive set of simulations provided in [11], which encompasses many

algorithms as well as sparse and compressible signals, these algorithms achieved

remarkable MSE and misalignment results. Also, notice that in the same way we

used the fact that the NLMS algorithm can be obtained from the AP algorithm
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by setting the data-reuse factor as L = 0, sparsity-promoting versions of the

binormalized LMS (BNLMS) algorithm can be derived by making L = 1.

Recently, the sparsity-promoting regularizers described in Section 2.2 have

been applied to the so-called feature adaptive filtering [1, 2] to exploit the hidden

sparsity in the optimal parameters. Although most works in this area employ

the �1 norm due to its simplicity, the �0-norm approximation has proven to be

more advantageous [36].

In the context of nonlinear adaptive filtering, sparsity-promoting regularizers

have been used in Volterra filters [37]. In fact, the Volterra series provides an

excellent basis to apply these regularizers, as the number of coefficients increase

very fast with the filter and memory orders of the Volterra series [38, 39].

Indeed, since in practical applications the nonlinear components are often much

fewer than the number of coefficients in a truncated Volterra series, the optimal

coefficients tend to be very sparse [37]. In [37], the results using the �0-norm

approximation were superior to the results employing the �1 norm.

In the context of regression as well as in neural networks, it is very common

to employ some of these regularizers [7, 10, 18, 40, 41]. Recently, they have

also been applied in the context of distributed learning; see [42] and references

therein.

In addition to the sparsity-promoting regularizers presented in this chapter,

there also exist the so-called mixed norms that have been used for block-sparse

systems, that is, systems in which the nonzero coefficients appear in a small

number of clusters [43, 44]. In this approach, the coefficients are separated in

several clusters, but determining an adequate size for these clusters can be

challenging. Besides, to the best of our knowledge, this approach has not been

tested using real data and compressible signals yet.

2.4 Proportionate-Type Algorithms

In the proportionate-type algorithms, the update term applied to each adaptive

filter coefficient wi(k) is proportional to its own magnitude |wi(k)|, meaning that

large magnitude coefficients update rapidly (through large steps), whereas small

magnitude coefficients update slowly (with small steps). These algorithms are

quite interesting in applications involving the identification of systems whose

coefficients have a wide range of absolute values, and one has prior information

about the value of their small magnitude coefficients, as is the case of a sparse

system identification in which we know beforehand that the small coefficients

are equal to 0. Such prior information is of paramount importance in these algo-

rithms as they update the small magnitude coefficients very slowly and, there-

fore, the adaptive filter coefficients must be initialized properly (at least, the

coefficients wi whose optimal values are small in magnitude), as explained in [9].

The proportionate-type algorithms are extensions of the classical algorithms,

like the NLMS and AP algorithms, in which this proportionate-update principle
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is introduced through the so-called proportionate matrix G(k). Matrix G(k) is

diagonal with nonzero entries given by

gi(k) = G(|wi(k)|) , for i ∈ {0, 1, . . . , N} (2.31)

that is, gi(k) is a function of |wi(k)|. Essentially, the different proportionate-

type algorithms are obtained by making different choices of gi(k), or equiva-

lently, of this function G.
In this section, we cover some of the most important proportionate-type algo-

rithms. We begin with the simpler ones, which are based on the classical NLMS

algorithm, and then we move to more general algorithms based on the SM and

affine-projection (AP) ideas. We start with the first algorithm of its kind, the

proportionate NLMS (PNLMS) algorithm [45]. Then, we cover the improved

PNLMS (IPNLMS) algorithm, the μ-law PNLMS (MPNLMS) algorithm, and

the improved MPNLMS (IMPNLMS) algorithm. One should notice that these

proportionate-type algorithms have become “less proportional” along the years

in order to increase the algorithm robustness, as the results reported for the

PNLMS algorithm pointed out several cases in which its performance suffers a

significant degradation [9, 46, 47]. Indeed, while in the PNLMS algorithm, we

have G in Equation (2.31) equal to the identity function (in general), in the

other algorithms mentioned above, a function G that grows less quickly with

|wi(k)| is used. We also present the set-membership PNLMS (SM-PNLMS)

algorithm.

2.4.1 Proportionate-Type Algorithms Based on the NLMS Recursion

In this subsection, we provide a unified treatment of the proportionate-type

algorithms based on theNLMS recursion, herein collectively called proportionate-

type NLMS (Pt-NLMS) algorithms, which include the PNLMS, the IPNLMS,

the MPNLNS, and the IMPNLMS, among many other algorithms. Specifically,

we present their general update equation, the related optimization problem,

geometric interpretations, the role of the proportionate matrix G(k), and we

address the choice of the common parameters. Besides, the material presented

in this subsection can be adapted to the SM-PNLMS and SM-PAP algorithms

easily.

