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FINITE QUOTIENTS OF THE AUTOMORPHISM 
GROUP OF A FREE GROUP 

ROBERT GILMAN 

1. Introduction. Let G and F be groups. A G-defining subgroup of F is a 
normal subgroup N of F such that F/N is isomorphic to G. The automorphism 
group Aut (F) acts on the set of G-defining subgroups of F. If G is finite and 
F is finitely generated, one obtains a finite permutation representation of 
Out (F), the outer automorphism group of F. We study these representations 
in the case that F is a free group. We denote by Fn a free group on n free 
generators Xi, . . . , xn. 

THEOREM 1. Fix n è 3. For any prime p ^ 5, Out (Fn) acts on the PSL(2, p)-
defining subgroups of Fn as the alternating or symmetric group, and both cases 
occur for infinitely many primes. 

COROLLARY 1. If n ^ 3, Out (Fn) is residually finite alternating and residually 
finite symmetric. 

The meaning of Corollary 1 is that for any a £ Out (Fn) there is a homo-
morphism p from Out (Fn) onto a finite alternating group such that p(a) ^ 1. 
E. Grossman proved that for all n, Out (Fn) is residually finite [9]. Theorem 1 
and Corollary 1 are proved in Section 5. The conclusion of Theorem 1 does not 
hold for n = 2. Out (F2) acts intransitively on the PSL (2,5)-defining sub­
groups of F2 [12, § 10; 14, Proposition 4], and on the PSL (2,7)-defining sub­
groups of F2 [15, Theorem 1]. We have the following partial extensions of 
Theorem 1. 

THEOREM 2. If n ^ 4 and G is a finite nonabelian simple group generated by 
n — 2 elements, Out (Fn) acts as the alternating or symmetric group on at least 
one of its orbits on the G-defining subgroups of Fn. 

THEOREM 3. / / G is a finite group of order g > 1, and n ^ 2 log2 (g), Out (Fn) 
is transitive on the G-defining subgroups of Fn. 

In connection with Theorem 2 we note that all currently known simple 
groups seem to be generated by two elements [8, § 78]. If G is a finite abelian 
simple group of order p, the action of Out (Fn) on the G-defining subgroups 
of Fn is well-known. 

A much sharper form of Theorem 3 holds if G is solvable. M. Dunwoody has 
shown that in this case one need only assume that n is greater than the size of 
the smallest set of generators of G [6]. In [5, Theorem 1] he shows that this 
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bound is sharp. His discussion in [6] of the action of Out (£3) on the ^-defining 
subgroups of F% motivated the present work. Theorem 3 is a corollary of a 
result of F. Cappel, a student of J. Neubuser [2]. 

2. G-vectors. For any group G a G-vector of length n is an w-tuple a = 
(ai, . . . , an), at G G, 1 ^ i ^ n. A generating G-vector is one whose entries 
generate G. G-vectors were introduced in [12, Kap. II] in order to define an 
action of Aut (Fn) which is equivalent to its action on G-defining subgroups of 
Fn but easier to w ôrk with. If W = x^i . . . xi{

et is a word in Xi, . . . , xn, we 
define 

W(a) = ah'i . . .ait't. 

Let £ be the set of epimorphisms from Fn to G. The direct product Aut (G) 
X Aut (Fn) acts on E; for a Ç Aut (G) and a G Aut (Fn) the element (a, a) 
sends p £ £ to the composite apo--1. Clearly the action of Aut (Fn) on the 
Aut (G)-orbits of E is equivalent to its action on G-defining subgroups of Fn. 
Let V(G, n) be the set of generating G-vectors of length n. The map T sending 
p to (p(xi), . . . , p(xn)) gives a one to one correspondence between E and 
F(G, n) and induces an action of Aut (G) X Aut (Fn) on F(G, w) by air(p) a = 
7r(o; p cr). 

The induced action is equivalent to the action of Aut (G) X Aut (Fn) on E 
whence the action of Aut (Fn) on G-defining subgroups of Fn is equivalent to 
its action on Aut (G)-orbits of V(G, n). Let V(G, n) be the set of Aut (G)-orbits 
of V(G, n). Write a ~ b if a and b are in the same Aut (£n)-orbit of V(G, n). 
If <r(Xi) = W ,̂ 1 ^ i ^ n for words W* in Xj, 1 ^ 7 ^ n, we have 

a a «7= (a(Wi(a)) a (^ , ( f l ) ) ) . 

