SIMULTANEOUS TRIANGULARIZATION OF ALGEBRAS OF POLYNOMIALLY COMPACT OPERATORS

M. RADJABALIPOUR

Abstract

If A is a norm closed algebra of compact operators on a Hilbert space and if its Jacobson radical $J(A)$ consists of all quasinilpotent operators in A then $A / J(A)$ is commutative. The result is not valid for a general algebra of polynomially compact operators.

Hadwin [2] shows that an algebra A of algebraic operators on a vector space X is triangularizable if and only if $A / J(A)$ is commutative, and this in turn is true if and only if $J(A)=\{T \in A: T$ is quasinilpotent $\}$. Here the Jacobson radical $J(A)$ is defined as the set of all $T \in A$ such that for every $S \in A$ the operator $1+S T$ is invertible in any unital algebra containing A. In case A is an algebra of polynomially compact operators on a Hilbert space H and triangularizability is defined in terms of closed subspaces of H (see below), he shows that A is triangularizable if $A / J(A)$ is commutative [2, Theorem 3.4]. Hadwin leaves the following questions open.

Question 1. If A is a norm closed algebra of compact operators on H and $J(A)$ is the set of all quasinilpotent operators in A, then must $A / J(A)$ be commutative? What if the elements of A are all trace class operators?

Question 2. Suppose that A is a triangularizable norm closed algebra of polynomially compact operators. Must $A / J(A)$ be commutative?

In the present paper we answer Question 1 in the affirmative, and Question 2 in negative.

Recall that a maximal chain of subspaces of H (resp. of invariant subspaces of a collection $A \subset B(H)$) is any chain C of subspaces of H (resp. of invariant subspaces of A) which is not a proper subchain of another chain of subspaces of H (resp. of invariant subspaces of A). (Throughout the paper H denotes a general Hilbert space and $B(H)$ is the algebra of all bounded linear operators on H; also, by a subspace of H we mean a closed subspace.) A collection $A \subset B(H)$ is called triangularizable if it has a maximal chain of invariant subspaces which is also a maximal chain of subspaces of H.

An operator $T \in B(H)$ is called polynomially compact if $p(T)$ is compact for some polynomial p. A quasinilpotent operator T is one for which $\sigma(T)=\{0\}$. The following lemmas which are partially needed for the proof of the main result, will demonstrate the

[^0]extent to which the algebraic results of [2] can be extended. They also give a different proof of Theorem 3.4 of [2] mentioned above.

Lemma 1. Let A be any unital algebra over the field of complex numbers C. Let K be a Banach space and assume $\phi: A \rightarrow B(K)$ is an algebra homomorphism such that $\phi\left(T^{k}\right)=0$ for all $T \in J(A)$, where k is a fixed positive integer. Then $\phi(A)$ has a nontrivial invariant subspace if $\operatorname{dim} K>1$ and $\phi(J(A)) \neq\{0\}$.

Proof. Assume dim $K>1$ and $\phi(A)$ is transitive (i.e., $\phi(A)$ has no invariant subspace other than the trivial ones $\{0\}$ and H). We must show that $\phi(J(A))=\{0\}$. By [3, Theorem 3.1], $\phi(J(A))$ has a nontrivial invariant subspace M. Fix $T \in J(A)$ and $x \in M$. Then the closure of $\{\phi(S T) x: S \in A\}$ is an invariant subspace of $\phi(A)$ contained in M. Since $\phi(A)$ is transitive, $\phi(T) x=0$. Hence $\phi(T) \mid M=0$ for all $T \in J(A)$. Next, let $0 \neq x \in M$. Since $\{\phi(S) x: S \in A\}$ is dense in H and since $\phi(T) \phi(S) x=\phi(T S) x=0$ for all $S \in A$ and all $T \in J(A)$, it follows that $\phi(T)=0$ for all $T \in J(A)$. Thus $\phi(J(A))=\{0\}$.

LEmma 2. Let A be a Banach algebra. Assume $\phi: A \rightarrow B(K)$ is a continuous homomorphism such that $\phi(T)$ is a nilpotent operator on a Banach space K for all $T \in J(A)$. Then there exists a positive integer k such that $\phi\left(T^{k}\right)=0$, for all $T \in J(A)$.

The proof is an imitation of the proof of a similar result due to Grabiner [1].
Lemma 3. Let A be a unital algebra. Assume $\phi: A \rightarrow B(K)$ is a homomorphism such that $\phi(A)$ is a transitive algebra of polynomially compact operators on a Banach space K. Then every element of $\phi(J(A))$ is nilpotent.