The update equation (recursion) of the proportionate-type algorithms based

on the NLMS recursion is given by

w(k + 1) = w(k) + μ
e(k)G(k)x(k)

xT(k)G(k)x(k) + δ
, (2.32)

where w(k),x(k) ∈ R
N+1 are the adaptive filter coefficient (weight) vector

and the input vector applied to the adaptive filter at iteration k, respectively.

Denoting the desired or reference signal (also known as target) by d(k) ∈ R,

the error signal at the k-th iteration is defined as

e(k) = d(k)−wT(k)x(k). (2.33)
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The regularization parameter δ ∈ R+ is a small nonnegative number used

to avoid numerical issues when xT(k)G(k)x(k) tends to 0. The step size or

learning rate parameter is denoted by μ ∈ R+. Just like in the NLMS algo-

rithm, the step size should be chosen in the range 0 < μ ≤ 1, and it rep-

resents a trade-off between convergence speed and steady-state error, that is,

higher (lower) values of μ lead to faster (slower) convergence, but higher (lower)

levels of steady-state MSE. Finally, G(k) is the proportionate matrix, which

is a diagonal matrix whose elements on the main diagonal are denoted by

gi(k), i ∈ {0, 1, . . . , N}. As previously explained, the only difference among

the proportionate-type algorithms based on the NLMS recursion lies on the

definition of this matrix, that is, on the relation between gi(k) and |wi(k)|
in Equation (2.31), a topic addressed in the subsections to come.

First, observe that the recursion given in Equation (2.32) resembles that of

the NLMS algorithm. Indeed, if we choose G(k) = I (the identity matrix),

then the two recursions coincide. However, unlike the NLMS algorithm, whose

update direction is given by x(k), the update direction in Equation (2.32)

is determined by vector x′(k) = G(k)x(k). If G(k) is chosen properly (i.e.,

according to the proportional-update principle), then the entries of x′(k) are

amplified or attenuated, in relation to the corresponding entries of x(k), by a

function of the magnitude of its corresponding entry |wi(k)|. The practical effect
is that the adaptive filter coefficients wi(k) with larger (smaller) magnitudes

are updated with larger (shorter) steps. The matrix G(k) appearing in the

denominator is responsible for keeping the algorithm normalized.

Second, the recursion given in Equation (2.32) is related to the solution of

the following constrained optimization process:

min ‖w(k + 1)−w(k)‖2G−1(k) (2.34)

subject to d(k)− xT(k)w(k + 1) = 0 ,

where ‖w(k+1)−w(k)‖2G−1(k) = [w(k+1)−w(k)]TG−1(k)[w(k+1)−w(k)] is

a norm induced by the matrix G−1(k). This is a minimum disturbance problem

with linear constraint. The constraint means w(k+1) must yield an a posteriori

error equal to 0, that is, it must fit the data (x(k), d(k)) exactly. The cost

function forces w(k+1) to be close to w(k) in some sense, but not in the usual

Euclidean sense, in order to maintain a good fit of the prior data (x(i), d(i)),

with i < k.

To solve the optimization problem given in Equation (2.34), we apply the

method of Lagrange multipliers and form the Lagrangian function

L (w(k + 1), λ) = ‖w(k + 1)−w(k)‖2G−1(k) + λ
[
d(k)− xT(k)w(k + 1)

]
,

(2.35)

where λ ∈ R is the Lagrange multiplier. Then, we differentiate L with respect

to w(k + 1) and λ and equate the results to 0 to obtain
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∂L
∂w(k + 1)

= 0 ∴ w(k + 1) = w(k) +
λ

2
G(k)x(k), (2.36)

∂L
∂λ

= 0 ∴ xT(k)w(k + 1) = d(k), (2.37)

in which we have assumed that G(k) exists (i.e., it is nonsingular). If we pre-

multiply Equation (2.36) by xT(k), use Equation (2.37), and the definition of

the error signal e(k), then we get

λ

2
=

e(k)

xT(k)G(k)x(k)
. (2.38)

Substituting this relation in Equation (2.36), we obtain the following recursion:

w(k + 1) = w(k) +
e(k)G(k)x(k)

xT(k)G(k)x(k)
. (2.39)

Finally, to obtain Equation (2.32), we just need to include two parameters

in Equation (2.39): the regularization factor δ in the denominator and the step

size parameter μ, also known as relaxation factor since, from the optimization

point of view, it relaxes the problem constraint by not forcing the a posteriori

error to be equal to 0 (which happens only when μ = 1).