The elementary automorphisms of Fn are 

P(i, k) 

<J(Ï): xt —» x^-1 

R(i, k): Xj-> x ^ 

where 1 ^ i, k, ^ n, i 9^ k, and unmentioned generators are left fixed [11, 
Sec. 3.5]. The effect of these automorphisms on a G V(G, n) is to interchange 
any two entries, invert any entry, or multiply one entry by a different one. 

The following lemma is used in the proof of Theorem 2 and is the only place 
we use the simplicity of G in the proof of that theorem. 

LEMMA 1. Let G be a finite nonabelian simple group. Suppose a = (ai, . . . , an) 
£ V(G, n) and G = (at\i 9e j) for some j , 1 S j ^ n. For any c £ G, there is 
a word 

W(xlf . . . , Xj-!, Xj+1, . . . , Xn) 
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such that for 

P = W(R(j, 1), . . . , R(j,j - 1), R(j,j + 1), . . . , R(j, « ) ) 

we have 

ap = (au • • • , aj-1, af, aj+1} . . . , an) 

and for any b = (bi, . . . , bn) G V(G, n) either bfi = b or there exists a G Aut (G) 
such that bi — a(at),l ^ i ^ n,i i£ j . 

Proof. For any vector v of length n, let v' be the vector of length n — 1 
obtained by omit t ing the j t h entry of v. Let x = (xi, . . . , xn) G V(Fn, n)\ 
the entries of x' generate a free group F C Fn. 

Let iV be the kernel of the homomorphism p: F —> G, p(Xi) = ah 1 ^ i ^ n, 
i 9^ j \ and let M be the intersection of the kernels of all homomorphisms 
/x: F—* G with kernel distinct from N. Because G is simple, F = NM and 
we can find W = W(x') G M such t ha t W(a') = p(W) = c. If we define /x by 
ix(xt) — bu then W(b') = /x( l^(^ /)) = 1 unless n and p have the same kernel 
in which case ju = ap and bt — a(at)} 1 ^ i S n, i 9^ j , for some a Ç Aut (G). 
Clearly /3 has the desired effect. 

3. Proof of T h e o r e m 3. Let 5 be a finite set of generators of G and let 
{<2i, . . . , ar) Ç 5 b e of minimum order such tha t (ai, . . . , ar) = G. If Ht = 
(ai, . . . , a<), then Hi has order a t least 2 and the index \Hi+i : i ^ l ^ 2. T h u s G 
has order g ^ 2 r whence r S k where k is the greatest integer less than or 
equal to log2 (g). 

Now pick #i . . . ak G G so t ha t (ai, . . . , ak) = G. For n ^ 2k define 

tv = ( c i , . . . , f l t , l , . . . , l ) G 7 ( G , « ) . 

Consider any v G V(G, w); it suffices to reduce V to w by elementary auto­
morphisms of Fn. By the preceding paragraph k of the entries of v generate G. 
Permute the entries of V so tha t the last k entries generate G. Multiplying the 
first k entries by the last k, we can change V so tha t its first k entries are 
a,\> . . . , ak. Now^ multiplying the last n — k entries by the first k, we can 
reduce v to w. 

4. Proof of T h e o r e m 2 a n d part of T h e o r e m 1. I t suffices in the proof of 
Theorem 2 to show tha t Aut (Fn) acts as the al ternat ing or symmetric group 
on some subset of V(G, n). We will show first t ha t Aut (Fn) acts doubly transi­
tively on one of its orbits and then estimate the degree and minimal degree of 
the action. At this point a theorem of Bochert [1, p. 144] gives the desired 
result. 

For the first pa r t of the proof, we assume only tha t n ^ 3 and G is generated 
by n — 1 elements in order to apply our argument to the proof of Theorem 1. 
Let {ai, . . . , an-i} be a fixed set of generators for G. Let V be the orbit of 
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Aut (G) X Aut (Fn) containing 

V = (au . . . , an_i, 1) 

and let Vf be the set of Aut (G)-orbits of V'. 
From [11, Sec. 3.5] the elementary automorphisms of Fn generate Aut (Fn), 

and 
N = (L(i, k), R(i, k)\l ^ i, k è n, i * k) 

is a normal subgroup of Aut (Fn). We claim Aut (G) X N acts transitively 
on V. 

