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Abstract

Our main result in this article is a compactness result which states that a noncollapsed sequence of
asymptotically locally Euclidean (ALE) scalar-flat Kähler metrics on a minimal Kähler surface
whose Kähler classes stay in a compact subset of the interior of the Kähler cone must have a
convergent subsequence. As an application, we prove the existence of global moduli spaces of
scalar-flat Kähler ALE metrics for several infinite families of Kähler ALE spaces.

2010 Mathematics Subject Classification: 53C55 (primary); 53C25 (secondary)

Contents

1 Introduction 2

2 Preliminaries 8

3 Compactness I. Convergence of birational structure 20

4 Compactness II. The limit is birationally dominated by X 32

5 Compactness III. Bubbles are resolutions 38

6 Existence results 45

c© The Author(s) 2020. This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the
original work is properly cited.

https://doi.org/10.1017/fms.2019.42 Published online by Cambridge University Press

http://journals.cambridge.org/action/displayJournal?jid=FMS
mailto:han556@purdue.edu
mailto:jviaclov@uci.edu
https://doi.org/10.1017/fms.2019.42


J. Han and J. A. Viaclovsky 2

7 Examples 52

8 Conclusion 62

References 64

1. Introduction

DEFINITION 1.1. An ALE Kähler surface (X, g, J ) is a Kähler manifold of
complex dimension 2 with the following property. There exists a compact subset
K ⊂ X and a diffeomorphism Ψ : X \ K → (R4

\ B)/Γ , such that for each
multi-index I of order |I|

∂I(Ψ∗(g)− gEuc) = O(r−µ−|I|), (1.1)

as r → ∞, where Γ is a finite subgroup of U(2) containing no complex
reflections, B denotes a ball centered at the origin, and gEuc denotes the Euclidean
metric. The real number µ is called the order of g.

REMARK 1.2. In this paper, henceforth Γ will always be a finite subgroup of
U(2) containing no complex reflections.

Any ALE Kähler surface can be blown down to a smooth minimal complex
surface in its birational class, minimal in the sense that there is no rational curve
of self-intersection−1. Our interest lies in building canonical metrics on minimal
ALE Kähler surfaces. Specifically, we are interested in constructing a smooth
family of ALE SFK (scalar-flat Kähler) metrics that corresponding to the versal
deformation family of C2/Γ . Before we discuss existence results, we present our
main theorem in this paper, which is a compactness result.

In the following, if (X, g) is an ALE metric and ϕ is a smooth tensor of any
type, we say that ϕ ∈ C∞δ (X, g) if φ is smooth and ∇I

g ϕ = O(r δ−|I|) as r →∞,
where I is any multi-index of length |I|.

DEFINITION 1.3. Let (X, J ) be a Kähler surface with a smooth ALE Kähler
metric g0, with Kähler form ω0. For −2 < δ0 < −1, define

P(X, J, ω0, δ0) = {ω | ω is Kähler form satisfying ω − ω0 ∈ C∞δ0
(X, g0)}.

(1.2)

The Kähler cone of (X, J ) with respect to ω0 and δ0 is

K(X, J, ω0, δ0) := {[ω] | ω ∈ P(X, J, ω0, δ0)}, (1.3)

where [ω] denotes the class of ω in H 2(X,R).
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Clearly, K(X, J, ω0, δ0) is a convex subspace in the de Rham cohomology
group H 2(X,R). We remark that if J is Stein, then K(X, J, ω0, δ0) is the entire
space H 2(X,R), but if there exist any holomorphic curves, then it is a proper
subset. This is because the integral of the Kähler form over a holomorphic curve
must be strictly positive since it is the area, but if there are no holomorphic curves,
then there are no constraints. See the discussion in Remark 6.1 for details.

DEFINITION 1.4. The lower volume growth ratio of (X, g) is

V(g) ≡ inf
x∈X

inf
0<r<1

Vol(Br (x, g))
r 4

. (1.4)

The following is our main compactness theorem dealing with sequences of
ALE SFK metrics with respect to a fixed complex structure.

THEOREM 1.5. Let (X, J, g0) be an ALE minimal Kähler surface, associated
with an ALE coordinate of asymptotic rate O(r δ0), (−2 < δ0 < −1). Let κi ∈

K(X, J, ω0, δ0) be a sequence with κi → κ∞ ∈ K(X, J, ω0, δ0) as i →∞. If gi

is a sequence of ALE SFK metrics with ωi ∈ P(X, J, ω0, δ0) satisfying:

(1) [ωi ] = κi ;

(2) there exists a constant v > 0, independent of i , such that V(gi) > v;

then there exists a subsequence { j} ⊂ {i} and ω∞ ∈ P(X, J, ω0, δ0) such that
ω j → ω∞ in C k,α

δ0
(X, g0) norm for any k > 0, 0 < α < 1, as j →∞, where g∞

is an ALE SFK metric satisfying [ω∞] = κ∞.

For the definition of the weighted norm, see Section 2.1 below. A brief outline
of the proof of Theorem 1.5 is follows. First, we apply the compactness result of
Tian and Viaclovsky [TV05b] to obtain an ALE SFK orbifold limit X∞, in the
pointed Cheeger–Gromov sense. In Section 3, we also show that the limit X∞
is birationally equivalent to (X, J ). Then, in Section 4, we show that the limit
space X∞ is moreover birationally dominated by X , that is, X∞ is a blowdown
of X . The key point in this step is to show that there are no (−1) curves in
the minimal resolution of X∞, the proof of which uses crucially the minimality
assumption on X . Then in Section 5, using some key results of Lempert, we
show that in the ‘bubble tree’ of each orbifold singularity in the limit space, each
bubble is biholomorphic to a resolution of an orbifold singularity in the previous
bubble. This, together with a result of Laufer, implies the area contraction of a
holomorphic curve, which contradicts with the nondegeneracy of the limiting
Kähler class, and therefore the limit space must be a smooth ALE SFK metric.
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We remark that Theorem 1.5 in some sense can be viewed as a noncompact
analogue of the main result in [CLW08].

DEFINITION 1.6. For (X, J, g0) an ALE SFK Kähler surface, let

V(P(J )) = inf
g∈P(J )

Rg=0

V(g), (1.5)

where P(J ) = P(X, J, ω0, δ0).

Our main existence result is the following.

COROLLARY 1.7. Let (X, J, g0) be as in Theorem 1.5, and assume that g0 is SFK.
If

V(P(J )) > 0, (1.6)

then for any κ ∈ K(X, J, ω0, δ0), there exists an ALE SFK metric ω ∈ P(J ) with
[ω] = κ .

This theorem is proved by using the continuity method. Openness in the
continuity method follows from the same method in [HV16, Section 8].
Closedness follows from Theorem 1.5.

REMARK 1.8. The family of ALE SFK metrics constructed by the continuity
method depends upon the initial metric we choose, but otherwise does not depend
upon the specific value of δ0 for −2 < δ0 < −1.

REMARK 1.9. In certain examples, we can prove the noncollapsing condition
required in Corollary 1.7 by using a topological argument; we discuss these
examples in Section 1.2 below.

1.1. General existence results. In order to state our next result, we need to
recall some theory regarding the deformations of C2/Γ . By a classical theorem
of Grauert [Gra72] (and see [Elk74] for the algebraic version), there exists a
(mini)versal deformation Y → Der(Y0) of C2/Γ , such that any deformation of
C2/Γ over a complex space germ can be obtained by a pullback morphism from
the versal deformation, on the level of germs (see [GLS07] for the complete
definition of versality). Furthermore, there is a natural C∗-action on Der(Y0),
which lifts to a C∗-action on Y (which is of negative weight, see [Pin78,
Section 2]). The complex space germ Der(Y0) can be reducible in general.
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Let r + 1 denote the number of irreducible components, and denote each
irreducible component by Derk(Y0), k ∈ {0, . . . , r}. By [KSB88, BC94], for each
irreducible component, there exists a unique P-resolution Z P

k → Y0, a unique
M-resolution Z M

k → Z P
k , and finite base changes Der′(Z M

k ) → Der′(Z P
k ) →

Derk(Y0). Using the C∗-action, we can extend Der′(Z M
k ),Der′(Z P

k ),Derk(Y0) to
global analytic spaces J M

k ,J P
k ,Jk , which are bases spaces of deformations Xk,

Zk,Yk , respectively, and the total spaces admit C∗-actions such that the following
diagram is C∗-equivariant

Xk Zk Yk

J M
k J P

k Jk .

(1.7)

Define global base spaces

J M
=

⋃
06k6r

J M
k , J P

=

⋃
06k6r

J P
k , J =

⋃
06k6r

Jk . (1.8)

Note that while J is connected, the spaces J P ,J M have r + 1 connected
components. We also note that J M

0 is the simultaneous resolution of the Artin
component, up to a base change. Further details of this construction can be found
in Section 2.3.

In a recent work of [HRŞ16], it is shown that any ALE Kähler surface is
birationally equivalent to a deformation of C2/Γ . Their work indicates that the
space of minimal ALE Kähler surfaces is essentially parameterized by Der(Y0).
In Lemma 2.5 below, we show that any minimal ALE Kähler surface (X, J ) is
biholomorphic to an element in J M . For this reason, it is reasonable to first restrict
our attention to complex structures parameterized by the base space J M (or J P ).

THEOREM 1.10. There exists a smooth family of background ALE Kähler metrics
ωb,J , for all smooth fibers over J ∈ J M (similarly for J ∈ J P away from the
discriminant locus).