In this subsection, we addressed some topics common to every proportionate-

type algorithm based on the NLMS recursion. In the following subsections, we

focus on the main ingredient of the proportionate-type algorithms: the propor-

tionate matrix G(k).

2.4.2 The PNLMS Algorithm

The PNLMS algorithm was proposed by Duttweiler [45] in 2000, and it inspired

the development of many other algorithms following the same proportionate-

update principle, but using slightly different proportionate matrices. In [45],

the PNLMS algorithm is shown to converge faster than the NLMS algorithm

when estimating/identifying impulse responses corresponding to echo paths.

Such impulse responses are usually very long (the higher the sampling rate, the

longer they are), but most of their energy is concentrated in a few samples,

meaning that echo paths are examples of sparse systems found in practice [48].

In the PNLMS recursion given in Equation (2.32), each entry on the main

diagonal of the proportionate matrix G(k) = Diag{[g0(k) g1(k) · · · gN (k)]} is

given by

gi(k) =
γi(k)

N∑

j=0

|γj(k)|
, (2.40)

γi(k) = max

⎧
⎪⎨

⎪⎩
|wi(k)|
︸ ︷︷ ︸
1st term

, ρmax {δρ, |w0(k)|, · · · , |wN (k)|}
︸ ︷︷ ︸

2nd term

⎫
⎪⎬

⎪⎭
, (2.41)

https://doi.org/10.1017/9781108896139.003 Published online by Cambridge University Press

https://doi.org/10.1017/9781108896139.003


44 Adaptive Filtering for Sparse Models

Algorithm 2.7 The PNLMS algorithm

Initialization:

x(0) = w(0) = [0 0 . . . 0]T

choose μ in the range 0 < μ ≤ 1

choose ρ in the range 0 < ρ� 1

choose δ and δp as small positive constants

For k ≥ 0 (i.e., for every iteration) do

e(k) = d(k)−wT(k)x(k)

γi(k) = max {|wi(k)| , ρ max {δp, |w0(k)|, ..., |wN(k)|}}, for all i
gi(k) =

γi(k)
N∑

j=0

γj(k)

, for all i

G(k) = Diag{[g0(k) g1(k) . . . gN (k)]}
w(k + 1) = w(k) + μ

e(k)G(k)x(k)

xT(k)G(k)x(k) + δ

where max{·} returns the maximum among the elements of a given set, δρ ∈ R+

is used to prevent w(k) from stalling during the initialization stage, in case the

coefficients are initialized as w(0) = 0 and its usual value is δρ = 0.01, and

ρ ∈ R+ is used to prioritize the first term in Equation (2.41) and its typical

value is ρ = 0.01. However, we should emphasize that the proper choices of δρ
and ρ depend on prior knowledge about the application (more precisely, about

the magnitudes of the optimal coefficients). The complete description of the

PNLMS algorithm is given in Algorithm 2.7.

Remarks:

1 The first term in Equation (2.41) conveys the proportional-update idea, but

the second term is necessary to address the cases in which wi(k) = 0. That is,

if we were to use only the first term, then the update process of a given coeffi-

cient wi(k) would stall whenever wi(k) = 0, thus hindering the initialization

and also the tracking of time-varying systems.

2 To better understand the proportionate-update principle, let us consider just

the first term in Equation (2.41), which leads to

gi(k) =
|wi(k)|

N∑

j=0

|wj(k)|
=

|wi(k)|
‖w(k)‖1

, ∀i, (2.42)

where ‖ · ‖1 denotes the �1 norm. In addition, observe that the denomi-

nator of Equation (2.42) does not change with i and, therefore, it van-

ishes when Equation (2.42) is substituted in Equation (2.39) due to the

presence of matrix G(k) on both the numerator and denominator of this

equation. Consequently, we can think of Equation (2.42) as gi(k) ∝ |wi(k)|
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(proportional relation), which means that the update step applied to each

coefficient wi(k) is proportional to its own magnitude. Moreover, since

N∑

i=0

gi(k) = 1, (2.43)

the product μgi(k) can be interpreted as an “equivalent step size” for the i-th

coefficient, that is, the fraction of μ corresponding to the update of wi(k).

This interpretation allows us to conclude that in the proportionate-update

framework, the step size μ is unevenly distributed across the coefficients,

privileging those with higher magnitudes, but impairing the lower magnitude

ones.