Clearly v <r(n) — V, and further if i,j, n are distinct, 

vP(ifj) = vR(nJ)R(itn)'1R(iJ)RU1i)'
1R(j9n)R(ntj)'\ 

while for i 9e n 

vP(i,n) = v R(n,i)R(i,n)~l. 

As the transpositions {(i, n)} generate the symmetric group on {1, 2, . . . , n], 
it follows that Aut (Fn) = N CAut(Fn)(v). Thus our claim is valid. 

We will show that N acts doubly transitively on V'. Let 

w = (bi, . . . , bn) 

be an element of V not in the Aut (G)-orbit of V. It suffices to show that for 
a fixed e Ç G, e ^ 1, w can be reduced to 

y = (ai, . . . , an-u e) 

by applying elements of Aut (G) or elements of CN(v). Clearly y £ V. We 
have y = aw 8, a £ Aut (G), ô £ N. We may assume a = 1. Express ô as a 
word in the R(i, k)'s and L(i, k)'s. The problem is that some of the R(i, &)'s 
and L(i, k)'s do not fix v. Consider the R(i, k)'s; the L(i, k)'s are handled 
similarly. For 1 ^ i < w, i?(i, w) fixes v, and for 1 ^ i, &, < n, i ^ &, 

22 (i, *) = 22(», Jfe)-1^^, n)~lR(n, k)R(i, n). 

Thus we need only show that for any w chosen as above and i, 1 ^ i < ny we 
can find an element 0 £ iV such that u> 0 = w R(n, i) and 0 fixes v. We can 
do this by Lemma 1 unless bt — a(a*), 1 S i ^ ^ — 1, for some a G Aut (G). 
Thus we are reduced to dealing with the case 

(1) IV = (ai, . . . , an_i, 6) 1 ^ 6 ^ e. 

At this point we assume the hypothesis of Theorem 2. In particular n ^ 4 
and we may suppose a„_i = 1 = bn-i. We will reduce u> to y. First of all 
R(n — 1, n)R{n, n — \)~l fixes v and moves u> to 

u = tvP(w - 1, n) = (ai, . . . , a„_2, 6, 1) 
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By Lemma 1 we can find @ G CN{v) such that 

U p = (ai, . . . , an_2, b, e) 

and likewise we can find /3' € CJV(V) for which ufifi' = y. 
Now we estimate the degree r and minimal degree 5 of the action of Aut (Fn) 

on V'. The vectors (#i, . . . , an_2, e,f)e,f G G lie in g2 distinct Aut (G)-orbits 
of F ' where g is the order of G. Thus r ^ g2. 

By Lemma 1 some fi G N fixes all elements of V(G, n) except those in the 
Aut (G)-orbits of (#i, . . . , an_i, / ) , / G G, whence 5 ^ g. By the theorem of 
Bochert referred to above if Aut (F) does not act as the alternating or sym­
metric group, 

s è r /3 - 2-v/r"/3. 

As the righthand side is an increasing function of r for r ^ 1, we have 

g è «V3 - 2g/3 

whence g ^ 5 which is impossible. This completes the proof of Theorem 2. 

5. The proof of Theorem 1 and Corollary 1. First we show that the 
theorem implies the corollary. It suffices to show that if a G Aut (Fn), n ^ 3, 
and a. normalizes every PSL (2,p)-defining subgroup of Fn for all primes p > 3, 
then a is inner. Let x be a primitive element of Fn, and let R be the normal 
closure of x in Fn, Fn/R is free on n — 1 generators. In [13] it is shown that 
for w ^ 2 Fn is residually PSL (2,p), p a prime > 3. Applying this result to 
Fn/R, we see that a must normalize R. By [11, Theorem 4.11] a(x) is conjugate 
in Fn to x or x_1. Considering the action of a on the commutator quotient of 
Fn, we see that either a(x) is conjugate to x for every primitive element x or 
a(x) is conjugate to x - 1 for every primitive x. In the first case a is inner by 
[9, Lemma 1]. In the second case the obvious extension of [9, Lemma 1] and 
its proof suffice to show a is inner. 