This will be proved in Section 6 below. Our main interest is therefore in
constructing ALE SFK metrics in these ALE Kähler classes. We emphasize
that in all the following results, the Kähler cone is defined with respect to the
background ALE Kähler metric ωb,J . Thus, in the following when there is no
ambiguity, we abbreviate P(X, J, ωb,J , δ0) and K(X, J, ωb,J , δ0) as P(J ) and
K(J ), respectively.

Recall from above that for each irreducible component Jk in the moduli space
J associated to the versal deformation of C2/Γ , there corresponds a P-resolution
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Z P
k and a M-resolution Z M

k . The space Z P
k is an orbifold with singularities of type

T , and the space Z M
k is an orbifold with only type T0 singularities.

THEOREM 1.11. Let J be the moduli space associated to the versal deformation
of C2/Γ as defined in the previous paragraphs. Let Jk be an irreducible
component.

(a) If Jk = J0 is the Artin component, then for any complex structure J ∈ J M
0

there exists an ALE SFK metric in some Kähler class in K(J ).

(b) For k > 0, if there exists an ALE SFK orbifold metric on the orbifold Z M
k ,

then for any complex structure J ∈ J M
k away from the central fiber, there

exists an ALE SFK metric in some Kähler class in K(J ).

(c) For k > 0, if there exists an ALE SFK orbifold metric on the orbifold Z P
k ,

then for any complex structure J ∈ J P
k away from the discriminant locus,

there exists an ALE SFK metric for some Kähler class in K(J ).

Case (a) follows easily from [HV16, Theorem 1.4]. Cases (b) and (c) are
obtained by applying a generalization of a result of Biquard–Rollin to the ALE
case [BR15]. For the precise statement, see Theorem 6.2 below.

Recall that for integers p, q satisfying (p, q) = 1, the cyclic action 1
p (1, q)

is that generated by (z1, z2) 7→ (ζpz1, ζ
q
p z2), where ζp is a primitive pth root of

unity.

COROLLARY 1.12. Let Γ = 1
p (1, q) be any cyclic group with (p, q) = 1, and let

J M
k be any component of J M . Then for any J ∈ J M

k (J is away from the central
fiber if k > 0), there exists a scalar-flat Kähler metric ωJ in some Kähler class.

This is obtained by using the Calderbank–Singer construction from [CS04],
together with Theorem 1.11.

1.2. Global existence results. We now turn our attention to existence of
global moduli spaces of ALE SFK metrics for certain groups Γ . The following
theorem is an application of Case (a) in Theorem 1.11 together with Corollary 1.7.

THEOREM 1.13. Let Γ ⊂ U(2) be any of the following groups:

1
3 (1, 1), 1

5 (1, 2), 1
7 (1, 3). (1.9)

Note that for these groups, the versal deformation space of C2/Γ has only the
Artin component J , which has b2(X) = 1, 2, 3, respectively, where b2 denotes
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the second Betti number. Then for any complex structure J ∈ JM, and any
Kähler class [ω] ∈ K(J ), there exists a scalar-flat Kähler ALE metric g satisfying
[ωg] = [ω].

REMARK 1.14. Our method also proves an analogous global existence result for
the case Γ ⊂ SU(2). However, this case was explicitly constructed by Kronheimer
using the hyperkähler quotient construction [Kro89], so we do not devote any
extra attention to this case. Note also that the Q-Gorenstein smoothings of the
type T cyclic singularities admit Ricci-flat Kähler metrics which are just quotients
of the Ak-type hyperkähler metrics by finite groups of isometries [Şuv12, Wri12].
These metrics play a crucial role in our analysis of non-Artin components.

REMARK 1.15. A drastic difference between the ADE cases and the non-ADE
cases, is that the global moduli spaces in the latter cases can have ‘holes’ which
can only be filled in by certain smoothings of orbifolds which have nonminimal
resolutions. This phenomenon arises already in the case of O(−n) for n > 3. See
Section 8 below for details of these examples.

The groups in Theorem 1.13 have only Artin components. The next result deals
with five infinite families of non-Artin components, and is an application of Case
(b) in Theorem 1.11, together with Corollary 1.7.

THEOREM 1.16. Let Γ ⊂ U(2) be any of the following groups for r > 2

Γ =
1

r 2 + r + 1
(1, r), (1)

Γ =
1

r 2 + 2r + 2
(1, r + 1) or Γ =

1
2r 2 + 2r + 1

(1, 2r + 1), (2)

Γ =
1

r 2 + 3r + 3
(1, r + 2) or Γ =

1
3r 2 + 3r + 1

(1, 3r + 2). (3)

There is a non-Artin component J (i) of the versal deformation space of C2/Γ

with b2(X) = i in Case (i), i = 1, 2, 3. For any complex structure J ∈ J M(i)
away from the central fiber, and any Kähler class [ω] ∈ K(J ), there exists a
scalar-flat Kähler ALE metric g satisfying [ωg] = [ω].

Finally, we conjecture that the assumption on the lower volume growth ratio is
redundant, and that for any group Γ , there exists ALE SFK metrics in all Kähler
classes for all complex structures in the versal family.
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2. Preliminaries

2.1. Notation. In this section, we record some symbols and notations that will
be used in this article. Weighted Hölder spaces are defined as follows.

DEFINITION 2.1. Let E be a tensor bundle on X , with Hermitian metric ‖ · ‖h .
Let ϕ be a smooth section of E . We fix a point p0 ∈ X , and define r(p) to be the
distance between p0 and p. Then define

‖ϕ‖C0
δ
:= sup

p∈X
{‖ϕ(p)‖h · (1+ r(p))−δ} (2.1)

‖ϕ‖Ck
δ
:=

∑
|I|6k

sup
p∈X
{‖∇

Iϕ(p)‖h · (1+ r(p))−δ+|I|}, (2.2)

where I = (i1, . . . , in), |I| =
∑n

j=1 i j . When there is no ambiguity, if |I| = d ,
we abbreviate ∇Iϕ by ∇(d)ϕ. Next, define

[ϕ]Cα
δ−α
:= sup

0<d(x,y)<ρinj

{
min{r(x), r(y)}−δ+α

‖ϕ(x)− ϕ(y)‖h

d(x, y)α

}
, (2.3)

where 0 < α < 1, ρinj is the injectivity radius, and d(x, y) is the distance between
x and y. The meaning of the tensor norm is via parallel transport along the unique
minimal geodesic from y to x , and then take the norm of the difference at x . The
weighted Hölder norm is defined by

‖ϕ‖Ck,α
δ
:= ‖ϕ‖Ck

δ
+

∑
|I|=k

[∇
Iϕ]Cα

δ−k−α
, (2.4)

and the space C k,α
δ (X, E) is the closure of {ϕ ∈ C∞(X, E) : ‖ϕ‖Ck,α

δ
<∞}.

• ε(i | δ): The symbol ε(i | δ) represents a small positive number, and for any
fixed δ > 0, ε(i | δ)→ 0 as i →∞.

• Λ·,Λ·,·,Ω ·: Λp stands for the space of real p-forms, Λp,q stands for the space
of complex (p, q)-forms, Ω p stands for the space of complex (p, 0)-forms.

• X̃ : For a complex variety X of complex dimension 2, X̃ stands for the minimal
resolution of X .

• V : For a topological space V , V stands for its universal cover.

• g, ω: We denote the Riemannian metric by g and ω = g(J ·, ·) as the
corresponding Kähler form. But on occasion when there is no ambiguity, we
use these two symbols alternatively for convenience.
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2.2. Facts about ALE Kähler surfaces. We list some facts about ALE Kähler
surfaces which we use later. We always assume the asymptotic rate −µ < −1.

By applying Hodge index theorem as shown in [HL16, Proposition 4.2], an
ALE Kähler surface has only one ALE end. As pointed out by Hein–LeBrun,
for an ALE Kähler metric (X, g, J ) of order µ, the complex structure has an
asymptotic rate of

∂I(J − JEuc) = O(r−µ−|I|), (2.5)

for any multi-index I as r → ∞, where JEuc is the standard complex structure
on Euclidean space. This is because, ∇gEuc J = (∇gEuc − ∇g)J = O(r−µ−1). The
integral along each gEuc-geodesic ray implies the ALE asymptotic rate of J as
above.

REMARK 2.2. Although our proof will not require the following, we make a
remark on the optimal decay rates of the metric and complex structure. For
any ALE SFK metric, there exists an ALE coordinate with optimal metric
asymptotic rate of O(r−2), see [AV12, LM08, Str10]. Furthermore, by [HL16,
Proposition 4.5], for (X, g, J ) of order µ, there exists an ALE coordinate which
is still at least of order µ, and for which J converges to the Euclidean complex
structure JEuc at the rate of O(r−3). Therefore, if g is ALE SFK, there always
exists an ALE coordinate so that the metric g converges to gEuc at the rate of
O(r−2) and J ∼ JEuc + O(r−3) as r →∞.

For an ALE Kähler surface X , H−3(X,Λ
1,1
R ) stands for the space of decaying

real harmonic (1, 1)-forms. Note that any decaying real harmonic (1, 1)-form
has a decay rate at least O(r−3), and H 2(X,R) ∼= H−3(X,Λ

1,1
R ) (for details

see [HV16, Section 7] and [Joy00, Sections 8.4 and 8.9]). We have the following
which is a consequence of a ∂∂̄-lemma for Kähler forms as shown in [HV16,
Lemma 8.3].

LEMMA 2.3. For any two smooth Kähler metrics ω1, ω2 over an ALE Kähler
surface (X, J ), ifω1−ω2 = O(r ν−2), (0< ν < 1), and

∫
X (ω1−ω2)∧h = 0 for any

h ∈H−3(X,Λ
1,1
R ), then there exists φ ∈ C∞ν (X,R), such that ω2 = ω1+

√
−1∂∂̄φ.