3 If the filter coefficients are initialized as w(0) = 0, then γi(0) = ρδρ for all i,

meaning that

gi(k) =
1

N + 1
, ∀i, (2.44)

which means that the step size is evenly distributed across the coefficients,

just like in the NLMS algorithm.

4 The PNLMS algorithm works well when the impulse response of the system

to be identified is very sparse, resembling the Kronecker’s delta function.

On the other hand, as the sparsity degree decreases, the performance of the

PNLMS algorithm deteriorates, in comparison with the standard algorithms.

2.4.3 The IPNLMS Algorithm

The IPNLMS algorithm proposed in 2002 [46] is more robust to lower sparsity

degrees than the PNLMS algorithm, providing good results even when applied

to dispersive systems. The IPNLMS algorithm benefits from the combination

of the proportional update term with the standard update term of the NLMS

algorithm, which works better than the PNLMS algorithm in the estimation of

dispersive systems.

In the IPNLMS recursion given in Equation (2.32), each entry on the main

diagonal of the proportionate matrix G(k) = Diag{[g0(k) g1(k) · · · gN (k)]} is

given by

gi(k) =
1− α

2(N + 1)
︸ ︷︷ ︸
NLMS term

+
(1 + α)|wi(k)|
2‖w(k)‖1 + δ
︸ ︷︷ ︸

PNLMS term

, (2.45)

where δ ∈ R+ is also a regularization factor used to avoid numerical problems

when ‖w(k)‖1 tends to 0 and α ∈ R is an adjustable parameter that represents

a tradeoff between the NLMS and PNLMS terms in Equation (2.45). In fact,

α should be chosen in the range −1 ≤ α < 1. If α = −1, then the IPNLMS is

equivalent to the NLMS algorithm, whereas for α ≈ 1, its update resembles that

of the PNLMS algorithm. Typically, this parameter is chosen close to α = −0.5
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Algorithm 2.8 The IPNLMS algorithm

Initialization:

x(0) = w(0) = [0 0 . . . 0]T

choose μ in the range 0 < μ ≤ 1

choose δ as a small positive constant

choose α in the range −1 ≤ α < 1

For k ≥ 0 (i.e., for every iteration) do

e(k) = d(k)−wT(k)x(k)

gi(k) =
1− α

2(N + 1)
+

(1 + α)|wi(k)|
2‖w(k)‖1 + δ

G(k) = Diag{[g0(k) g1(k) . . . gN (k)]}
w(k + 1) = w(k) + μ

e(k)G(k)x(k)

xT(k)G(k)x(k) + δ

so that the IPNLMS algorithm behaves more like an NLMS than a PNLMS

algorithm. It is interesting to observe that the NLMS term in Equation (2.45)

already prevents the IPNLMS coefficients from stalling, which is another reason

for not allowing α = 1. The IPNLMS algorithm is given in Algorithm 2.8.

2.4.4 The MPNLMS Algorithm

When applied to the identification of sparse impulse responses, the PNLMS

algorithm usually provides a very fast convergence speed in the early itera-

tions, but later it slows down. The MPNLMS algorithm proposed in 2005 [47]

addresses this issue. The key idea of the MPNLMS algorithm is to employ

step sizes proportional to a function of the magnitude of the coefficients; such

function must grow rapidly for low magnitude coefficients, increasing the reso-

lution in this range, but must grow slowly for high magnitude coefficients, thus

preventing numerical issues [47].

In the MPNLMS recursion given in Equation (2.32), each entry on the main

diagonal of the proportionate matrix G(k) = Diag{[g0(k) g1(k) · · · gN (k)]} is

given by

gi(k) =
γ̂i(k)

N∑

j=0

|γ̂j(k)|
, (2.46)

γ̂i(k) = max {F (|wi(k)|), ρmax {δρ, F (|w0(k))|, · · · , F (|wN (k)|)}} , (2.47)

F (|wi(k)|) = ln (1 + μF |wi(k)|) , (2.48)

where δρ ∈ R+ is used to prevent w(k) from stalling during the initializa-

tion stage in case the coefficients are set as w(0) = 0 and its typical value is

δρ = 0.01, ρ ∈ R+ is used to prioritize the term F (|wi(k)|) in Equation (2.47)

and its typical value is ρ = 0.01, and μF ∈ R+ is a large positive number
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Algorithm 2.9 The MPNLMS algorithm

Initialization:

x(0) = w(0) = [0 0 . . . 0]T

choose μ in the range 0 < μ ≤ 1

choose ρ in the range 0 < ρ� 1

choose δ and δp as small positive constants

choose μF as a large positive number

For k ≥ 0 (i.e., for every iteration) do

e(k) = d(k)−wT(k)x(k)