The proof of Theorem 1 rests on explicit knowledge of the lattice of sub­
groups of PSL (2,p) [4, Ch XII ; 10, § 3]. As PSL (2,p) is generated by two 
elements, Theorem 2 applies to the action of Out (Fn) on PSL (2,£)-defining 
subgroups of Fn when n ^ 4. We will show that the conclusion of Theorem 2 
holds when n = 3. 

Let a and b be the elements of G of order p represented by the matrices 

» [i 3 C °J 
respectively. As NG((a)) is the unique maximal subgroup of G containing 
(a), (a, b) = G. Let 

v = (a, b} 1), y = (a, b, ab), 

and define V and V' as in the proof of Theorem 2. By the reduction to (1) in 
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the proof of Theorem 2 we need only show for 

W = (a, b, c) \ y£ c y£ ab 

how to reduce w to y be elements of CN(v). lî c Q NG((a)) C\ NG((b)), either 
(a, c) = G or (b, c) = G. If, however c 6 N0((a)) H NG((b)), then c has 
matrix representation 

P" ° 1 
l_0 a"1 J 

whence &c&-1 $ NG((a)); since u> ^ (a, 6, bcb~l), we may assume (a, c) = G. 
By Lemma 1, 

u = w/3 = (a, ab, c) 

for some 0 G CJV(V). Since 1 is not an eigenvalue of the product of the matrices 
in (2), no automorphism of G moves b to ab. By Lemma 1, 

t = U ft = (a, ab, ab) 

for some ft G CN(v), and another application of Lemma 1 moves t to y. 
We have shown that Aut (F3) acts doubly transitively on one of its V(G}3)-

orbits. As in the proof of Theorem 2, the minimal degree of this action is at 
most g. Once we show that Aut (G) X Aut (Ft) acts transitively on V(G, 3), 
the degree of the action will be the number of G-defining subgroups of Fz. 
We can then calculate this number by the method of [9] and show as in the 
proof of Theorem 2 that Aut (F3) acts as the alternating or symmetric group 
on V'. 

We will show the required transitivity. Let 

v = (a, 6, 1, . . . , 1) 

where a and b are chosen as above, and let 

w = (ci, . . . , 0 

be an arbitrary group vector in V{G1 n). Suppose first that a proper subset of 
S = {ci, . . . , cn] generates G. By permuting the entries of w we may assume 
G = (c2, . . . , cn). Multiplying the first entry by the others we may assume 
C\ = a. Now (ci, Cj) = G for some j , 2 ^ j :g n. We may assume (ci, cn) = G. 
Now we can achieve c2 = b and then c3 = . . . = cn = 1. Thus in this case we 
can move w to v. 

Assume n ^ 4 and let i J = (ci, c2, c%). By the preceding paragraph we may 
assume that H is a proper subgroup of G. With the exception of Ab, the proper 
subgroups of G are all solvable and generated by 2 elements. By [6], we see 
that with the exception of H ^ A5j that U = (ci, c2, c3) can be moved by an 
element of Aut (Fa) to an H-vector with one entry equal to the identity. It 
follows that w can be moved to V as before. Once we have dealt with the case 
n = 3, then as ^45 = PSL (2,5), this argument will apply to H ~ Ab as well. 

https://doi.org/10.4153/CJM-1977-056-3 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1977-056-3


FREE GROUPS 547 

Now we deal with the case n — 3. Assume there exists an Aut (G) X 
Aut (P3)-orbit, W, of V(G, 3) with V $ W. We will derive a contradiction. Let 

w = (c, d, e) 

be an arbitrary element of W, and let H be the subgroup of G generated by two 
entries of w. From the discussion above we know 

(i) H * G. 
We claim that H is noncyclic. Suppose H = (c, d) and H is cyclic; then H = 
(cd{) for some integer i and 

w ~ u = (cdt
i d, e) Ç w 

which is impossible by (i) as G = (cd\ e). Thus we have established 
(ii) H is noncyclic. 

Now assume that H normalizes a Sylow ^-subgroup, P , of G. By (ii) and the 
structure of NG(P), P Q H and H/P is cyclic. We assume again that H = 
(c, d); H is a Frobenius group. For some i, f = cd( generates a complement to 
P in H and for some j , g = df3 generates P. We have 

w ~ (/, d, e) ~u = (/, g, e) Ç W. 

