SIMULTANEOUS TRIANGULARIZATION OF ALGEBRAS OF POLYNOMIALLY COMPACT OPERATORS

M. RADJABALIPOUR

ABSTRACT. If A is a norm closed algebra of compact operators on a Hilbert space and if its Jacobson radical J(A) consists of all quasinilpotent operators in A then A/J(A)is commutative. The result is not valid for a general algebra of polynomially compact operators.

Hadwin [2] shows that an algebra A of algebraic operators on a vector space X is triangularizable if and only if A/J(A) is commutative, and this in turn is true if and only if $J(A) = \{T \in A : T \text{ is quasinilpotent}\}$. Here the Jacobson radical J(A) is defined as the set of all $T \in A$ such that for every $S \in A$ the operator 1 + ST is invertible in any unital algebra containing A. In case A is an algebra of polynomially compact operators on a Hilbert space H and triangularizability is defined in terms of closed subspaces of H (see below), he shows that A is triangularizable if A/J(A) is commutative [2, Theorem 3.4]. Hadwin leaves the following questions open.

QUESTION 1. If A is a norm closed algebra of compact operators on H and J(A) is the set of all quasinilpotent operators in A, then must A/J(A) be commutative? What if the elements of A are all trace class operators?

QUESTION 2. Suppose that A is a triangularizable norm closed algebra of polynomially compact operators. Must A/J(A) be commutative?

In the present paper we answer Question 1 in the affirmative, and Question 2 in negative.

Recall that a maximal chain of subspaces of H (resp. of invariant subspaces of a collection $A \subset B(H)$) is any chain C of subspaces of H (resp. of invariant subspaces of A) which is not a proper subchain of another chain of subspaces of H (resp. of invariant subspaces of A). (Throughout the paper H denotes a general Hilbert space and B(H) is the algebra of all bounded linear operators on H; also, by a subspace of H we mean a closed subspace.) A collection $A \subset B(H)$ is called triangularizable if it has a maximal chain of invariant subspaces which is also a maximal chain of subspaces of H.

An operator $T \in B(H)$ is called polynomially compact if p(T) is compact for some polynomial p. A quasinilpotent operator T is one for which $\sigma(T) = \{0\}$. The following lemmas which are partially needed for the proof of the main result, will demonstrate the

260

Received by the editors September 12, 1988.

AMS subject classification: 47B05, 47D25.

[©] Canadian Mathematical Society 1991.

extent to which the algebraic results of [2] can be extended. They also give a different proof of Theorem 3.4 of [2] mentioned above.

LEMMA 1. Let A be any unital algebra over the field of complex numbers C. Let K be a Banach space and assume $\phi: A \to B(K)$ is an algebra homomorphism such that $\phi(T^k) = 0$ for all $T \in J(A)$, where k is a fixed positive integer. Then $\phi(A)$ has a nontrivial invariant subspace if dim K > 1 and $\phi(J(A)) \neq \{0\}$.

PROOF. Assume dim K > 1 and $\phi(A)$ is transitive (i.e., $\phi(A)$ has no invariant subspace other than the trivial ones $\{0\}$ and H). We must show that $\phi(J(A)) = \{0\}$. By [3, Theorem 3.1], $\phi(J(A))$ has a nontrivial invariant subspace M. Fix $T \in J(A)$ and $x \in M$. Then the closure of $\{\phi(ST)x : S \in A\}$ is an invariant subspace of $\phi(A)$ contained in M. Since $\phi(A)$ is transitive, $\phi(T)x = 0$. Hence $\phi(T)|M = 0$ for all $T \in J(A)$. Next, let $0 \neq x \in M$. Since $\{\phi(S)x : S \in A\}$ is dense in H and since $\phi(T)\phi(S)x = \phi(TS)x = 0$ for all $S \in A$ and all $T \in J(A)$, it follows that $\phi(T) = 0$ for all $T \in J(A)$. Thus $\phi(J(A)) = \{0\}$.

LEMMA 2. Let A be a Banach algebra. Assume $\phi : A \to B(K)$ is a continuous homomorphism such that $\phi(T)$ is a nilpotent operator on a Banach space K for all $T \in J(A)$. Then there exists a positive integer k such that $\phi(T^k) = 0$, for all $T \in J(A)$.

The proof is an imitation of the proof of a similar result due to Grabiner [1].

LEMMA 3. Let A be a unital algebra. Assume $\phi: A \to B(K)$ is a homomorphism such that $\phi(A)$ is a transitive algebra of polynomially compact operators on a Banach space K. Then every element of $\phi(J(A))$ is nilpotent.