F (|wi(k)|) = ln (1 + μF |wi(k)|), for all i
γ̂i(k) = max {F (|wi(k)|), ρmax {δρ, F (|w0(k))|, · · · , F (|wN (k)|)}}, ∀i
gi(k) =

γ̂i(k)
N∑

j=0

|γ̂j(k)|
, for all i

G(k) = Diag{[g0(k) g1(k) . . . gN (k)]}
w(k + 1) = w(k) + μ

e(k)G(k)x(k)

xT(k)G(k)x(k) + δ

related to the identification accuracy requirement, which is typically chosen

as μF = 1000. Observe that the main difference between the MPNLMS and

PNLMS algorithms is the use of a natural logarithmic function by the former

one to achieve the benefits mentioned in the previous paragraph. The complete

description of the MPNLMS algorithm is given in Algorithm 2.9.

Remarks:

1 As in the PNLMS algorithm, proper selection of the parameters ρ, δρ, and

μF require some prior knowledge about the application/impulse response to

be estimated.

2 If the filter coefficients are initialized as w(0) = 0, then γ̂i(0) = ρδρ for all i,

meaning that

gi(k) =
1

N + 1
, ∀i,

and the MPNLMS algorithm will act just like an NLMS algorithm.

3 In normal operation, γ̂i(k) should be equal to the first term in Equation (2.47)

leading to

gi(k) =
F (|wi(k)|)

N∑

j=0

F (|wj(k)|)
,

that is, in the MPNLMS algorithm, the step sizes applied to each coefficient

are proportional to F (|wi(k)|), and not |wi(k)| as in the PNLMS algorithm.
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2.4.5 The IMPNLMS Algorithm

Just like the PNLMS, the MPNLMS algorithm also has poor performance when

identifying systems that are not very sparse. A natural idea to improve this

algorithm is to follow the same approach used in the IPNLMS algorithm, that

is, to use “equivalent step sizes” formed by the combination of two terms:

one corresponding to the NLMS and the other corresponding to the MPNLMS

algorithm. In addition to adapting the IPNLMS idea, the IMPNLMS algorithm

proposed in 2008 [49] also employs a measure of the sparsity degree in the

coefficient vector w(k) in order to select the parameter α(k) automatically (the

parameter that determines the weight given to each of the two terms above).

In the IMPNLMS recursion given in Equation (2.32), each entry on the main

diagonal of the proportionate matrix G(k) = Diag{[g0(k) g1(k) · · · gN (k)]} is

given by

gi(k) =
1− α(k)

2(N + 1)
︸ ︷︷ ︸
NLMS term

+
(1 + α(k))F (|wi(k)|)
2‖F (|w(k)|)‖1 + δ
︸ ︷︷ ︸

MPNLMS term

, (2.49)

where

F (|wi(k)|) = ln (1 + μF |wi(k)|) , (2.50)

α(k) = 2ξ(k)− 1, (2.51)

ξ(k) = (1− λ)ξ(k − 1) + λξw(k), (2.52)

ξw(k) =
N + 1

N + 1−
√
N + 1

(

1− ‖w(k)‖1√
N + 1‖w(k)‖2

)

, (2.53)

F (|w(k)|) = [F (|w0(k)|) F (|w1(k)|) . . . F (|wN (k)|)]T ∈ R
N+1
+ , δ ∈ R+ is a

regularization factor, μF ∈ R+ is a large positive number related to the iden-

tification accuracy requirement and is typically chosen as μF = 1000, and

λ ∈ R+ should be chosen as 0 < λ� 1. Low values of λ privilege the past data,

whereas high values of λ prioritize the instantaneous estimate of the sparsity

degree given by ξw(k). Observe that if ξ(k) ≈ 1, corresponding to a vector

w(k) with high sparsity degree, then α(k) ≈ 1, meaning that the NLMS term

in gi(k) vanishes and, consequently, the algorithm acts like the MPNLMS algo-

rithm. On the contrary, if ξ(k) ≈ 0, corresponding to a dispersive vector w(k),

then α(k) ≈ −1 and the MPNLMS term vanishes.

The complete description of the IMPNLMS algorithm is given in Algo-

rithm 2.10.