NQ{P) is the unique maximal subgroup of G containing P , and it follows from 
G = {/, g, e) that e Q_ NG(P) and G = (g, e) contrary to (i). Hence 

(iii) H does not normalize a Sylow ^-subgroup of G. 
By (i)-(iii), (c, d) must be dihedral, elementary abelian of order 4 or iso­

morphic to A 4, 54, or A5. If J2 7e 1, we wish to move w to (x, y, e) with ;y2 = 1. 
In the dihedral case x = c, y = cd suffices, while if H = ^44, either c2 = 1 
and we can interchange c and d or |c| = \d\ = 3 and cd or c2d is an involution. 
If H = S4 and c and d are both not involutions, the orders of c and d are 3 or 4. 
If |c| = \d\ = 4, then |cd| = 2 or 3, so we may assume |c| = 3, \d\ = 4. Either 
\cd\ = 2 or \c2d\ = 2. Finally in the case if = ^45, we appeal to [11, § 10] which 
says that for some automorphism x* —*Wi(xi, x2) of P2, w2(ct d) will be an 
involution. As we may extend this automorphism to P3 by x3 —» x3, we can 
move W to (x, y, e) as desired. Applying the same argument to x and e, we have 

(iv) w ~u = (x,y,z) with |x| = |y| = 2. 
We let 1/ = (x, y} z) stand for an arbitrary element of W whose first two 

entries have order 2. Suppose [x, y] j* 1 so that (x, y) is dihedral of order at 
least 6 and f = xy has order at least 3. As 

u ~ (x,f, z) G W 

(i)-(iii) imply that K = {/, z) is dihedral or isomorphic to ^44, S 4 or ^45. With 
the exception of K ~ A 4, f is inverted by some g £ K. Since g is equal to a 
word in / and z, 

(x,f,z) ~ (xg,f,z) 
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But x also inverts/so that (xg,f) is abelian. By (ii) (xg,f) must be elementary 
abelian of order 4 contrary to |/ | ^ 3. We conclude that 

(v) (xy,z) 9ÉAA or [x,y] = 1. 
Since G is simple, the (x, z)-conjugates of y generate G, and likewise x does not 
commute with some (x, z)-conjugate, yi, of y. Thus 

u ~Ui = (a, yi, z) 

with |x| = \yi\ = 2 and [x, yi] ^ 1. Consequently |xj>i| ^ 3 and by (v) 
(xyi, z) ~ A±. We must have \xy\\ = 3 and \(xyi)jz\ = 2 for some j . Hence 

Ui ~u2 = (x,yuzi) 

with |zi| = 2. By (v) G is a quotient of 

G\ = (x, yu z\\x2, yi2, zi2, (xyi)\ (xzi)m, (yiZi)n) 

with m and n each equal to 2 or 3. If ra = 2 or n = 2, then G\ has order 12 or 
24 by [3, § 4.3]. But \G\ ^ 60, so we must have \xz\\ = |^iZi| = 3 (in which 
case Gi has infinite order). Now 

U2 ~ (x, yu y&i) G W 

so (v) implies (xyu y&i) =A^. Further \y\Z\\ = 3 and |xyi3/izi| = \xzi\ = 3. 
But then Ix^i^iZi) -1! = 2; and as |j>i| = \zi\ = 2, ( ^ IZI ) - 1 = zi^i. We have 
|#;yiZi3>i| = 2. In other words x commutes with 

z2 = yiziyi = yiziyi"1 . 

But 

U2 ~ (x, yu z2) € W 

with |x| = |;yi| = |z2| = \xz2\ = 2, |x^i| = 3, \yiz2\ = |zi;yi| = 3 gives a con­
tradiction as above. 

Our results so far guarantee that Aut (Fn) acts as the alternating or sym­
metric group on V(G, n). By [11, Sec. 3.5] (o-(l)) covers the commutator 
quotient of Aut (Fn). By Dirichlet's theorem on primes, Theorem 3 will be 
proved once we show that the sign (as a permutation) of a = a (I) is odd if 
p = 1 (mod 80) and even if p = 17 (mod 80). We will count the number of 
points of V(G, n) moved by a and divide by 2. The Aut (G)-orbit of w = 
(cu • • • , cn) is fixed by a exactly when there is an automorphism a of G with 
a(d) = Ci~l, a(Cf) = ct 2 ^ i ^ n. Since (c1} . . . , cn) = G, W determines a. 