PROOF. If dim $K < \infty$, then $\phi(A) = B(K)$ and hence $\phi(J(A)) = J(\phi(A)) = \{0\}$ (Burnside's theorem). Therefore, we assume without loss of generality that dim $K = \infty$. Let $T \in J(A)$ and assume, if possible, that $q(\phi(T)) = a_0 + a_1\phi(T) + \cdots + a_n\phi(T^n)$ is a nonzero compact operator for some complex numbers a_0, a_1, \ldots, a_n . Since $a_0 + T(a_1 + \cdots + a_nT^{n-1})$ is not invertible, $a_0 = 0$ and hence $q(T) \in J(A)$. By Lomonosov's lemma [4] (or [7, Lemma 8.22]), there exists $S \in A$ and $y \in K$ such that $\phi(S)\phi(q(T))y = y$ and thus $\phi(1 - Sq(T))$ is not invertible, a contradiction. Hence J(A) contains no nonzero compact operator and for every nonzero $T \in J(A)$ there exists a minimal monomial psuch that $p(\phi(T)) = 0$. Since z - T is invertible for all $z \neq 0$, it follows that $p(z) = z^k$.

LEMMA 4. Let A be a triangularizable norm closed algebra of compact operators on H, and let C be a maximal chain of subspaces of H which are invariant subspaces of A. For each $M \in C$, let M_{-} be the closed span of all proper subspaces of M belonging to C. Then $T \in A$ is quasinilpotent if and only if $T^{M} = 0$ for all $M \in C$, where T^{M} is the operator induced by T|M on M/M_{-} .

PROOF. If $T \in A$ is quasinilpotent, so are T|M and T^M . Hence $T^M = 0$ because dim $M/M_- \leq 1$ for all $M \in C$. Conversely, assume $T^M = 0$ for all $M \in C$. Then, by a result of Ringrose [8; 9], T is quasinilpotent.

LEMMA 5. Let A be a unital algebra over C. Assume xy - yx = 1 + q for some $q \in J(A)$. Then $\sigma(yx)$ is unbounded if it is nonempty. (As usual $\sigma(u)$ denotes the set of all complex numbers λ such that $\lambda - u$ is not invertible.)

PROOF. It is well-known that $\sigma(xy) \cup \{0\} = \sigma(yx) \cup \{0\}$, and $\sigma(u+v) = \sigma(u)$ for all $u \in A$ and all $v \in J(A)$. Thus $\sigma(xy) = \sigma(yx+1+q) = \sigma(1+yx) = 1 + \sigma(yx)$, and hence $\sigma(yx) \cup \{0\} = (1 + \sigma(yx)) \cup \{0\}$. It is now easy to observe that a nonempty set Δ of complex numbers satisfying $\Delta \cup \{0\} = (1 + \Delta) \cup \{0\}$ is necessarily unbounded.

LEMMA 6. Let A be a norm closed algebra of polynomially compact operators. Assume $J(A) = \{T \in A : T \text{ is quasinilpotent}\}$. Then A/J(A) is commutative.

PROOF. Assume without loss of generality that $I \in A$. Let $S, T \in A$ and U = ST - TS. We must show that U is quasinilpotent. Assume, if possible, that $\sigma(U) \neq \{0\}$. Then $\sigma(U)$ contains an isolated nonzero point z. Let f be an analytic function defined on a neighbourhood of $\sigma(U)$ which is identically 1 in a neighbourhood of z and is identically 0 in a neighbourhood of $\sigma(U) \setminus \{z\}$. By the Riesz-Dunford functional calculus, the operator P = f(U) is a nonzero idempotent in A such that PU = UP = zP + Q, where $Q \in J(A)$. Since the operators PS(I-P), (I-P)SP, PT(I-P), and <math>(I-P)TP are nilpotent, it follows that zP+Q = PUP = P(ST-TS)P = (PSP)(PTP) - (PTP)(PSP) + Q' for some $Q' \in J(A)$. Letting B = PAP, x = PSP, and $y = z^{-1}PTP$, we observe that B is a unital Banach algebra with unit $P, J(B) \supset PJ(A)P$, and xy - yx = 1 + q for some $q \in J(B)$. Thus $\sigma(yx) \neq \emptyset$ and hence, in view of Lemma 5, it is unbounded; a contradiction.

Now, we prove the main result of the paper. The equivalence of (1) and (3) is known; a rather different proof is given in [5; 6].

THEOREM 1. Let A be a norm closed algebra of compact operators on H. Then the following are equivalent. (1) A is triangularizable. (2) Every maximal chain of invariant subspaces of A is a maximal chain of subspaces of H. (3) The algebra A/J(A) is commutative. (4) $J(A) = \{T \in A : T \text{ is quasinilpotent}\}.$

PROOF. The proof of $(2) \Rightarrow (1)$ is trivial, and the proof of $(4) \Rightarrow (3)$ is given in Lemma 6. It remains to show that $(1) \Rightarrow (4)$ and $(3) \Rightarrow (2)$.