In particular, this shows that our definition of the Kähler cone in Definition 1.3
is the ‘correct’ one: any two Kähler forms whose difference decays and is zero in
the de Rham cohomology group H 2(X,R), must differ by

√
−1∂∂̄φ, where φ is

of sublinear growth rate.
Another important fact about ALE Kähler surfaces is that they are one-convex,

which we define next.
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DEFINITION 2.4 (One-convex surface). A one-convex surface X is a noncompact
complex surface carrying a C∞-exhaustion function f : X → [0,∞) which is
strictly plurisubharmonic outside a compact set.

To see that an ALE Kähler surface is one-convex: using an ALE coordinate
system, extend the pullback of the function r 2

Euc to a smooth nonnegative function
on all of X , and this will be the required function f . Any one-convex surface
X is a point modification of a Stein space Y , that is, X is obtained from Y by
substituting some points with compact analytic sets; for more details, see [Pet94,
Theorem 2.1]. On a one-convex surface X , any holomorphic function defined
outside of a compact set can be extended to a holomorphic function on X .
This is because a holomorphic function defined outside of a compact set on the
Remmert reduction Y can be extended to a holomorphic function on Y by [Ros63,
Theorem 6.1], and then can be lifted up to a holomorphic function on X .

2.3. Versal deformation of C2/Γ . In this subsection, we provide more details
of the versal family, and the deformation to the normal cone construction.

By Artin [Art74] and Wahl [Wah79], there exists an irreducible component
Der0(Y0) ⊂ Der(Y0), with a finite base change (which is a Galois cover) Res→
Der0(Y0), such that there exists a simultaneous resolution X that satisfies the
commutative diagram:

X Y

Res Der0(Y0)

(2.6)

The base Der0(Y0) is called the Artin component of the versal deformation. The
Artin component is the only irreducible component which admits a simultaneous
resolution. According to Wahl, Der0(Y0) = Res/W , where W is the Weyl group
action. Since the C∗-action is preserved under the finite base change, we can apply
the C∗-action on Res. Then we obtain a global analytic space J0 and a family
X → J0. Each fiber Xt is smooth.

We recall some facts from [KSB88]. There exists a one-parameter Q-
Gorenstein smoothing of C2/Γ if and only if Γ ⊂ SU (2), or C2/Γ is a
type T singularity, that is, Γ is cyclic of type 1

r2s (1, rsd − 1) where r > 2, s > 1,
(r, d) = 1. See Section 7 below for more details about type T singularities. For
each non-Artin component Derk(Y0) (k > 0), there exists a P-resolution Z P

k with
only type T singularities, which has a local moduli space of Der′(Z P

k ) which is
the component corresponding to Q-Gorenstein smoothings. Furthermore, there
exists a finite base change Der′(Z P

k )→ Derk(Y0).
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Next, we recall some facts from [BC94]. There exists an M-resolution Z M
k →

Z P
k with only type T0 singularities (type T singularities with s = 1), which has a

local moduli space Der′(Z M
k ), where all nearby fibers are smooth; here Der′(Z M

k )

denotes the component corresponding to Q-Gorenstein smoothings. There exists a
finite base change Der′(Z M

k )→ Der′(Z P
k ). All together, we have the commutative

diagram
X Z Y

Der′k(Z
M
k ) Der′(Z P

k ) Derk(Y0).

(2.7)

Each fiber Zt is smooth away from the discriminant locus. Each fiber Xt is
smooth save the central fiber. For t ′′ ∈ Der′(Z M

k ), t ′ ∈ Der′(Z P
k ), t ∈ Derk(Y0)

with t ′′ mapped to t ′, t ′ mapped to t , there exists resolutions Xt ′′ → Zt ′ → Yt , and
Xt ′′ is minimal when t ′′ 6= 0. J M

k ,J P
k are generated by applying the C∗-action on

Der′(Z M
k ), Der′(Z P

k ) respectively.
By [HRŞ16], any ALE Kähler surface is birationally equivalent to an element

in the versal deformation of C2/Γ . We review some details of the construction
in [HRŞ16] which will be needed in our proof. For an ALE Kähler surface X
under our consideration, the asymptotic rate of the complex structure is faster
than O(r−1−ε). By [HL16], the O(r−1−ε) asymptotic rate of the complex structure
implies that X can be compactified analytically to a compact orbifold X̂ = X ∪D,
where D is isomorphic to P1 quotient by a finite group (see [Li14] for the more
general asymptotically conical case). There exists a positive integer m ∈ Z+ such
that m · D is a Cartier divisor, which induces a line bundle L in X̂ . By a Nakai–
Moishezon type argument, it is shown in [HRŞ16] that for some k ∈ Z+ large
enough, H 0(X̂ , Lk)→ H 0(D, Lk) is surjective and Lk

→ X̂ is globally generated.
As a result, there exist holomorphic sections s0, . . . , sN in H 0(X̂ , Lk), where s0 is
the defining section of km · D, that is, s0 vanishes exactly on D, such that images
of s1, . . . , sN in H 0(D, Lk) are generators. Then the linear system |H 0(X̂ , Lk)|

maps X̂ to PN by [s0, . . . , sN ], where the image X̂ ′ is birationally equivalent to X̂ .
Furthermore, u1

= s1/s0, . . . , uN
= sN/s0 can extend to holomorphic functions

on X , and u = (u1, . . . , uN ) maps X to X ′ in CN . Define the graded ring

R =
⊕
n>0

H 0(X̂ ,O(n · D)) (2.8)

which is finitely generated. Let R[z] be a graded ring where z is a free variable of
the degree 1 and is defined as

R[z] =
⊕
n>0

( ⊕
06 j6n

H 0(X̂ ,O( j · D)) · zn− j

)
. (2.9)
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The deformation to the normal cone is defined by

X̂ ′ = {s − t z = 0} ⊂ Proj(R[z])× C, (2.10)

where s is the defining section of D, t ∈ C, X̂ ′1 is identified with X̂ ′, and C(D) :=
X̂ ′0 \ D is the normal cone of D. This implies that X ′ is a deformation of C2/Γ .
By versality, the deformation to the normal cone can be considered as a pullback
of the versal deformation of C2/Γ .

We next have the following proposition which parameterizes all minimal ALE
Kähler surfaces.

PROPOSITION 2.5. Each minimal ALE Kähler surface is biholomorphic to an
element in J M .

Proof. Let X be a minimal ALE Kähler surface with an end asymptotic to C2/Γ .
Then there exists no (−1)-curve in X . By the result of [HRŞ16], X is birationally
equivalent to Y , which is a deformation of C2/Γ . By the commutative diagram
(2.7), there exists an element X ′ in J M , which is the minimal resolution of Y .
Since X, X ′ are one-convex spaces and they are birationally equivalent with each
other, there exist compact subsets K ⊂ X, K ′ ⊂ X ′, and a biholomorphic map
Φ : X \ K → X ′ \ K ′. Furthermore, by choosing K large enough, there exist
holomorphic functions u1, . . . , uN on X \ K , which embed X \ K into CN by
u = (u1, . . . , uN ). Since X is one-convex, u can be extended to a holomorphic
map on X . Meanwhile u ′ = u ◦Φ−1 embeds X ′ \ K ′ into CN and can be extended
to a holomorphic map on X ′. The image u(X \ K ) in CN coincides with the image
u ′(X ′ \ K ′), which is denoted by V . The boundary of V is a strictly pseudoconvex
manifold (V itself is called strictly pseudoconcave). By [HL75, Theorem 10.4],
there exists a unique Stein space W in CN , which extends from V through its
boundary smoothly. By uniqueness of analytic extension, u(X), u ′(X ′) coincide
with W , and thus W is the Remmert reduction of X, X ′. Since each isolated 2-
dimensional quotient singularity, there exists a unique minimal resolution, then
W has a unique minimal resolution. Then by the minimality of X, X ′, they are
both biholomorphic to the minimal resolution of W .

2.4. Volume local noncollapsing. Let (X, g) be an ALE SFK metric, with
the complex orientation so that W+

g ≡ 0, and group Γ at infinity. Let (M, [ĝ]) be
the orbifold conformal compactification, with the reversed orientation so that the
group at the orbifold point is also Γ [Via10]. Since the orientation is reversed, we
have that W−

ĝ ≡ 0. Note that [ĝ] is a priori a self-dual conformal structure, but
by [CLW08, Proposition 12], we can assume that there is a metric representative
ĝ ∈ [ĝ] which is moreover a smooth Riemannian orbifold.
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The Hirzebruch signature theorem for orbifolds [Kaw81] states that,

τ(M) =
1

12π 2

∫
M
‖W+
‖

2 dVg − η(S3/Γ ), (2.11)

and η(S3/Γ ) is the η-invariant of the signature complex, which for a finite
subgroup Γ ⊂ SO(4) acting freely on S3, is given by

η(S3/Γ ) =
1
|Γ |

∑
γ 6=Id∈Γ

cot
(

r(γ )
2

)
cot
(

s(γ )
2

)
, (2.12)

where r(γ ) and s(γ ) denote the rotation numbers of γ ∈ Γ .
The Chern–Gauss–Bonnet theorem for orbifolds [Kaw81] states that

χ(M) =
1

8π 2

∫
M

(
‖W‖2

−
1
2
|E |2 +

1
24

R2

)
dVg +

(
1−

1
|Γ |

)
, (2.13)

where E denotes the traceless Ricci tensor, and R denotes the scalar curvature.
Using (2.11) and (2.13), we obtain

2χ(M)− 3τ(M) =
1

4π 2

∫
M

(
−

1
2
|E |2 +

1
24

R2

)
dVĝ

+ 2
(

1−
1
|Γ |

)
+ 3η(S3/Γ ). (2.14)

Define the quantity

C(X) = 2χ(M)− 3τ(M)− 2
(

1−
1
|Γ |

)
− 3η(S3/Γ ). (2.15)

Then we obtain

C(X) 6 1
96π 2

∫
M

R2 dVĝ. (2.16)

We note that the conformal class is of positive type, that is, Y (M, [ĝ]) > 0 [AB04,
CLW08]. If there exists a minimizing solution of the Yamabe problem on the
orbifold (M, [ĝ]) then since the scalar curvature is constant we obtain the lower
estimate on the Yamabe invariant.