First we count the number \p(G) of generating G-vectors w which are not 
fixed by a; i.e., the number of w's with |ci| > 2. The number of H-vectors of 
this type for a group H is f(H)\H\n~l where f(H) is the number of elements of 
H of order at least 3. To calculate \p(G) we use the Môbius inversion of P. Hall 
[9] and obtain a sum over the subgroups of G. 

*(G) = 2t(H)f(H)\H\-* 
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where /x is given in [10, § 3.9]. Combining terms corresponding to conjugate 
subgroups, we obtain 

(3) HG) = V aHf(H)\H\»-i 

where the sum is carried out over conjugacy classes of subgroups as in [10, 
Theorem 3.9]. As it will suffice to determine \p{G) modulo 8g, we may ignore 
terms in (3) which are divisible by 8g. If we note that aH is always divisible 
by \G : H\ (as it must be by [7, Corollary 2]), and n ^ 3, we may ignore any H 
for which 8 divides f(H)\H\. By inverting elements of H we see t ha t / ( i J ) is 
even whence we may ignore terms corresponding to H's of even order. 

We obtain 

^(G) = 4g (mod 8g) if p = 1 (mod 80) 
W yp(G) E= 0 (mod 8g) if p = 17 (mod 80). 

Among the ^(G) vectors not fixed by a will be some which are in an Aut (G)-
orbit fixed by a. Let 6(G) be the number of these vectors; 0(G) is the number 
of generating G-vectors 

W = (Ci, C2, . . . , Cn) 

for which |ci| > 2 and there is an automorphism a £ Aut (G) inverting c\ and 
centralizing ci} 2 ^ i ^ n. The Aut (G)-orbit of W has size 2g = |Aug (G)|, and 
all its vectors are moved by a. Thus a is a product of (^(G) — 0(G))/4g disjoint 
transpositions. We will show 0(G) = 0 (mod 8g) when n ^ 4. For n = 3, similar 
but harder computation gives the same result. We identify Aut (G) with PGL 
(2,p) and think of G as a subgroup of Aut(G). 

As we have noted, w determines a uniquely and (a, d) = D is a dihedral 
subgroup of Aut (G). For each choice of a and C\ we obtain a group vector w 
by choosing ct Ç CG{OL), 2 ^ i ^ w. If w is not a generating G-vector, then 
(Ci\l ^ i ^ n) lies in a maximal subgroup of G and (a, c*|l ^ i S n) lies in a 
maximal subgroup of Aut (G). To count the number of generating group 
vectors corresponding to the pair (a, ci) we count the number of sequences 
C2, . . • , cn in CG(a) such that (cz|2 ^ i ^ n) is not contained in C# n G(a) for 
any maximal subgroup H of Aut (G) containing Z>. We divide the enumeration 
into cases according to the value of m = |ci|. Define q = (p — l ) / 2 and 
r = (̂> + l ) / 2 so that g = 2£çr. 

Suppose p 9e m > 5. D lies in a unique maximal subgroup H of Aut (G) 
and H is dihedral of order 4q if w divides q or dihedral of order 4/- if m divides r. 
(The maximal subgroups of Aut (G) are the normalizers of the maximal sub­
groups of G, and their structure is determined by knowledge of the subgroups 
of PSL (2,p2) and the fact that PSL (2,p2) has a subgroup isomorphic to 
PGL (2,p).) Suppose \H\ = 4g. H contains (p(m) elements of order w, where 
cp is Euler's function. There are pr choices for H (of order 4g) and 2q involutions 
in H — Z(H). These divide into 2 .ff-conjugacy classes each of order q. From 
the involutions in a single H -conjugacy class we obtain q<p(m) pairs (a,Ci). For 
each pair we may choose c2, . . . , cn in \CG{a)\n~l — \CH n G{a)\n~l ways. As 
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\H r\ G\ is even and n ^ 4, the number of choices of c2f • . . , cn is divisible 
by 4, and the number of generating group vectors we obtain is congruent to 0 
modulo 16g. From the rp choices for H, then the total number of generating 
group vectors we obtain is congruent to zero modulo lftrpq = 8g. The same 
conclusion holds if m > 5 and m divides r. 