2.4.6 The SM-PNLMS Algorithm

The SM-PNLMS algorithm proposed in [50] combines the proportionate-update

principle with the SM filtering concept, which allows the adaptive filter to

update its coefficients only when the input data brings enough innovation

[30, 60].
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Algorithm 2.10 The IMPNLMS algorithm

Initialization:

x(0) = w(0) = [0 0 . . . 0]T

ξ(0) = 0

choose μ in the range 0 < μ ≤ 1

choose δ as a small positive number

choose μF as a large positive number

choose λ in the range 0 < λ� 1

For k ≥ 0 (i.e., for every iteration) do

e(k) = d(k)−wT(k)x(k)

ξw(k) =
N + 1

N + 1−
√
N + 1

(

1− ‖w(k)‖1√
N + 1‖w(k)‖2

)

ξ(k) = (1− λ)ξ(k − 1) + λξw(k)

α(k) = 2ξ(k)− 1

F (|wi(k)|) = ln (1 + μF |wi(k)|), for all i
gi(k) =

1− α(k)

2(N + 1)
+

(1 + α(k))F (|wi(k)|)
2‖F (|w(k)|)‖1 + δ

, for all i

G(k) = Diag{[g0(k) g1(k) . . . gN (k)]}
w(k + 1) = w(k) + μ

e(k)G(k)x(k)

xT(k)G(k)x(k) + δ

The update equation of the SM-PNLMS algorithm is slightly different from

that in Equation (2.32), as the former uses a time-varying step-size parameter

μ(k), and can be written as

w(k + 1) = w(k) + μ(k)
e(k)G(k)x(k)

xT(k)G(k)x(k) + δ
, (2.54)

where G(k) = Diag{[g0(k) · · · gN (k)]},

gi(k) =
1− κμ(k)

N + 1
+
κμ(k)|wi(k)|
‖w(k)‖1 + δ

, (2.55)

μ(k) =

{
1− γ

|e(k)| if |e(k)| > γ

0 otherwise.
(2.56)

Thus, the update equation can be rewritten in a more direct form as follows:

w(k + 1) =

⎧
⎨

⎩

w(k) +

(

1− γ

|e(k)|

)
e(k)G(k)x(k)

xT(k)G(k)x(k) + δ
if |e(k)| > γ,

w(k) otherwise.

(2.57)

where δ ∈ R+ is a regularization factor used to prevent divisions by 0, γ ∈ R+

is the prescribed threshold that defines how much residual error is acceptable,

and κ ∈ [0, 1) represents a compromise between the NLMS update (κ→ 0) and

the proportionate update (κ → 1) and is usually chosen as κ = 0.5. Observe
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Algorithm 2.11 The SM-PNLMS algorithm

Initialization:

x(0) = w(0) = [0 0 . . . 0]T

choose δ as a small positive constant

choose κ in the range 0 ≤ κ < 1

For k ≥ 0 (i.e., for every iteration) do

e(k) = d(k)−wT(k)x(k)

If |e(k)| > γ

μ(k) = 1− γ
|e(k)|

gi(k) =
1− κμ(k)

N + 1
+
κμ(k)|wi(k)|
‖w(k)‖1 + δ

, for all i

G(k) = Diag{[g0(k) g1(k) . . . gN (k)]}
w(k + 1) = w(k) + μ(k)

e(k)G(k)x(k)

xT(k)G(k)x(k) + δ
Else

w(k + 1) = w(k)

End if

that the choice of γ depends on some previous knowledge about the problem

uncertainties. For applications in which the desired signal is corrupted by an

additive noise n(k) with variance denoted by σ2
n, a common choice is to select

γ =
√

5σ2
n [51].

Notice that the elements gi(k) in the SM-PNLMS algorithm are very similar

to the ones used in the IPNLMS algorithm. Consequently, the SM-PNLMS

algorithm’s performance is usually similar to that of the IPNLMS algorithm,

but the former algorithm has two advantages: (i) it does not update at every

iteration, thus saving computational resources and (ii) it uses a variable step-

size μ(k) which is automatically chosen. The full description of the SM-PNLMS

algorithm is given in Algorithm 2.11.

2.4.7 Numerical Experiments

Here, the PNLMS, IPNLMS, and MPNLMS algorithms are used to identify an

unknown system whose coefficients are denoted by wo. We also consider two

other algorithms: the NLMS, representing the baseline for our comparisons,

and the �0-NLMS, representing an algorithm that uses a sparsity-promoting

regularizer.

The specific parameters of these Pt-NLMS algorithms were set according to

their typical values, described in the subsections where these algorithms were

explained. As for the �0-NLMS algorithm, we used the Laplacian function with

β = 5. For all algorithms, we set δ = 10−12, α = 2×10−3, and the step size μ is

informed later. The input signal is a zero-mean white Gaussian noise (WGN)

with unitary variance. The measurement noise is also zero-mean WGN with

variance σ2
n = 10−2 and is uncorrelated with the input signal. We assume the
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Figure 2.6 MSE learning curve in a nonstationary scenario.

adaptive filter and the unknown systems have the same number of coefficients.