Y (M, [ĝ]) > 4
√

6π
√
C(X). (2.17)

If there does not exist a Yamabe minimizer, then the estimate of Akutagawa and
Botvinnik [Aku12, AB04] says that the Yamabe invariant must be maximal

Y (M, [ĝ]) =
8
√

6 · π
√
|Γ |

. (2.18)
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In either event, if C(X) > 0 we have that the Yamabe invariant is strictly bounded
below by a positive constant. From (2.17), we have∫

M
u�ĝu dVĝ > 4

√
6π
√
C(X)

{∫
M

u4 dVĝ

}1/2

(2.19)

for any u ∈ C∞(M), where

�ĝ = −6∆ĝ + Rĝ (2.20)

is the conformal Laplacian.
Writing g̃ = v2g, we have the transformation formula

�g̃(u) = v−3�g(uv). (2.21)

This yields ∫
M

f�g f dVg > 4
√

6π
√
C(X)

{∫
M

f 4 dVg

}1/2

. (2.22)

Since g is scalar flat, �g = −6∆g, so we obtain the L2-Sobolev inequality{∫
X

f 4 dVg

}1/2

6

√
6

4π
√
C(X)

∫
X
|∇ f |2 dVg, (2.23)

for all f ∈ C∞c (X).
Note that since M = X ∪ {pt}, we have χ(M) = χ(X) + 1. Also, since the

orientation is reversed, we have τ(M) = −τ(X). Since (X, g) is Kähler ALE, we
have b1(X) = 0. Therefore,

C(X) = 2− b2(X)+
2
|Γ |
− 3η(S3/Γ ). (2.24)

Therefore, we have the following:

PROPOSITION 2.6. If (X, J, g) is an ALE SFK metric with C(X) > 0, then there
exists a constant v > 0, depending only upon X, such that V(g) > v.

Proof. The above argument shows that there is a uniform L2-Sobolev inequality.
The lower volume growth estimate follows from this by a standard argument,
see [Heb96, Lemma 3.2].

For any component J M
k , we define C(J M

k ) to be C(X), where X is
diffeomorphic to a smooth fiber of the component J M

k (noting that any two
such fibers are diffeomorphic).
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2.5. Cheeger–Gromov convergence. We begin this subsection with the
following notion of convergence.

DEFINITION 2.7 (Pointed Cheeger–Gromov convergence). A sequence of Kähler
manifolds (X i , gi , Ji , xi) converges to a Kähler orbifold space (Z , g, J, z) in
the pointed Cheeger–Gromov sense if (X i , gi , xi) converges to (Z , g, z) in the
pointed Gromov–Hausdorff sense, and there exists a subset S = {p1, . . . , pm} ⊂

Z which contains the singular set of Z , for any compact subset K ⊂ Z \ S
containing z, there exists diffeomorphisms ψi : K → X i , such that ψ∗i gi , ψ

∗

i Ji

converges to g, J in C k,α(K )-sense, for some k, α.

We refer to [And89, Ban90, BKN89, Nak94, TV05b, Tia90] for more details
on this type of convergence.

First recall the ε-regularity theorem proved in [TV05a, TV08]. Let (X, g) be
a complete scalar-flat Kähler 4-dimensional manifold, with a local volume ratio
lower bound v > 0, that is, vol(Br (x)) > v · r 4 for any |r | < 1. In [TV05a,
Theorem 1.1], by studying the PDE system with a Moser-iteration type argument,

∆g Ric = Rm ∗ Ric (2.25)

∆g Rm = L(∇2
g Ric)+ Rm ∗ Rm (2.26)

the authors proved that there exists an ε0 = ε0(v) > 0, such that if∫
X \ BR(x0)

‖Rm(g)‖2 dVg < ε0, then there exists C = C(v) > 0, such that
‖Rm(g)‖ < C ·r−2 on X \ BR(x0), where x0 is a point in X , BR(x0) is the geodesic
ball centered at x0 with a radius of R. Note that the argument in [TV05a] required
a Sobolev constant bound, but this was weakened to only a lower volume growth
assumption in [TV08]. Furthermore, by Kato’s inequality and a further analysis
of the connection form, for any −2 < −µ < −1, for any positive integer k, there
exists C ′ = C ′(v, k) > 0, such that, on X \ BR(x0), ‖∇(k)Rm(g)‖ < C ′ · r−2−µ−k .
We call the ε0 above the ‘energy threshold’.

By the proof of [BKN89, Theorem 1.1], there exists a harmonic coordinate on
the universal cover of X \ BR(x0), which provides an ALE coordinate

H : X \ BR(x0)→ R4/Γ, (2.27)

and constants C ′′ = C ′′(v, k) > 0, such that

|∂ (k)(H∗g − gEuc)| < C ′′ · r−µ−k . (2.28)

Note that the harmonic coordinates are technically defined on the universal cover
X \ BR(x0), which is a mapping H : X \ BR(x0) → R4 defined by harmonic
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functions of ‘linear growth’. However, by the rigidity of harmonic coordinates
proved in [Bar86, Corollary 3.2], for any γ ∈ Γ , γ ∗H = γ · H , where in the
latter formula γ is considered as a linear map in SO(4). This implies that H is
Γ -equivariant and can descend to a map H : X \ BR(x0)→ R4/Γ .

DEFINITION 2.8. An energy concentration point x∞ ∈ X∞ is a point such that
for any δ > 0, there exists xi ∈ X i with xi → x∞ (in the Gromov–Hausdorff
distance), and such that ∫

Bδ(xi )

‖Rm(gi)‖
2 dVgi > ε0, (2.29)

where ε0 is the energy threshold.

We next define a stronger notion of pointed Cheeger–Gromov convergence in
the ALE setting which includes the convergence near∞.

DEFINITION 2.9. Let (X i , Ji , gi , xi) be a sequence of ALE Kähler surfaces,
where each gi is asymptotic to gEuc of order O(r−µ) (−2 < −µ < −1)
with respect to a fixed ALE coordinate. We say the sequence {(X i , Ji , gi , xi)}

converges in the sense of ‘pointed Cheeger–Gromov with a uniform ALE
asymptotic rate of order O(r−µ)’ if there exists an ALE Kähler orbifold (X∞,
J∞, g∞, x∞), where p1, . . . , pm are ‘energy concentration’ points in X∞, such
that

(X i , Ji , gi , xi)
pointed Cheeger–Gromov
−−−−−−−−−−−−→ (X∞, J∞, g∞, x∞)

for any k ∈ Z>0, 0 < α < 1, and for any δ > 0, when i is sufficiently large, there
exists a diffeomorphism

ψi : X∞ \
⊔

16 j6m

Bδ(p j)→ X i

such that ‖ψ∗i gi − g∞‖Ck,α
−µ (g∞)

< ε(i | k, δ), ‖ψ∗i Ji − J∞‖Ck,α
−µ (g∞)

< ε(i | k, δ).

Note that if a sequence converges in the above sense, then X∞ has end
diffeomorphic to R4/Γ with the same group Γ as for X i . Also, for each ‘energy
concentration’ point p above, there exists a sequence of points pi ∈ X i , where
lim
i→∞
‖Rm(pi)‖C0(gi ) →∞. We also remark that p may not strictly be an orbifold

point, since the ‘bubble’ appearing at p could be OCP1(−1) with the Burns
metric [Bur86, Cal79].

LEMMA 2.10. Consider a sequence of ALE SFK metrics (X i , Ji , gi , xi) which
are ALE of asymptotic rate O(r−µ) with respect to a fixed ALE coordinate,
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where −2 < −µ < −1. Assume that:

(1) the spaces X i are diffeomorphic to a fixed space X;

(2) there exists a constant v > 0, independent of i , such that Vol(Br (x, gi)) >

v · r 4 for each x ∈ X and 0 < r 6 1;

(3) there exists R > 0, such that
∫

X i \ BR(xi ,gi )
‖Rm(gi)‖

2
C0 dVgi < ε0/2, where

BR(xi , gi) is a geodesic ball with respect to the metric gi .

Then up to a subsequence, (X i , Ji , gi , xi) converges to an ALE SFK orbifold (X∞,
J∞, g∞, x∞) in the sense of pointed Cheeger–Gromov convergence with a uniform
ALE asymptotic rate of order O(r−µ).

Proof. For convenience, in the following of the proof, C is denoted as a positive
constant with value that may vary line by line. If C depends on the subscript i
(index of the sequence) (or the superscript k (degree of regularity)), we specify it
as C = C(i) (or C(k)).