Suppose p ^ m = 5. D lies in a unique dihedral group H of order 4g or 4r 
and if D C G, D also lies in two icosahedral groups Kx and K2. The argument 
of the previous paragraph gives 0 (mod 8g) w's once we show that for a fixed 
a and Ci, the number of choices of c2, . . . , cn is divisible by 8. If a is outer, the 
desired conclusion follows exactly as before. If a is inner, (c2, • . • , cn) must not 
lie in CH n G(a) or CKi(a), i = 1, 2. We can calculate the number of choices 
for c2, . . • , cn by Môbius inversion on the lattice of subgroups consisting of 
CG(a) and all intersections of CH n G (a) and CKi(a), i = 1,2. The answer will 
be a linear combination of the orders of the groups in the lattice raised to the 
powrer n — 1. As (a) is the minimum element of this lattice and n ^ 4, our 
answer will be divisible by 8. 

Next we suppose m = 4. D lies in a unique maximal dihedral subgroup H. 
If M is any maximal subgroup of Aut (G) containing D, Z(D) C C M n c W 
implies |CM n G(«) | is even and the argument of the previous paragraph with 
Z{D) in place of (a) shows that the number of choices of c2, . . . , cn is divisible 
by 4. We again obtain 0 (mod 4g) w's. 

Consider m = 3. D lies in a unique i7 dihedral of order 4g or 4r. H D Çt G 
and £ = ± 3 (mod 8), D lies in two octahedral groups. If D Ç G, D lies in 
two octahedral subgroups of G if p = d= 1 (mod 8). When D C G, (that is 
when a lies in the i7-conjugacy class of involutions in H C\ G — Z(H)) we 
obtain as in the case p ^ m = 5, 0 (mod Sg) generating group vectors. Sup­
pose D Çt G and \H\ = 4g. From the r£ choices for H and g choices for a Ç 
H — G, we have (rp)(q)<p(3) = g pairs (a, ci). If £ = d= 1 (mod 8), H is the 
only maximal subgroup of Aut (G) containing D and we obtain 0 (mod 8g) 
generating vectors as before. However if p = d= 3 (mod 8), D lies in two 
octahedral subgroups Ji, J2 of Aut (G). Let Et = CJi nG(a),i = 1, 2. \E{\ = 2 
and Jt = (D, E z) . We have Ex ^ E2 else Jx = J2 and E f ^ C^(a) else /^ C H. 
By Môbius inversion the number of choices for c2j . . . , cn is 

\CG(a)\n-' - I C H H M ^ ) ! " - 1 - 2 . 2 - 1 + 2 

which is congruent to 2 (mod 8). We obtain in this case 2g (mod 8g) generating 
group vectors, and we obtain the same result if \H\ = 4r. 

In summary if dv(G) is the number of w's with m = p and 6P'(G) is the 
number with m ?£ p, we have 

0/(G) = 0 (mod 8g) if p = db 1 (mod 8) and w ^ 4, 
^5) ^ ( G ) = 2g (mod 8g) if ?̂ = =b 3 (mod 8) and n ^ 4. 

It remains to calculate 6P(G). We have m = p, and Z) lies in a unique 
maximal subgroup H of Aut (G). H is the normalizer of a Sylow ^-subgroup 
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(ci) of G and is a Frobenius group with H/(ci) cyclic of order 2a. H has one 
class of involutions, which has size p. From the 2r choices for H we have 
2rp(p(p) choices of the pair (a, Ci) we may choose c2, . . . , cn in \CG{a)\n~l — 
\CH n (?(«)|w-1 ways we have 

0P(G) = 2rp(p - l)[(2q)»-i - jf"1] 

whence 

(6) 6V(G) = 0 (mod 4g) if p = 1 (mod 4). 

By (4), (5), (6) the following table is correct for p = 1 or 17 (mod 80) and 
n ^ 4. 

Sign of (j as a permutation on F(P5L(2, p),n),n ^ 3 

Congruence of £(mod 8) 1 3 5 7 

Congruence of p(mod 5) ± 1 —1 1 ( — l)n~l 1 
± 2 1 - 1 ( -1)» - 1 

For p = 5 the sign of o- is ( — l)n . 
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