The MSE learning curves for each algorithm are generated by averaging the

outcomes of 1000 independent trials.

In Figure 2.6, we consider a nonstationary scenario in which the optimal

coefficients are given by w
(1)
o during the first 1000 iterations, and then they

change to w
(2)
o , defined as

w
(1)
o,i=

{
0, for 0≤ i≤93,

1, for 94≤ i≤99,
w

(2)
o,i=

{
1, for 0≤ i≤5,

0, for 6≤ i≤99.
(2.58)

Both w
(1)
o and w

(2)
o have 6 nonzero coefficients out of 100. The algorithms were

initialized with w(0) = 0, and the step sizes of the NLMS, PNLMS, IPNLMS,

MPNLNS and �0-NLMS algorithms were set as 0.4, 0.15, 0.4, 0.6, and 0.99,

respectively, so that they could achieve the same steady-state MSE level as fast

as possible. In this figure, both the MPNLMS and �0-NLMS algorithms were

the fastest ones to reach a specific MSE level; actually, the �0-NLMS algorithm

was a bit faster in the tracking of w
(2)
o . The PNLMS algorithm started very fast

but then its convergence speed slowed down at a given iteration; this behavior

is typical since the PNLMS algorithm accelerates the convergence of the high-

magnitude coefficients in detriment of the low-magnitude ones. Finally, the

results of the IPNLMS algorithm correspond to a balance between the PNLMS

and NLMS algorithms.

2.4.8 Further Readings

The literature about proportionate-type algorithms is vast. For different ver-

sions of Pt-NLMS algorithms, one may refer to [52–55]. Analogously, for several

versions of proportionate AP algorithms, one may refer to [56–58]. Recently,
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an approach called coefficient vector reusing has received some attention [59].

In the same way that the AP algorithm generalizes the NLMS algorithm by

reusing previous input vectors, the SM-PAP algorithm proposed in [60] gener-

alizes the SM-PNLMS algorithm.

2.5 Conclusion

This chapter presented many adaptive filtering algorithms incorporating tools

to exploit the sparsity inherent to some models in real applications. The chap-

ter started by covering in some detail the sparsity-promoting regularizations

frequently used to exploit sparsity. Combined with the classical adaptive fil-

tering algorithms, these regularizations form a set of solutions giving rise to

several sparsity-aware online algorithms. Another class of algorithms that can

exploit sparsity is the proportionate-type adaptive filtering algorithms, in which

coefficient updates are proportional, to a certain extent (depending on the

algorithm), to their own magnitudes. When comparing these two classes of algo-

rithms, one can observe how different their principles are. While the

algorithms employing sparsity-promoting regularizations push some coefficients

to 0 in order to encourage sparse solutions (in the case of the �0-norm

approximation, for example, only the low magnitude coefficients suffer from

this zero-attraction effect, whereas the relevant coefficients remain unaltered),

the proportionate-type algorithms act by realizing an uneven distribution of

the step size μ among the coefficients, which accelerates the convergence of

high magnitude coefficients, but slows down the convergence of low magnitude

coefficients. That is, the algorithms employing sparsity-promoting regulariza-

tions focus on the low magnitude coefficients, whereas the proportionate-type

algorithms focus on the high magnitude coefficients.

From our experience with the algorithms described in this chapter, we can

state that:

1 Considering the algorithms employing sparsity-promoting regularizers, the

�0-norm approximation has always yielded the best results in our tests, and

it is only slightly more complex than the �1 norm.

2 As for the algorithms following the proportional-update principle, the ones

whose recursions are “more proportional” to the magnitude of the coeffi-

cients usually work very well in highly sparse scenarios, but their performance

degrade severely as the sparsity degree decreases. In our tests, the MPNLMS

and SM-PNLMS algorithms are usually more robust to different simulation

setups than the other Pt-NLMS algorithms.

3 Another advantage of algorithms employing the �0-norm approximation is

that they always capitalize on sparse vectors, even when the sparsity degree
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is low (confer the MSE analysis of the �0-AP algorithm in [28]). The same

behavior is not observed in other regularizers nor in the proportionate-type

algorithms. Besides, parameter β provides an easy mechanism to adjust the

�0-norm approximation to deal with compressible vectors.

Finally, we should say that the online learning algorithms that exploit sparse

models presented in this chapter are far from representing the entire set of solu-

tions. Some examples of alternative approaches and applications can be found

in [61–66]. Also, in [67], an algorithm combining both the sparsity-promoting

regularization and the proportional-update principle has shown some interest-

ing results.