The Hirzebruch signature theorem for an ALE SFK metric states that,

τ(X) = −
1

12π 2

∫
X
‖W−
‖

2 dVg + η(S3/Γ ), (2.30)

and the Chern–Gauss–Bonnet theorem in this setting [Hit97, Nak90] states that

χ(X) =
1

8π 2

∫
X

(
‖W−
‖

2
−

1
2
|E |2

)
dVg +

1
|Γ |

. (2.31)

Consequently, if the group Γ is fixed, and all of the spaces are diffeomorphic,
then there exists a constant C so that∫

X i

‖Rm‖2
gi

dVi 6 C. (2.32)

By (2.27), there exists an ALE coordinate Hi : X i \ BR(xi)→ R4/Γ , such that

|∂ (k)(Hi ∗gi − gEuc)| < C(k) · r−ν−k, (2.33)

where we can choose −ν between −2 < −ν < −µ. By our assumption of
lower volume growth, by [TV05b, Theorem 1.1] and [TV08, Theorem 1.3], up to
a subsequence, (X i , gi , xi) converges to (X∞, g∞, x∞) in the pointed Gromov–
Hausdorff sense. Since Ji is parallel with respect to gi , it is easy to see that
there is a limiting complex structure J∞. Moreover, using [TV05b, Theorem 6.1],
the limit (X∞, J∞, g∞, x∞) is an ALE SFK orbifold. Without loss of generality,
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assume x∞ is the only energy concentration point in X∞. Then for any δ > 0,
R > δ > 0, there exists a diffeomorphism

ψ ′i : Aδ,2R(x∞)→ X i (2.34)

such that ψ ′i
∗gi

C∞
−→ g∞. For a R large enough (with its specific value to be

determined later), there exists an ALE coordinate

π : X∞ \ BR(x∞)→ R4/Γ (2.35)

such that |∂ (k)(π∗g∞− gEuc)| < C(k) · r−ν−k , where r is the Euclidean distance to
the origin. Since on Aδ,2R(x∞), ψ ′i

∗gi converges to g∞ smoothly, for each ε ′ > 0,
by choosing R large enough, and when i is sufficiently large,

Hi ◦ ψ
′

i ◦ π
−1
= Ai + Qi (2.36)

where Ai is induced from a subgroup of SO(4) acting on the universal cover of
R4/Γ , |Qi | < ε ′. Since Ai is induced from a subgroup of SO(4), A−1

i ◦ Hi :

X i \ BR(xi) → R4/Γ is still an ALE coordinate with the same asymptotic rate.
Then we can extend ψ ′i to a diffeomorphism ψi from X∞ \ Bδ(x∞) to X i \ Bδ(xi)

by defining

ψi =


ψ ′i on Aδ,R(x∞)
H−1

i ◦ Ai ◦ π on X∞ \ B2R(x∞)(
1− χ

(
r(x)

R

))
ψ ′i + χ

(
r(x)

R

)
H−1

i ◦ Ai ◦ π on AR,2R(x∞),

(2.37)

where χ : R>0 → R>0 is a nondecreasing smooth function, χ(t) = 0 if t 6 1,
χ(t) = 1 if t > 2, r(·) is the distance to x∞ with respect to the metric g∞. Since
−ν < −µ, for any ε ′ > 0, we can fix a constant R > 0 large enough, such that,
when i is sufficiently large, ‖ψ∗i gi − g∞‖Ck,α

−µ (X∞(Bδ(x∞)))
< ε ′. The convergence

of the complex structure follows from the convergence of the Riemannian metric,
using the same argument as in (2.5).

2.6. Bubble trees. The degeneration of convergence at ‘energy concentration
points’ can be understood through a process called ‘bubbling’. The sequence
(X i , gi , xi) in Lemma 2.10 converges to an orbifold limit (X∞, g∞, x∞). By
studying different scales of convergence toward the energy concentration point
x∞, there is a ‘bubble tree’ structure which captures the topological information
that ‘disappears’ in the orbifold limit.
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At any energy concentration point, we choose the smallest fixed δ > 0, and
ri → 0, such that in Bδ(xi)∫

Bδ(xi ) \ Bri (xi )

‖Rm(gi)‖
2 dVg =

ε0

2
. (2.38)

The rescaled sequence

(Yi , g′i , yi) =

(
Bδ(xi),

1
r 2

i

gi , xi

)
(2.39)

then converges to an ALE orbifold limit (Y∞, g′
∞
, y∞) in the pointed Cheeger–

Gromov sense, where the limit is called the ‘first bubble’. For any energy
concentration point p ∈ Y∞ in the rescaled limit, there exists a sequence of points
pi ∈ Yi that converges to p, and high curvature regions Bδ′(pi) ⊂ Yi for some
δ′ > 0, and r ′i → 0, such that∫

Bδ′ (pi ) \ Br ′i
(pi )

‖Rm(g′i)‖
2 dVg′i =

ε0

2
, (2.40)

and the rescaled sequence

(Z i , g′′i , zi) =

(
Bδ′(pi),

1

r ′i
2 g′i , pi

)
(2.41)

converges to an ALE orbifold (Z∞, g′′
∞
, z∞). The limit (Z∞, g′′

∞
, z∞) is called a

‘deeper bubble’ to the previous bubble (Y∞, g′
∞
, y∞). Iteratively, for each energy

concentration point in a bubble, we can consider the rescaled limit (by energy
scale) and obtain an ALE orbifold limit as a deeper bubble. Since the total energy
is finite and each deeper bubble loses a definite amount of energy, there are at most
finite iteration steps. The smooth bubbles with no energy concentration points are
called the ‘deepest bubbles’. By gluing each deeper bubble to the corresponding
singularity in the previous bubble, we obtain a topological space which is called
the ‘bubble tree’. The bubble tree is homeomorphic to Bδ(xi) for i sufficiently
large. We refer the reader to [Ban90] for a more detailed description of the
bubbling process in the Einstein case, and [TV05b] for the SFK case.

If the bubble tree has only 1 branch, then the original manifold X i for i
sufficiently large is diffeomorphic to X∞#Y1#Y2# · · · #Yr , where Y1 is the first
bubble, and Yr is the deepest bubble. The notation # stands for a generalized
connected sum, which is obtained by attaching the boundary of a truncated ALE
space onto the boundary of a punctured neighborhood of an orbifold point. By the
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Mayer–Vietoris sequence, it follows that

b2(X i) = b2(X∞)+
r∑

i=1

b2(Yi). (2.42)

A similar formula holds in the case of several branches.
In general, there can be energy concentration points which are smooth points

of the limit space. In this case, the first bubble will be an asymptotically flat (AE)
orbifold, that is, an ALE space with Γ = {e}. While these types of bubbles can
certainly appear in general, one can rule out such bubbles which are topologically
trivial.

LEMMA 2.11. If (X, g, J ) is an AE SFK orbifold with b2(X) = 0, then (X, J ) is
biholomorphic to C2 and g is the flat metric.

Proof. Consider the minimal resolution of (X̃ , J̃ ) of (X, J ). By a basic local
gluing argument on the level of Kähler potentials (see [AP06] and also [ALM14])
we can glue on Lock–Viaclovsky ALE metrics (see [LV19]) on resolutions at
the orbifold points to show that this resolution admits an ALE Kähler metric.
By [HL16, Proposition 4.3], (X̃ , J̃ ) is biholomorphic to C2 blown up at finitely
many points. Since b2(X) = 0, this implies that X is obtained from X̃ by blowing
down all possible holomorphic curves, and is therefore biholomorphic to C2. The
Hirzebruch signature theorem for an AE SFK metric states that,

τ(X) = −
1

12π 2

∫
X
‖W−
‖

2 dVg, (2.43)

since τ(C2) = 0, this implies that W−
≡ 0. The Chern–Gauss–Bonnet theorem in

this setting states that

χ(X) =
1

8π 2

∫
X

(
‖W−
‖

2
−

1
2
|E |2

)
dVg + 1, (2.44)

and since χ(C2) = 1, this implies that E ≡ 0, and consequently g is flat.

3. Compactness I. Convergence of birational structure

In this section, we investigate more closely the pointed Cheeger–Gromov
convergence of the sequence of metrics in Theorem 1.5. By results of Tian–
Viaclovsky discussed above in Section 2.5, a subsequence converges to an ALE
SFK metric. The main issue here is there could be a ‘jump’ of complex structure
at the limit, or a ‘jump’ of birational type of the limit, even if every metric in the
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sequence is biholomorphic. For example, if we rescale down an ALE SFK metric
on a Stein surface X by r 2

i · g, ri → 0, the pointed Cheeger–Gromov limit is the
flat cone C2/Γ . This limit is not birationally equivalent to X since X is Stein
and smooth. However, note that in the setting of Theorem 1.5 with fixed complex
structure and varying Kähler classes, such rescaling is excluded. Note also that as
of yet, we do not know that the convergence is uniform at infinity, which is what
we prove next (we do not even know yet that the group at infinity of the limit is
the same for the limit as for the sequence).

Let Ψ : X \ K → R4/Γ be an ALE coordinate of order O(r−µ) for (X, J,
g0, x0), where −2 < −µ < −1. Recall as discussed in Section 2.3 above, there
exist holomorphic functions u1, . . . , uN satisfying certain polynomial relations
that determine the birational type of (X, J ). To prove the convergence of the
birational structure, we need to show convergence of u j in a strong sense after
the uniform Cheeger–Gromov diffeomorphism is applied.

PROPOSITION 3.1. Let (X, J, gi) be the sequence of ALE SFK metrics as in
Theorem 1.5 with group Γ at infinity. Then there exist base points xi ∈ X such
that the following holds:

(1) Up to a subsequence, (X, J, gi , xi) pointed Cheeger–Gromov converges with
a uniform ALE asymptotic rate of order O(r−µ) to an ALE SFK orbifold
(X∞, J∞, g∞, x∞). In particular, the group at infinity of the limit is also Γ .

(2) The limit space X∞ is birationally equivalent to X.

(3) There exists a constant R > 0, such that all holomorphic curves are
contained in geodesic ball BR(xi , gi) when i is sufficiently large.