Assume (1) is true and C is a maximal chain making A triangularizable. Let $T \in A$ be quasinilpotent. Since $T^M = 0$, it follows that $(ST)^M = 0$ for all $S \in A$, where $M \in C$ is arbitrary (see Lemma 4). Thus ST is quasinilpotent and hence $T \in J(A)$. This proves (4).

Finally, assume (3) is true and let *C* be a maximal chain of invariant subspaces of *A*. We claim dim $M/M_{-} \leq 1$ for all $M \in C$. Assume, if possible, that dim $M/M_{-} > 1$. Let $\phi: A \to B(M/M_{-})$ be the algebra homomorphism sending $T \in A$ to the operator T^{M} induced by T|M on M/M_{-} . Since *C* is a maximal chain of invariant subspaces of *A*, it follows from Lemmas 1, 2, and 3 that $\phi(J(A)) = \{0\}$. Thus $\phi(A)$ is a commutative algebra of compact operators. Since $\phi(A)$ is transitive, every element of $\phi(A)$ is a scalar multiple of identity and dim $M/M_{-} = 1$. This shows that C is a maximal chain of subspaces of H.

A re-examination of the proof of Theorem 1 suggests the proof of the following corollary.

COROLLARY 1. The implications $(4) \Rightarrow (3) \Rightarrow (2) \Rightarrow (1)$ remain true if in the hypothesis of Theorem 1, A is assumed only to be a norm closed algebra of polynomially compact operators.

As we acknowledged before, a different proof of the implications (3) \Rightarrow (2) \Rightarrow (1) in Corollary 1 is given in [2].

The following example shows that the triangularizability of a norm closed algebra of polynomially compact operators does not necessarily imply that A/J(A) is commutative or $J(A) = \{T \in A : T \text{ is quasinilpotent}\}$.

EXAMPLE. Let *A* be the algebra of all operators *T* on $H = L^2(0, 1) \oplus L^2(0, 1)$ defined by $T(f \oplus g) = (af + hg) \oplus (cf + dg)$, where *a*, *b*, *c*, and *d* are arbitrary complex numbers. For each $t \in [0, 1]$ the subspaces

$$M = \{ f \oplus g : f(x) = g(x) \ a. e. \ on [t, 1] \}$$

is an invariant subspace of A. Since $\{M_t : 0 \le t \le 1\}$ is a maximal chain of subspaces of H, it follows that A is triangularizable. If $T \in A$, then

(*)
$$T = \begin{bmatrix} aI & bI \\ cI & dI \end{bmatrix} \text{ on } L^2(0,1) \oplus L^2(0,1),$$

and (a-T)(d-T)-bc = 0. (Here *I* denotes the identity on $L^2(0, 1)$.) Thus every element of *A* is algebraic, and hence *A* is a triangularizable algebra of polynomially compact operators. We claim $J(A) = \{0\}$. Let *T* be as in (\star) . It is easy to see that the map sending *T* to the 2 × 2 matrix $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$ is an algebra isomorphism between *A* and the algebra of all 2 × 2 complex matrices. Thus $J(A) = \{0\}$ and hence neither A/J(A) is commutative nor J(A) is equal to $\{T \in A : T$ is quasinilpotent $\}$.

REFERENCES

- 1. S. Grabiner, The nilpotency of Banach algebras, Proc. Amer. Math. Soc. 21 (1969), 510.
- 2. D. Hadwin, Radjavi's trace condition for triangularizability, J. Algebra 109 (1987), 184-192.
- 3. D. Hadwin, E. Nordgren, M. Radjabalipour, H. Radjavi, and P. Rosenthal, *On simultaneous triangulariza*tion of collection of operators, to appear.
- 4. V. I. Lomonosov, Invariant subspaces for operators commuting with compact operators, Functional Anal. Appl. 7 (1973), 213–214.
- 5. C. Laurie, E. Nordgren, H. Radjavi, and P. Rosenthal, On triangularization of algebras of operators, J. Reine Angew. Math. 327 (1981), 143–155.

M. RADJABALIPOUR

6. G. Murphy, Triangularizable algebras of compact operators, Proc. Amer. Math. Soc. 84 (1982), 143–155.

7. H. Radjavi and P. Rosenthal, "Invariant Subspaces," Springer-Verlag, New York, Heidelberg, Berlin, 1973.

8. J. R. Ringrose, Super-diagonal forms for compact linear operators, Proc. London Math. Soc. (3) 12 (1962), 367–384.

9. J. R. Ringrose, "Compact Non-self-adjoint Operators," Van Nostrand, New York, 1971.

Department of Mathematics University of Kerman Kerman, Iran

.

264