THE DIFFERENCE BETWEEN CONSECUTIVE PRIME NUMBERS V

by R. A. RANKIN
(Received 2nd September 1963)

Let p_{n} denote the nth prime and let ε be any positive number. In 1938 (3) I showed that, for an infinity of values of n,

$$
p_{n+1}-p_{n}>\left(\frac{1}{3}-\varepsilon\right) \log p_{n} \frac{\log _{2} p_{n} \log _{4} p_{n}}{\left(\log _{3} p_{n}\right)^{2}}
$$

where, for $k \geqq 1, \log _{k+1} x=\log \left(\log _{k} x\right)$ and $\log _{1} x=\log x$. In a recent paper (4) Schönhage has shown that the constant $\frac{1}{3}$ may be replaced by the larger number $\frac{1}{2} e^{\gamma}$, where γ is Euler's constant; this is achieved by means of a more efficient selection of the prime moduli used. Schönhage uses an estimate of mine for the number B_{1} of positive integers $n \leqq u$ that consist entirely of prime factors $p \leqq y$, where

$$
u=\alpha x \log x \log _{3} x /\left(\log _{2} x\right)^{2}, \quad y=\exp \left(\delta \log x \log _{3} x / \log _{2} x\right)
$$

Here x is large and α and δ are positive constants to be chosen suitably.
However, an improved estimate for B_{1} can be obtained from the work of de Bruijn (1, 2). It follows from formulæ (1.3) and (1.4) of (1), that $B_{1} \sim u \rho(v)$, where $v=(\log u) / \log y$; by formula (1.8) of (2), $\log \rho(v) \sim-v \log v$. It follows that $B_{1}<u / \log x$, as required by Schönhage, if $\delta<1$ and x is sufficiently large; this improves the previous estimate of $\delta<\frac{1}{2}$. The succeeding steps in the argument are unaltered, so that α may be chosen, as before, to be any number less than δe^{γ}. This means that, for an infinity of values of n,

$$
p_{n+1}-p_{n}>\left(e^{\gamma}-\varepsilon\right) \log p_{n} \frac{\log _{2} p_{n} \log _{4} p_{n}}{\left(\log _{3} p_{n}\right)^{2}}
$$

Similar improvements can be made in Theorems II and III of my earlier paper (3).

REFERENCES

(1) N. G. de Bruinn, On the number of positive integers $\leqq x$ and free of prime factors >y, Nederl. Akad. Wetensch. Proc., (A), 54 (1951), 50-60.
(2) N. G. de Brujun, The asymptotic behaviour of a function occurring in the theory of primes, J. Indian Math. Soc., 15 (1951), 25-32.
(3) R. A. Rankin, The difference between consecutive prime numbers, J. London Math. Soc. 13 (1938), 242-247.
(4) A. Schönhage, Eine Bemerkung zur Konstruktion grosser Primzahllücken, Arch. Math., 14 (1963), 29-30.

The University
Glasgow

