P 116. Where is the centre of mass of the Cantor set bent into a ring.
J. Wilker, University of Toronto

Solution by M. Shiffman and S. Spital, California State College at Hayward

It is known that in its n^{\prime} th stage of symmetrical construction the Cantor structure, on the interval $[0,2 \pi]$, contains 2^{n} subintervals of equal lengths $2 \pi / 3^{n}$ with initial points at
(*) $\quad \theta_{k}=2 \pi \sum_{r=1}^{n} d_{r} / 3^{r}$, all $d_{r}=0$ or $2\left(k=1,2, \ldots, 2^{n}\right)$.
Therefore the corresponding unit-circle structure, when placed in the complex plane (symmetrically about the real axis with centre at the origin), yields the centre of gravity (c.g.)

$$
Z_{n}^{\prime}=\sum_{k=1}^{2^{n}} \int_{\theta_{k}}^{\theta_{k}+\left(2 \pi / 3^{n}\right)}(\operatorname{expi} \theta) \operatorname{d\theta } / 2^{n}\left(2 \pi / 3^{n}\right)
$$

However, an application of the mean value theorem for integrals, shows that this is asymptotically equal to the simpler c.g., Z_{n} due only to the initial points $\epsilon_{1}, \ldots, \theta_{2} n-m o r e ~ s p e c i f i c a l l y$

$$
\frac{1}{2^{n}} \sum_{k=1}^{2^{n}} \exp i \theta_{k}=Z_{n}=Z_{n}^{\prime}+0\left(\frac{2 \pi}{3}\right) .
$$

The use of (*) now enables a recursive formulation of Z_{n} :

$$
\begin{aligned}
& Z_{n}=\frac{1}{2^{n}} \sum_{d_{r}=0,2} \exp \left(2 \pi i \sum_{r=1}^{n} \frac{d_{r}}{3^{r}}\right) \\
& Z_{n}=\frac{1}{2^{n}} \sum_{d_{r}=0,2}^{\sum}\left[\exp \left(2 \pi i \sum_{r=1}^{n-1} \frac{d_{r}}{3^{r}}\right)\right]\left[\exp \frac{0}{3^{n}}+\exp \frac{4 \pi i}{3^{n}}\right] \\
& Z_{n}=\frac{1}{2}\left(1+\exp \frac{4 \pi i}{3^{n}}\right) \quad Z_{n-1}
\end{aligned}
$$

Since $Z_{o}=1$ (c.g. of the single point at $\epsilon_{1}=0$),

$$
Z_{n}=\prod_{p=1}^{n}\left(\frac{1}{2}+\frac{1}{2} \exp \frac{4 \pi i}{{ }_{3} p}\right)=\prod_{p=1}^{n}\left(\cos \frac{2 \pi}{{ }_{3} p}\right)\left(\exp \frac{2 \pi i}{{ }_{3} p}\right)
$$

Hence the c.g. of the completed Cantor set is given by

$$
\begin{aligned}
\lim _{n \rightarrow \infty} Z_{n} & =\left[\prod_{p=1}^{\infty} \cos \frac{2 \pi}{3^{p}}\right]\left[\exp \sum_{p=1}^{\infty} \frac{2 \pi i}{{ }_{3} p}\right] \\
& =-\prod_{p=1}^{\infty} \cos \frac{2 \pi}{{ }_{3} p} \doteq 0.37143736
\end{aligned}
$$

Also solved by the proposer.

P 128. Let $7 / T$ be the set of square matrices of order n whose entries are real numbers in the interval $a \leq x \leq b$. Show that the maximum value of a determinant of matrices in the set η) is attained by a matrix M whose entries are exclusively a and b.

N. S. Mendelsohn, University of Manitoba

Solution by A.R. Rhemtulla, University of Alberta

Let $X=\left(x_{i j}\right)$ be an $n x n$ matrix with $a \leq x_{i j} \leq b$.
Det $X=x_{i 1} X_{i 1}+x_{i 2} X_{i 2}+\ldots+x_{i n} X_{i n}$ where $X_{i j}$ is the cofactor of $x_{i j}$. If $a<x_{i j}<b$, then by replacing $x_{i j}$ either by a or by b, and leaving all the other entries intact we obtain X^{\prime} such that det $X^{\prime} \geq \operatorname{det} X$. Carry on the process until each $X_{i j}$ is replaced either by a or by b and the resulting matrix at each stage has determinant not less than the one before.