Proof. By the convergence results discussed in Section 2.5 above, for any
sequence of basepoints xi ∈ X , there exists a pointed Cheeger–Gromov limit

(X, J, gi , xi)→ (X∞, J∞, g∞, x∞). (3.1)

Without loss of generality, we can assume that x∞ is the only energy concentration
point in the limit X∞, and that xi is chosen so that supX (‖Rm(gi)‖gi ) is obtained
at xi .

First, let us assume the sequence {(X, J, gi , xi)} has a uniform ALE energy
bound, that is, that the assumption (3) in Lemma 2.10 is satisfied. (We then prove
below that this assumption is necessarily satisfied). Under this assumption, by
Lemma 2.10, there exist diffeomorphisms

ψi : X∞ \ Bδ(x∞)→ X (3.2)
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such that, ‖ψ∗i gi − g∞‖Ck,α
−µ (g∞)

< ε(i | k, δ), ‖ψ∗i J − J∞‖Ck,α
−µ (g∞)

< ε(i | k, δ), for
−2 < −µ < −1.

Under this assumption, we next analyze the birational structure of the limit
space. Recall that, for each (X, J, gi , xi), there exists a harmonic coordinate
Hi : X \ BR(xi)→ R4/Γ , under which Hi ∗gi , Hi ∗ J are asymptotic to gEuc, JEuc

uniformly of rate O(r−µ). In the following, we fix an R > 0, and consider (Hi ∗gi ,

Hi ∗ J ) on the fixed space AR,∞(0) ⊂ R4/Γ . Furthermore, all the norms used in
the following are over the space AR,∞(0).

Recall the construction in Section 2.3. Since (X, J ) is a Kähler surface with
an ALE coordinate Ψ , X can be compactified analytically to X̂ , and there exist
holomorphic functions u1, . . . , uN that determines the birational structure of X ,
obtained from holomorphic sections on X̂ . Define the degree of a function f on
X with respect to the coordinate Ψ as

dΨ ( f ) = lim
r→∞

(
log(supp∈Sr

| f (Ψ −1(p))|)

log(r)

)
(3.3)

where r is the gEuc-radius and Sr is the r -sphere centered at {0} in AR,∞(0).
For each u j above, dΨ (u j) is finite. Then we can rearrange u1, . . . , uN in the
increasing order of dΨ , and we have positive integers d1, . . . , dl , such that there
are n j th many elements among u1, . . . , uN that have degree of d j , and d j < d j+1,∑l

j=1 n j = N . Define H as the C-algebra of all holomorphic function on X of
finite dΨ -degree. We can assume {u1, . . . , uN

} is a minimal set of generators of H.
In a similar fashion, we can define dH∞ for holomorphic functions on X∞, with

respect to the ALE coordinate H∞ on X∞. There exist holomorphic functions u1
∞
,

. . . , uN
∞

on X∞, which comprises a minimum set of generators of the C-algebra
of holomorphic functions on X∞ of finite dH∞-degree.

We claim that l∞ = l, n∞j = n j , d∞j = d j . This follows by constructing the
deformation to the normal cone for both X and X∞ as described above in (2.10).
The line bundle L is deformed to L along the deformation as t → 0. Since H 0(D,
Lk) ' H 0(D, Lk), there exists s j ∈ H 0(C(D), Lk) that corresponds with s j . The
normal cone C(D) admits a flat conical metric gC , so we can define the degree d j

for each u j
= s j/s0 in a similar way. The metric cone (C(D), gC) is the tangent

cone at infinity of (X, g0) and u j is the scale-down limit of u j , so it follows
that d j = d j , and consequently n j = n j , l = l. Applying the same argument to
(X∞, J∞) proves the claim.

Next, we study the convergence of the generating holomorphic functions. Let u
be a holomorphic function on X with dΨ (u) = d1, which is the lowest degree of a
nonconstant holomorphic function. Since ‖Hi ∗u‖C0,α

d1
(Hi ∗gi )

is finite, there exists a
sequence of positive constants ci , such that on AR,∞(0), ‖Hi ∗(ci u)‖C0,α

d1
(Hi ∗gi )

= 1.
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Up to a subsequence, Hi ∗(ci u) pointwise converges to a limit function w, because
on any annulus AR,2k+1 R(0), the usual Hölder norm is uniformly bounded. We next
use elliptic theory to refine the convergence.

Choose∆H∞∗g∞-harmonic functions h1, . . . , hm of dH∞-degree d1, such that for
any function which is ∆H∞∗g∞-harmonic and of dH∞-degree d1, its leading term
can be represented as a linear combination of h1, . . . , hm . Since Hi ∗gi converges
to H∞∗g∞ in any C k,α

−µ-norm, for any C2 function f , we have the pointwise bound

|(∆H∞∗g∞ −∆Hi ∗gi ) f | < ε(i)(r−µ · |∇2
H∞∗g∞

f | + r−µ−1
· |∇H∞∗g∞ f |), (3.4)

where ε(i)→ 0 as i →∞, and for any function f with bounded C2,α
ν (H∞∗g∞)-

norm, we have

‖(∆H∞∗g∞ −∆Hi ∗gi ) f ‖C0,α
ν−µ−2(H∞∗g∞)

< ε(i | ν) · ‖ f ‖C2,α
ν (H∞∗g∞)

(3.5)

where ε(i | ν) → 0 as i → ∞ for each fixed weight ν. By the classical elliptic
estimate in weighted norms (see [Bar86]), we have

‖ f ‖C2,α
d1
(H∞∗g∞)

< C · (‖ f ‖C0,α
d1
(H∞∗g∞)

+ ‖∆H∞∗g∞ f ‖C0,α
d1−2(H∞∗g∞)

). (3.6)

Since Hi ∗(ci u) is ∆Hi ∗gi -harmonic and ‖Hi ∗(ci u)‖C0,α
d1
(H∞∗g∞)

is uniformly
bounded, the above estimates imply ‖Hi ∗(ci u)‖C2,α

d1
(H∞∗g∞)

< C for some uniform
C > 0. In particular, by estimate (3.5), and the invertibility of the Laplacian on
the complement of a ball, there exists a function ξi ∈ C2,α

d1−µ
(H∞∗g∞), such that

∆H∞∗g∞ξi = ∆H∞∗g∞(Hi ∗(ci u)) and

‖ξi‖C2,α
d1−µ

(H∞∗g∞)
< C · ‖∆H∞∗g∞Hi ∗(ci u)‖C0,α

d1−µ−2(H∞∗g∞)
< C · ε(i | d1). (3.7)

By existence of harmonic expansions, we have the decomposition

Hi ∗(ci u) = ξi +

m∑
j=1

ai, j h j + vi (3.8)

for some functions vi on AR,∞(0). Then by the estimate of Hi ∗(ci u) above and

‖ξi‖C2,α
d1
(H∞∗g∞)

< C · ‖ξi‖C2,α
d1−µ

(H∞∗g∞)
< C · ε(i | d1), (3.9)

we have
∑m

j=1 |ai, j | < C for some constant C > 0, and there exists finite
limit a j = limi→∞ ai, j for each 1 6 j 6 m. Furthermore, vi is a ∆H∞∗g∞-
harmonic function with degree dH∞(vi) < d1. By the elliptic estimate (3.6), for
0 < ε ′ < 1, we have ‖vi‖C2,α

d1−ε
′
< C for a uniform C > 0. Since C2,α

d1−ε′
(H∞∗g∞)
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is compactly embedded into C0,α
d1
(H∞∗g∞), we have vi converges strongly in

C0,α
d1
(H∞∗g∞)-norm on AR,∞(0). Then by the analysis above, vi ,

∑m
j=1 ai, j h j , ξi

converge strongly in C0,α
d1
(H∞∗g∞)-norm on AR,∞(0) as i → ∞. This implies

that Hi ∗(ci u) converges to a limiting function w strongly in C0,α
d1
(H∞∗g∞)-norm,

which satisfies

1− ε < ‖w‖C0,α
d1
(H∞∗g∞)

< 1+ ε (3.10)

for some small ε > 0. By the convergence of the metric and the complex structure,
we also have w is∆H∞∗g∞-harmonic and H∞∗ J∞-holomorphic on AR,∞(0). Since
X∞ is a one-convex space, w can be extended to a holomorphic function on X∞.
Recall that u is a nonconstant holomorphic function of finite degree on X , and the
zero locus of Hi ∗(ci u) is a Hi ∗ J -analytic subset which intersects with any annulus
Ar,2r (0) nontrivially for r large enough. This implies that infAr,2r (0) |w| = 0. Since
‖w‖C0,α

d1
(H∞∗g∞)

> 1−ε, we havew is a nonconstant H∞∗ J∞-holomorphic function
on AR,∞(0). Since ‖w‖C0

d1
(H∞∗g∞) is bounded, and d1 is the lowest possible dH∞-

degree for a nonconstant holomorphic function, we have dH∞(w) = d1 and∑m
j=1 |a j | > 0.
Next, we want to show that there exists some positive constant C > 0, such that

1
C < |ci | < C for i sufficiently large. By the convergence of ξi ,

∑m
j=1 ai, j h j , vi as

above, the d1-degree term of Hi ∗(ci u)−w− ξi can be represented as
∑m

j=1 bi, j h j ,
where bi, j → 0 as i → ∞. Then for i sufficiently large, the d1-degree term of
Hi ∗(ci u) ‘approximately’ equals to the d1-degree term of w. Define the ‘growth
ratio’ for any H∞∗ J∞-holomorphic function h on AR,∞(0) with dH∞(h) = d by

IH∞(h) = lim
r→∞

(
sup
p∈Sr

|h(p)|
r d

)
. (3.11)