Problems

2.1 For under-determined problems of the type Ax = b, it is a common

practice to include some constraint on x in order to find a single solution.

Considering the data:

A =

⎡

⎣
1 2 0 2

1 2 2 0

1 3 0 0

⎤

⎦ and b =

⎡

⎣
1

1

2

⎤

⎦

(a) Compute the minimum �2 (Euclidean) norm solution x̂2 = A†b, where
A† = AT

(
AAT

)−1
is known as pseudo-inverse (or right inverse of A).

(b) Compute the minimum �1-norm solution x̂1.

(c) Compute the minimum �0-norm (sparsest) solution x̂0. Is there a closed-

form solution? Is this solution unique?

Hint: Since x ∈ R
4 lives in a low-dimensional space, you can write a program

to test all possible combinations of the columns of A. This is called brute-force

solution or exhaustive search. Observe that for A ∈ R
m×n, this procedure leads

to
n∑

p=1

(
n
p

)
possibilities that need to be tested. Since large values of n are fre-

quently used in practical applications, the exhaustive search solution is not

feasible.

2.2 Prove that the r�1 norm, defined in Equation (2.5), converges to the �0
norm as ε→ ∞ and converges to the �1 norm as ε→ 0.

2.3 For μ = 1 and γ = 0, show that the recursion of the sparsity-aware AP

algorithms, given in Equation (2.26), leads to a w(k+1) that satisfies the con-

straint in Equation (2.20). Also, show that the corresponding qAP algorithms,

whose general recursion is given in Equation (2.27), do not satisfy the con-

straint in Equation (2.20).
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2.4 The PAP algorithm is characterized by the recursion

w(k + 1) = w(k) + μG(k)X(k)S(k)e(k),

where S(k) =
(
XT(k)G(k)X(k) + δI

)−1
. Show that this PAP recursion with

μ = 1 and δ = 0 is obtained as the solution of the following optimization

problem:

min ‖w(k + 1)−w(k)‖2G−1(k)

subject to d(k)−XT(k)w(k + 1) = 0 .

2.5 Consider the problem of identifying a highly sparse unknown system/

vector wo comprised of 100 coefficients. Assume that the input signal is a zero-

mean WGN with unitary variance, the measurement noise is also a zero-mean

WGN with variance 0.01, and these signals are uncorrelated with each other.

Also, the adaptive filter is comprised of 100 coefficients initialized as w(0) = 0.

Plot and compare the MSE learning curves for the NLMS, PNLMS, IPNLMS,

MPNLMS, IMPNLMS, and �0-NLMS algorithms considering that:

(a) Only the first coefficient of wo is non-null and equal to 1.

(b) Only the 50th coefficient of wo is non-null and equal to 1.

(c) Only the last coefficient of wo is non-null and equal to 1.

Observe that the sparsity degree is precisely the same in all these cases. So,

why the MSE results change in each of them?

Hint: In order to compare the algorithms in a fair manner, adjust their param-

eters so that they have the same convergence/learning rate and compare the

steady-state MSE level they achieve. Do not forget to report the parameters

used in each algorithm!

2.6 Repeat the item (a) of Problem 2.5, but for different initialization of the

adaptive filter coefficients: w(0) = c × 1, where 1 is the vector of ones and

c ∈ {0, 0.1, 0.5, 2}. Explain why some of these algorithms suffer a significant

performance degradation as c increases.

2.7 Repeat the Problem 2.5, but considering that wo is a compressible vec-

tor. To allow some control over the “low magnitude” coefficients, take the

vectors wo given in Problem 2.5 and replace their null coefficients with p ∈
{0.001, 0.005, 0.01, 0.02}. Verify which algorithms are mostly impaired by the

increase of p.
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2.8 Repeat the Problem 2.5, but considering that wo is a compressible vec-

tor. To do so, the entries of wo that are equal to 0 must be replaced by a

perturbation modeled by a uniform distribution over the interval [−p, p], with
p ∈ {0.001, 0.005, 0.01, 0.05}. Verify which algorithms are mostly impaired by

the increase of p.

2.9 Repeat the Problem 2.5, but varying the degree of sparsity in wo by

making:

(a) Only the first coefficient of wo is non-null and equal to 1.

(b) The first 10 coefficients of wo are non-null and equal to 1.

(c) The first half of the coefficients of wo are non-null and equal to 1.

(d) All the 100 coefficients of wo are non-null and equal to 1.

Verify which algorithms are mostly impaired by the reduction of the sparsity

degree.
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