Surface Crystal Plane Determination and Strong Metal-Support Interactions in CeO₂ Nanorod-Supported CuO_x Catalysts

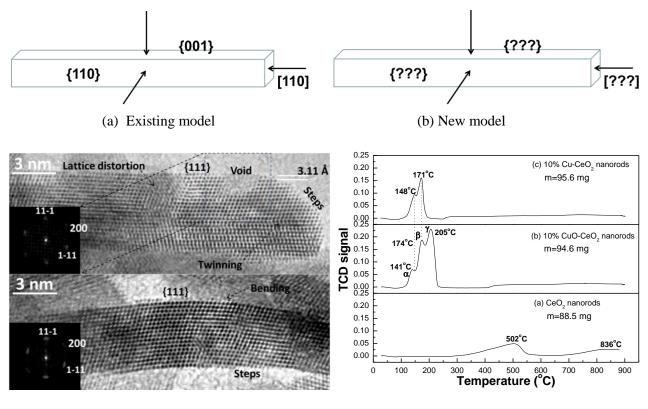
Samantha A. Mock, Elizabeth T. Zell and Ruigang Wang¹

^{1.} Department of Chemistry and Materials Science and Engineering Program, Youngstown State University, Youngstown, OH

Understanding the catalyst-support interactions provides mechanistic information about how the catalytic reaction takes place. Both CuO-CeO₂ and Cu-CeO₂ have been reported to have high catalytic activity to promote carbon monoxide oxidation, water-gas shift reaction, and methanol steam reforming. This can be attributed to the quick reversible Ce^{4+}/Ce^{3+} redox couple, $Cu^{2+}/Cu^{+}/Cu^{0}$ redox triple, and the CuO_x-CeO_{2-x} interactions during the redox processes [1]. The redox functionality of both catalyst and support are vital components for gas adsorption, oxygen migration at the metal-support interface and in the catalytic reactions mentioned above. To further understand CuO_x-CeO₂ interfacial effect, we report a comparative study on CeO₂ nanorod-supported CuO and Cu catalysts for CO oxidation.

CeO₂ nanorods were prepared using a hydrothermal method [2-4]. Typically 0.1M Ce(NO₃)₃·6H₂O and 6M NaOH mixtures were heated to 90~130 °C and held for 48 hrs in a sealed 200 mL Teflon-lined autoclave (~50 % fill). Then the autoclave was cooled to room temperature before the solid products were recovered by suction filtration. The materials were washed thoroughly with distilled water to remove any co-precipitated salts, then washed with ethanol to avoid hard agglomeration in the nanoparticles, and dried in air at 50 °C for 12 hrs. Transmission electron microscopy (TEM) characterization was performed using a JEOL 2100 operated at 200 kV and equipped with an EDAX detector and annular dark-field detector. Hydrogen temperature programmed reduction (H₂-TPR) study was examined using hydrogen chemisorption on the Quantachrome iQ and Micrometrics 2920 to explore how much hydrogen adsorbs as a function of temperature. The catalytic oxidation of CO was conducted by using a fixed bed plug flow reactor system. 1vol%CO/20vol%O₂/79vol%He with a 70 mL/min flow rate was supplied through mass flow controller and passed through the catalyst bed. The catalyst (~100 mg) was mixed with quartz wool (coarse, 9 µm) and filled in the quartz tube reactor. The reaction temperature was programmed between room temperature and 350°C and monitored by thermocouple. The reactant CO and product CO₂ were analyzed by using an on-line gas chromatograph (SRI multiple gas analyzer GC, 8610C chassis) system.

Shown in Figure 1, the HRTEM images of CeO₂ nanorods clearly suggest a {111} termination surface with a significant amount of defects, including steps, voids, lattice distortion, twining, and bending. The data thus obtained are inconsistent with those available in the literature [5], claiming a rod geometry with two {001} and two {011} surfaces, although the {001} surface was occasionally observed in the present study. By exposing these more "defected" crystal planes, CeO₂ nanorods have a much higher surface reduction percentage than their conventional octahedrally shaped counterparts with {111} crystal planes. H₂-TPR (Figure 1) shows that a larger percentage of the reduction takes place in the lower temperature surface reduction area. Figure 1 also compares the H₂-TPR profiles of the 10 w% CuO-CeO₂ nanorods and 10 wt% Cu-CeO₂ nanorods (CeO₂ as a reference), correlated to the three-step and two-step reduction profiles, respectively. For the CuO-CeO₂ sample, the three-step reduction profiles are assigned from low to high temperature as follows: CuO strongly interacting with CeO₂ support; highly dispersed CuO_x species on CeO₂ support; "bulk-like" larger CuO particles. For the Cu-


CeO₂ sample, since only CeO₂ is reducible, it is reasonable to assign these two peaks to the small Cu particles (α -type) that is strongly interacting with CeO₂ support and the well-dispersed Cu particles (β -type) weakly interacting with CeO₂ support. The H₂-TPR result indicates a strong interaction via possible oxygen diffusion between the reduced metallic copper and CeO₂ nanorods is formed and involved in the hydrogen consumption. We will present the atomic level interfacial structure and chemical composition of CeO₂ nanorod-CuO_x catalysts using HRTEM, EDX and EELS in details. [6]

References

[1] Jia, A.P. et al, J. Phys. Chem. C. 114 (2010) 21605.

- [2] Wang, R. et al, RSC Adv. **3** (2013) 19508.
- [3] Wang, R. et al, RSC Adv. 4 (2014) 3615.
- [4] Mock, S.A. et al, J. Colloid Interface Sci. 466 (2016) 261.
- [5] Zhou, K. et al, J. Catal. 229 (2005) 206.

[6] This work is supported by American Chemical Society Petroleum Research Fund (#52323) and National Science Foundation (CHE-1362251). The use of TEM facilities at the Center of Excellence in Materials Science and Engineering at Youngstown State University are gratefully acknowledged.

(c) HRTEM images

(d) H₂-TPR

Figure 1. Possible structural models (a and b) and HRTEM images (c) of the as-synthesized CeO₂ nanorods, and H₂-TPR profiles (d) of CeO₂, 10wt% CuO/CeO₂, and 10wt% Cu/CeO₂ under a 5%H₂/95% Ar gas atmosphere.