Of course it does not mean that the determinant of a matrix not all of whose entries are exclusively a and b must always be strictly less than the maximum. This can be seen easily with $a=0, b=1$, and $n=2$:

$$
\operatorname{det}\left(\begin{array}{cc}
1 & x \\
0 & 1
\end{array}\right)=1 \text { for all } 0 \leq x \leq 1
$$

Also solved by L. Cummings, D. Ž. Djoković, M. Edelstein, D. G. Kabe, J. Schaer, K. W. Schmidt, S. Spital and J. Zelver jointly, and the proposer.

P 129. Characterize all finite groups such that e xactly half of their elements are of order 2 (the identity is not counted).

> N.S. Mendelsohn, University of Manitoba

Solution by the proposer.

All such groups are obtained as follows. Let H be an abelian group of odd order. Let G be a normal extension by an involution t which maps every element of H into its inverse, i.e., $t^{2}=1$, $t^{-1} a t=a^{-1}$ for all $a \varepsilon H$. It is clear that a group G constructed this way satisfies the conditions.

Conversely, let $G=\left\{b_{1}=1, b_{2}, \ldots, b_{k}, a_{1}, \ldots, a_{k}\right\}$ be a group such that half of its elements, say a_{1}, \ldots, a_{k}, are of order 2 . By pairing each b_{i}, $i>1$, with its inverse we see that k must be odd. The product of two a^{\prime} 's must be one of the b 's: otherwise there would be a subgroup of order 4 , but 4 does not divide $2 k$. Hence $a_{1} a_{1}, a_{1} a_{2}, \ldots, a_{1} a_{k}$ are the b_{i} in some order. Now the product of two $b^{\prime} s$ is again $a b$ since $\left(a_{1} a_{i}\right) a_{1} a_{j}=\left(a_{1} a_{i} a_{1}^{-1}\right) a_{j}$ is a product of two $a^{\text {r }} \mathrm{S}$. Hence $H=\left\{b_{1}, \ldots, b_{k}\right\}$ is a subgroup and $G=H+H a{ }_{1}$. Finally, since $b_{i} a_{1} b_{i} a_{1}=1$ or $a_{1}^{-1} b_{i} a_{1}=b_{i}^{-1}$, the inverse mapping is an automorphism of H so H is abelian.

Also solved by C. Ayoub, B. Chang, D. ZZ. Djoković, and A.R. Rhemtulla. Several solvers pointed out that this problem has also appeared in the American Math. Monthly [1967, p. 871].

P 130. Show that the system $x^{n}+y^{n}=u^{n}+v^{n}, x+y=u+v$ where n is an integer ≥ 2 has only trivial solutions in the real field.

D.R. Rao, Secunderabad, India

Solution by D. $\begin{aligned} & \text { Ž. Djoković, University of Waterloo }\end{aligned}$
Let $s=x+y=u+v$. The trivial solutions are (1) $u=x, v=y$; (2) $u=y, v=x$; (3) $s=0, n$ odd, so we may assume $s \neq 0$ when n is odd. We have (4) $x^{n}+(s-x)^{n}=u^{n}+(s-u)^{n}$. Let $f(t)=t^{n}+(s-t)^{n}$, $f^{\prime}(t)=n\left(t^{n-1}-(s-t)^{n-1}\right)$. Since $f^{\prime}(t)=0$ impiies $t=s / 2$ and $f(t)=f(s-t)$ for all t, we conclude that f is strictly monotonic in $(-\infty, s / 2)$ and its graph is symmetric with respect to the line $t=s / 2$.

Hence, $f(x)=f(u)$ implies that $u=x$ or $u=s-x$ which together with (4) leads to the trivial solutions (1) and (2). So there is no other solution.

Also solved by the proposer.