Proof. If $\operatorname{dim} K<\infty$, then $\phi(A)=B(K)$ and hence $\phi(J(A))=J(\phi(A))=\{0\}$ (Burnside's theorem). Therefore, we assume without loss of generality that $\operatorname{dim} K=\infty$. Let $T \in J(A)$ and assume, if possible, that $q(\phi(T))=a_{0}+a_{1} \phi(T)+\cdots+a_{n} \phi\left(T^{n}\right)$ is a nonzero compact operator for some complex numbers $a_{0}, a_{1}, \ldots, a_{n}$. Since $a_{0}+T\left(a_{1}+\right.$ $\cdots+a_{n} T^{n-1}$) is not invertible, $a_{0}=0$ and hence $q(T) \in J(A)$. By Lomonosov's lemma [4] (or [7, Lemma 8.22]), there exists $S \in A$ and $y \in K$ such that $\phi(S) \phi(q(T)) y=y$ and thus $\phi(1-S q(T))$ is not invertible, a contradiction. Hence $J(A)$ contains no nonzero compact operator and for every nonzero $T \in J(A)$ there exists a minimal monomial p such that $p(\phi(T))=0$. Since $z-T$ is invertible for all $z \neq 0$, it follows that $p(z)=z^{k}$.

LEmmA 4. Let A be a triangularizable norm closed algebra of compact operators on H, and let C be a maximal chain of subspaces of H which are invariant subspaces of A. For each $M \in C$, let M_{-}be the closed span of all proper subspaces of M belonging to C. Then $T \in A$ is quasinilpotent if and only if $T^{M}=0$ for all $M \in C$, where T^{M} is the operator induced by $T \mid M$ on M / M_{-}.

Proof. If $T \in A$ is quasinilpotent, so are $T \mid M$ and T^{M}. Hence $T^{M}=0$ because dim $M / M_{-} \leqq 1$ for all $M \in C$. Conversely, assume $T^{M}=0$ for all $M \in C$. Then, by a result of Ringrose [8; 9], T is quasinilpotent.

Lemma 5. Let A be a unital algebra over C. Assume $x y-y x=1+q$ for some $q \in J(A)$. Then $\sigma(y x)$ is unbounded if it is nonempty. (As usual $\sigma(u)$ denotes the set of all complex numbers λ such that $\lambda-u$ is not invertible.)

PROOF. It is well-known that $\sigma(x y) \cup\{0\}=\sigma(y x) \cup\{0\}$, and $\sigma(u+v)=\sigma(u)$ for all $u \in A$ and all $v \in J(A)$. Thus $\sigma(x y)=\sigma(y x+1+q)=\sigma(1+y x)=1+\sigma(y x)$, and hence $\sigma(y x) \cup\{0\}=(1+\sigma(y x)) \cup\{0\}$. It is now easy to observe that a nonempty set Δ of complex numbers satisfying $\Delta \cup\{0\}=(1+\Delta) \cup\{0\}$ is necessarily unbounded.■

LEMMA 6. Let A be a norm closed algebra of polynomially compact operators. Assume $J(A)=\{T \in A: T$ is quasinilpotent $\}$. Then $A / J(A)$ is commutative.

Proof. Assume without loss of generality that $I \in A$. Let $S, T \in A$ and $U=$ $S T-T S$. We must show that U is quasinilpotent. Assume, if possible, that $\sigma(U) \neq\{0\}$. Then $\sigma(U)$ contains an isolated nonzero point z. Let f be an analytic function defined on a neighbourhood of $\sigma(U)$ which is identically 1 in a neighbourhood of z and is identically 0 in a neighbourhood of $\sigma(U) \backslash\{z\}$. By the Riesz-Dunford functional calculus, the operator $P=f(U)$ is a nonzero idempotent in A such that $P U=U P=z P+$ Q, where $Q \in J(A)$. Since the operators $P S(I-P),(I-P) S P, P T(I-P)$, and $(I-P) T P$ are nilpotent, it follows that $z P+Q=P U P=P(S T-T S) P=(P S P)(P T P)-(P T P)(P S P)+Q^{\prime}$ for some $Q^{\prime} \in J(A)$. Letting $B=P A P, x=P S P$, and $y=z^{-1} P T P$, we observe that B is a unital Banach algebra with unit $P, J(B) \supset P J(A) P$, and $x y-y x=1+q$ for some $q \in J(B)$. Thus $\sigma(y x) \neq \emptyset$ and hence, in view of Lemma 5, it is unbounded; a contradiction.

Now, we prove the main result of the paper. The equivalence of (1) and (3) is known; a rather different proof is given in $[5 ; 6]$.

THEOREM 1. Let A be a norm closed algebra of compact operators on H. Then the following are equivalent. (1) A is triangularizable. (2) Every maximal chain of invariant subspaces of A is a maximal chain of subspaces of H. (3) The algebra $A / J(A)$ is commutative. (4) $J(A)=\{T \in A: T$ is quasinilpotent $\}$.

Proof. The proof of $(2) \Rightarrow(1)$ is trivial, and the proof of $(4) \Rightarrow(3)$ is given in Lemma 6. It remains to show that $(1) \Rightarrow(4)$ and $(3) \Rightarrow(2)$.