It is not hard to see that IH∞(w) is well defined and 0 < IH∞(w) <∞ unless w is
trivial. Similarly, we can define IHi and IΨ for Hi ∗ J -holomorphic functions and
Ψ∗ J -holomorphic functions with respect to the corresponding coordinates. By
the approximation above, IH∞(w) ≈ |ci | · IH∞(Hi ∗u). Since gi is an ALE Kähler
metric over both the Ψ and Hi coordinates, by [Bar86, Corollary 3.2],

Hi = Ai · Ψ + lower order term, (3.12)

where Hi , Ψ are the universal covers of the coordinates, and Ai ∈ U (2). It follows
that IΨ (Ψ∗u) = IHi (Hi ∗u), and since the harmonic coordinate Hi converges to
H∞, we also have IHi (Hi ∗u) = IH∞(Hi ∗u). Then we have IH∞(w) ≈ |ci |IΨ (Ψ∗u).
Since 0 < IΨ (Ψ∗u) <∞, there exists a constant C > 0, such that for i sufficiently
large, 1

C < |ci | < C .
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As a result, without loss of generality, we can assume ci = 1, and up to a
subsequence, Hi ∗u converges to a H∞∗ J∞-holomorphic function w strongly in
C0,α

d1
(AR,∞(0), H∞∗g∞)-norm, and dH∞(w) = dΨ (u) = d1. Then for generators

u1, . . . , un1 of holomorphic functions with dΨ -degree d1, up to a subsequence, the
functions Hi ∗u1, . . . , Hi ∗un1 converge to H∞∗ J∞-holomorphic functions w1, . . . ,

wn1 of dH∞-degree d1.We claim that w1, . . . , wn1 are C-linear independent, and
are therefore generators of H∞∗ J∞-holomorphic functions of degree d1. To see
this, if there was any linear relation

∑m
j=1 c jw

j
= 0, then for i sufficiently large,

m∑
j=1

c j Hi ∗u
j
= Hi ∗

( m∑
j=1

c j u j

)
(3.13)

would be very small pointwise for all r sufficiently large, which is a contradiction
to the linear independence of u1, . . . , un1 .

Next, let u be a holomorphic function on X with dΨ (u) = d2. Without loss of
generality, we can assume u 6∈ C[u1, . . . , un1]. There is a sequence of constants
ci > 0 such that on AR,∞(0), ‖Hi ∗(ci u)‖C0,α

d2
(Hi ∗gi )

= 1. A similar argument to the
d1-degree case shows that Hi ∗(ci u) converges to a limit function w strongly in
C0,α

d2
(H∞∗g∞)-norm. Then

1− ε < ‖w‖C0,α
d2
(H∞∗g∞)

< 1+ ε (3.14)

for some small ε > 0, which clearly implies that dH∞(w) 6 d2. We claim that
dH∞(w) = d2. To see this, assume by contradiction that dH∞(w) < d2. Since any
holomorphic function of dH∞-degree smaller than d2 is generated by holomorphic
functions of dH∞-degree d1, there exists a polynomial F , such that w = F(w1,

. . . , wn1), where w1, . . . , wn1 are holomorphic functions of degree d1 and each
w j is the limit of the sequence Hi ∗u j as proved above. Then we have

‖ci · Hi ∗u − F(Hi ∗u
1, . . . , Hi ∗u

n1)‖C0,α
d2
(H∞∗g∞)

→ 0 (3.15)

as i →∞ on AR,∞(0). Let V (u) be the zero locus of u on X , which is an analytic
closed subset and not contained in any compact subset. Since u 6∈ C[u1, . . . , un1],
for some small ε ′ > 0, the set S = {x ∈ V (u) : |F(u1, . . . , un1)| > ε ′} is nontrivial
and not contained in any compact subset. For a fixed annulus Ar,2r (0) ⊂ AR,∞(0),
there exists a sequence of points pi ∈ Hi(S) ∩ Ar,2r (0), and pi → p∞ ∈
Ar,2r (0). Then |Hi ∗(ci u − F(u1, . . . , un1))|(p) > ε ′/2, which contradicts with
‖Hi ∗(ci u−F(u1, . . . , un1))‖C0,α

d2
(H∞∗g∞)

= 0 on AR,∞(0). This contradiction proves
that dH∞(w) = d2.

Similarly to the degree d1 case above, by analyzing the d2-degree term of
ci · Hi ∗u and w, it follows that there exists a constant C > 0 such that for i
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sufficiently large, 1
C < |ci | < C . Without loss of generality we can assume that

ci = 1, and up to subsequence, Hi ∗u converges to a holomorphic function w
of degree d2. Then for un1+1, . . . , un1+n2 , which are generators of holomorphic
functions of degree d2 on X , up to a subsequence, Hi ∗un1+1, . . . , Hi ∗un1+n2

converge to holomorphic functions wn1+1, . . . , wn1+n2 , which are generators of
H∞∗ J∞-holomorphic functions of degree d2 on AR,∞(0).

By an inductive procedure, the above arguments prove that, up to a
subsequence, the functions Hi ∗u1, . . . , Hi ∗uN converge to H∞∗ J∞-holomorphic
functionsw1, . . . , wN of the corresponding degrees. Note that for any polynomial
relation F(u1, . . . , uN ) = 0, by the convergence of u j , F(w1, . . . , wN ) = 0. Each
w j can be pulled back to X∞ \ BR(x∞) and extends to a holomorphic function on
the one-convex space X∞, which is still denoted as w j .

Define

R(X) = C[u1, . . . , uN
] ' C[x1, . . . , x N

]/I (3.16)

R(X∞) = C[w1, . . . , wN
] ' C[x1, . . . , x N

]/I∞, (3.17)

where C[x1, . . . , x N
] is the coordinate ring of CN . By the paragraph above,

I ⊂ I∞, so there exists a well-defined ring homomorphism from R(X) to
R(X∞) by mapping each u j to w j . We claim that this ring homomorphism is an
isomorphism. To see this, assume that w1, . . . , wN satisfy a polynomial relation
F(w1, . . . , wN ) = 0. Consider the function F = F(u1, . . . , uN ), which is a
holomorphic function on X . If F is not identically zero, then let dΨ (F) = dF > 0.
By the strong convergence of u j proved above, Hi ∗F converges to a H∞∗ J∞-
holomorphic function G on AR,∞(0) in C0,α

dF
(H∞∗g∞)-norm. Since IHi (Hi ∗F) =

c > 0 is a positive constant, by the C0,α
dF

-convergence, we have ‖G‖C0,α
dF
(H∞∗g∞)

> 0.

However, by the convergence of u j , G = F(w1, . . . , wN ) = 0, which is a
contradiction. Therefore, u1, . . . , uN satisfies the same polynomial relation F and
R(X) is isomorphic to R(X∞). Since the affine space Spec(R(X)) is isomorphic
to the image of X in CN under u ≡ (u1, . . . , uN ), the ring isomorphism implies
that w ≡ (w1, . . . , wN ) embeds X∞ \ BR(x∞) into CN and consequently X∞ is
birationally equivalent with X .

For the third part of Theorem 3.1, if there exists a holomorphic curve E
that is not contained in the geodesic ball BR(xi), then on E ∩ (X \ BR(xi)),
the holomorphic functions u j are constant for 1 6 j 6 N . However, this
contradicts with the fact proved above that u = (u1, . . . , uN ) embeds X \ BR(xi)

into CN . Thus all holomorphic curves are contained in the geodesic ball BR(xi) for
each i .

To finish the proof of Proposition 3.1, we need to prove that the assumption (3)
in Lemma 2.10 is necessarily satisfied. To prove this, we argue by contradiction.
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Let ri be the radius such that ‖Rm‖L2(X \ Bri (xi )) = ε0/2. If assumption (3) in
Lemma 2.10 is not true, then ri →∞ as i →∞.

Consider the rescaled sequence (X, (1/r 2
i )gi , xi). The rescaling preserves the

Sobolev constant and the L2-norm of Rm. Then by Lemma 2.10, up to a
subsequence, (X, (1/r 2

i )gi , xi) converges to an ALE space (X ′
∞
, g′
∞
, x ′
∞
) in the

sense of pointed Cheeger–Gromov convergence with a uniform ALE asymptotic
rate. In the following, we first show that the limit space X ′

∞
is isomorphic to C2/Γ

and g′
∞

is a flat metric. Then we show that

‖Rm(g′
∞
)‖L2(X ′∞ \ B1(x ′∞,g′∞)) = lim

i→∞
‖Rm

(
1
r 2

i

gi

)
‖L2(X \ B1(xi ,(1/r2

i )gi ))
=
ε0

2
, (3.18)

which would imply a contraction to flat limit metric.
In order to show that X ′

∞
is isomorphic to C2/Γ , without loss of generality,

we can assume that x ′
∞

is the only energy concentration point, since the case
of several concentration points is handled by a similar argument. Then for each
δ > 0, there exists a diffeomorphism

ψ ′i : X ′
∞
\ Bδ(x ′∞)→ X (3.19)

such that ψ ′i
∗
((1/r 2

i )gi) converges to g′
∞

smoothly in X ′
∞
\ Bδ(x ′∞). We also have

ψ ′i
∗ J converges to J ′

∞
smoothly in X ′

∞
\ Bδ(x ′∞). Moreover, there exist harmonic

coordinates H ′i for (1/r 2
i )gi , H ′

∞
for g′

∞
, and on a fixed annulus AR,∞(0) ⊂ R4/Γ ,

H ′i ∗(1/r 2
i )gi converges to H ′

∞∗
g′
∞

. Consider the rescaled holomorphic functions
r k1

i u1, . . . , r kN
i uN , where k j = dH ′i (u

j) 6 k j+1 = dH ′i (u
j+1). Note that for the same

reason as stated before, X ′
∞

has the same spectrum of degrees of holomorphic
functions and each k j ∈ {d1, . . . , dl}. It is not hard to see that for holomorphic
function u j , IH ′i (H