Assume (1) is true and C is a maximal chain making A triangularizable. Let $T \in A$ be quasinilpotent. Since $T^{M}=0$, it follows that $(S T)^{M}=0$ for all $S \in A$, where $M \in C$ is arbitrary (see Lemma 4). Thus $S T$ is quasinilpotent and hence $T \in J(A)$. This proves (4).

Finally, assume (3) is true and let C be a maximal chain of invariant subspaces of A. We claim $\operatorname{dim} M / M_{-} \leqq 1$ for all $M \in C$. Assume, if possible, that $\operatorname{dim} M / M_{-}>1$. Let $\phi: A \rightarrow B\left(M / M_{-}\right)$be the algebra homomorphism sending $T \in A$ to the operator T^{M} induced by $T \mid M$ on M / M_{-}. Since C is a maximal chain of invariant subspaces of A, it follows from Lemmas 1,2 , and 3 that $\phi(J(A))=\{0\}$. Thus $\phi(A)$ is a commutative algebra of compact operators. Since $\phi(A)$ is transitive, every element of $\phi(A)$ is a scalar
multiple of identity and $\operatorname{dim} M / M_{-}=1$. This shows that C is a maximal chain of subspaces of H.

A re-examination of the proof of Theorem 1 suggests the proof of the following corollary.

COROLLARY 1. The implications $(4) \Rightarrow(3) \Rightarrow(2) \Rightarrow(1)$ remain true if in the hypothesis of Theorem 1, A is assumed only to be a norm closed algebra of polynomially compact operators.

As we acknowledged before, a different proof of the implications (3) \Rightarrow (2) \Rightarrow (1) in Corollary 1 is given in [2].

The following example shows that the triangularizability of a norm closed algebra of polynomially compact operators does not necessarily imply that $A / J(A)$ is commutative or $J(A)=\{T \in A: T$ is quasinilpotent $\}$.

Example. Let A be the algebra of all operators T on $H=L^{2}(0,1) \oplus L^{2}(0,1)$ defined by $T(f \oplus g)=(a f+h g) \oplus(c f+d g)$, where a, b, c, and d are arbitrary complex numbers. For each $t \in[0,1]$ the subspaces

$$
M=\{f \oplus g: f(x)=g(x) \text { a.e. on }[t, 1]\}
$$

is an invariant subspace of A. Since $\left\{M_{t}: 0 \leqq t \leqq 1\right\}$ is a maximal chain of subspaces of H, it follows that A is triangularizable. If $T \in A$, then

$$
T=\left[\begin{array}{ll}
a I & b I \\
c I & d I
\end{array}\right] \quad \text { on } L^{2}(0,1) \oplus L^{2}(0,1)
$$

and $(a-T)(d-T)-b c=0$. (Here I denotes the identity on $L^{2}(0,1)$.) Thus every element of A is algebraic, and hence A is a triangularizable algebra of polynomially compact operators. We claim $J(A)=\{0\}$. Let T be as in (\star). It is easy to see that the map sending T to the 2×2 matrix $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ is an algebra isomorphism between A and the algebra of all 2×2 complex matrices. Thus $J(A)=\{0\}$ and hence neither $A / J(A)$ is commutative nor $J(A)$ is equal to $\{T \in A: T$ is quasinilpotent $\}$.

References

1. S. Grabiner, The nilpotency of Banach algebras, Proc. Amer. Math. Soc. 21 (1969), 510.
2. D. Hadwin, Radjavi's trace condition for triangularizability, J. Algebra 109 (1987), 184-192.
3. D. Hadwin, E. Nordgren, M. Radjabalipour, H. Radjavi, and P. Rosenthal, On simultaneous triangularization of collection of operators, to appear.
4. V. I. Lomonosov, Invariant subspaces for operators commuting with compact operators, Functional Anal. Appl. 7 (1973), 213-214.
5. C. Laurie, E. Nordgren, H. Radjavi, and P. Rosenthal, On triangularization of algebras of operators, J. Reine Angew. Math. 327 (1981), 143-155.
6. G. Murphy, Triangularizable algebras of compact operators, Proc. Amer. Math. Soc. 84 (1982), 143-155.
7. H. Radjavi and P. Rosenthal, "Invariant Subspaces,"Springer-Verlag, New York, Heidelberg, Berlin, 1973.
8. J. R. Ringrose, Super-diagonal forms for compact linear operators, Proc. London Math. Soc. (3) 12 (1962), 367-384.
9. J. R. Ringrose, "Compact Non-self-adjoint Operators," Van Nostrand, New York, 1971.

Department of Mathematics

University of Kerman

Kerman, Iran

[^0]: Received by the editors September 12, 1988.
 AMS subject classification: 47B05, 47D25.
 (C) Canadian Mathematical Society 1991.