′

i ∗(r
k j
i u j)) is a positive constant. Then following the same

argument as used before, we start with the lowest degree k1 = d1 and we can
show that H ′i ∗(cir

k1
i u1) converges strongly to a nonzero holomorphic function

on AR,∞(0) in C0,α
k1
(H ′
∞∗

g′
∞
)-norm. Then since IH ′i (H

′

i ∗(ri
k1 u1)) is a positive

constant and IH ′i (H
′

i ∗(cir
k1
i u1)) converges to a positive limit, there exists a C > 0

such that 0 < 1
C < ci < C and we can assume that ci = 1. Then H ′i ∗(r

k1
i u1)

converges to a holomorphic function w′1 of degree k1 on AR,∞(0), which extends
to a holomorphic function on X ′

∞
and will be still denoted by w′1. By a similar

iterative argument, we can show that for each holomorphic function u j of degree
k j , H ′i ∗(r

k j
i u j) converges to a holomorphic function w′ j of dH ′∞-degree k j in

C0,α
k j
(H ′
∞∗

g′
∞
)-norm. Let F(u1, . . . , uN ) = 0 be a polynomial relation satisfied

by u1, . . . , uN . Denote F = F ′ + F ′′, where F ′ is the homogeneous highest-
degree term of F , and F ′′ is the lower-degree term of F . Then there exist integers
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p > p′ > 0, such that

0 = r p
i F(H ′i ∗u

1, . . . , H ′i ∗u
N ) = F ′(H ′i ∗(r

k1
i u1), . . . , H ′i ∗(r

kN
i uN ))

+ r p′

i F ′′(H ′i ∗(r
k1
i u1), . . . , H ′i ∗(r

kN
i uN )). (3.20)

Letting i → ∞, since ri → 0, this implies that F ′(w′1, . . . , w′N ) = 0. Next, let
F1, . . . , Fm be generators of polynomial relations satisfied by u1, . . . , uN , and F ′1,
. . . , F ′m be the corresponding leading terms which are satisfied by w′1, . . . , w

′

N .
Assume w′ ≡ (w′

1
, . . . , w′

N
) is not an embedding on X ′

∞
\ BR(x ′∞), where all

holomorphic curves contained in BR(x ′∞) for R large enough. Then there exists a
polynomial relation P(w′1, . . . , w′N ) = 0 but P(w′1, . . . , w′N ) is not generated
by {F ′j(w

′1, . . . , w′
N
)}16 j6m . Here P(a1, . . . , aN ) is a polynomial of degree q ,

where each parameter a j is a variable of degree k j . Then by the definition of F ′j ,
P is not the leading term of any polynomial satisfied by u1, . . . , uN . As a result,
P(Ψ∗u1, . . . , Ψ∗un) has nontrivial dΨ -degree q term. If not, we have P ′(w′1, . . . ,
w′

N
) = 0, and by induction on the lower-degree polynomial P − P ′, it implies

that P(w′1, . . . , w′N ) is generated by {F ′j(w
′1, . . . , w′

N
)}16 j6m , which implies a

contradiction. Then we have

inf
r>R

sup
p∈Sr (0)

|r−q P(H ′i ∗(r
k1
i u1), . . . , H ′i ∗(r

kN
i uN ))|

= inf
r>R

sup
p∈Sr (0)

|r−q P(Ψ∗u1, . . . , Ψ∗uN )| = C > 0. (3.21)

The convergence of H ′i ∗(r
k j
i u j) implies the convergence of P(H ′i ∗(r

k1
i u1), . . . ,

H ′i ∗(r
kN
i uN )) in C0,α

q (H ′
∞∗

g′
∞
)-norm, which implies that |P(w′1, . . . , w′N )| > 0

and this gives a contradiction. Thus w′ embeds X ′
∞
\ BR(x ′∞) into CN . Since w′1,

. . . w′
N satisfy the polynomial relations F ′1, . . . , F ′m , X ′

∞
is birationally equivalent

to C2/Γ .
For the Kähler classes κi in the statement of Theorem 1.5, there exists a

sequence of smooth ALE Kähler background metrics ωb,i , where each ωb,i ∈ κi ,
and ωb,i converges to a Kähler metric ωb,∞ ∈ κ∞ smoothly with a uniform ALE
asymptotic rate. Let W1, . . . ,Wk be smooth 2-cycles in X , and let [W1], . . . , [Wk]

be a basis of H2(X,Z). The Kähler class of ωi can also be parameterized by∫
W j
ωi (1 6 j 6 k). For the rescaled sequence, as i →∞,∫

W j

1
r 2

i

ωi =

∫
W j

1
r 2

i

ωb,i → 0 (3.22)

for each 1 6 j 6 k.
If X ′

∞
is not isomorphic to C2/Γ , then there exists an effective Weil divisor

D in X ′
∞

, which may pass through the energy concentration point x ′
∞

. Since D is
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holomorphic, the restriction of ω′
∞

on D is definite positive, and
∫

D \ Bδ(x ′∞)
ω′
∞
> 0.

Let f : X̃ ′
∞
→ X ′

∞
be the minimal resolution, E ′j (1 6 j 6 r ′) as the exceptional

divisors over x ′
∞

, and denote D̃ as the proper transform of D. Our immediate goal
is to find a homology class [σ ] ∈ H2(X̃ ′∞,Z) which is a nontrivial class in the
image of the inclusion map

ι∗ : H2(X̃ ′∞ \ Nε(E ′))→ H2(X̃ ′∞,Z), (3.23)

where E ′ =
⋃r ′

j=1 E ′j , and Nε(E) denotes a tubular neighborhood of E (with
respect to any reference metric), which can be identified with a disc bundle in
the normal bundle of E ′, and ε > 0 is small. For simplicity, we can assume
that E ′ is connected and intersects D̃ in a single point, because the following
argument will also work in the most general case with minor modifications.
We can assume D is irreducible, so that D̃ is a single rational curve (since we
only need to find a single homology class which works). Define the open sets
U = N2ε(E ′), V = X̃ ′

∞
\ Nε(E ′). Then U ∩ V deformation retracts to S3/Γ

where Γ is a finite subgroup of U(2) acting freely on S3. Note that H1(S3/Γ ) =

Γ/[Γ, Γ ] is a finite abelian group. By the universal coefficient theorem,
H 1(S3/Γ ) = Hom(H1(S3/Γ ),Z) = 0. By Poincaré duality, H2(S3/Γ ) =

H 1(S3/Γ ) = 0. Part of the Mayer–Vietoris sequence in singular homology with
Z-coefficients is then

0 Z j
⊕ H2(V ) H2(X̃ ′∞) H1(U ∩ V ) ∼= Γ/[Γ, Γ ],

β ∂

(3.24)
since H2(U )= Z j , H2(U∩V )= H2(S3/Γ )= 0, and where β is the sum mapping.
The divisor class [D̃] is a generator in H2(X̃ ′∞). From (3.24), the class [m D̃] =
β(c1, c2), where c1 ∈ H2(U ), and c2 ∈ H2(V ), where m = |Γ/[Γ, Γ ]|. We know
that the classes [E ′j ] ∈ H2(U ) map to generators in H2(X̃ ′∞), under inclusion, so
we have

[m D̃] =
∑

j

b j [E ′j ] + β(0, c2), (3.25)

where b j ∈ Z. Rearranging, we have

β(0, c2) = [m D̃] −
∑

j

b j [E ′j ]. (3.26)

The right hand side is therefore the nontrivial homology class we were seeking
which is in the image of ι∗.

The upshot of this discussion is that we can find a representative σ of the
homology class of [m D̃]−

∑
j b j [E ′j ]whose image avoids a tubular neighborhood

all the divisors which get blown down. Such a representative is a finite linear
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combination of 2-simplices, σ =
∑

a jσ j , where

σ j : ∆
2
→ X̃ ′

∞
\ Nε(E ′), (3.27)

with bi ∈ Z and, where ∆2 is a standard 2-simplex. Note that we can assume
that σ j is a smooth mapping since singular homology with continuous chains is
isomorphic to singular homology with smooth chains on any smooth manifold.

By the gluing method used in the proof of 2.11, there exists a Kähler form ω̃

on X̃ ′
∞

, such that the restriction of ω̃ on X̃ ′
∞
\ Nδ(E ′) equals to f ∗ω′

∞
, and with

respect to which the divisors E ′j have arbitrarily small area. Note that we can
choose ε so that f (Nε(E ′)) is contained in Bδ(x ′∞). Then we have∫

σ

ω̃ =

∫
[m D̃]−

∑
j b j [E ′j ]

ω̃ >
m
2

∫
D̃
ω̃ >

m
2

∫
D \ Bδ(x ′∞)

ω′
∞
> 0. (3.28)

The diffeomorphism ψ ′i embeds X ′
∞
\ Bδ(x ′∞) into X . Also, by the Mayer–

Vietoris sequence, H2(X ′∞ \ Bδ(x ′∞),Q) embeds into H2(X,Q). Therefore, we
can view the class [(ψ ′i )∗ f∗σ ] as a class in H2(X,Q), which is independent of i
when i is sufficiently large. Then

[(ψ ′i )∗ f∗σ ] =
∑

16 j6k

q j [W j ] (3.29)

where each q j ∈ Q, and [W1], . . . , [Wk] is the basis of H2(X,Z) as defined above.
Then we have ∫

(ψ ′i )∗ f∗σ

1
r 2

i

ωi =
∑

16 j6k

q j

∫
W j

1
r 2

i

ωb,i → 0. (3.30)

However, by the pointed Cheeger–Gromov convergence, we have∫
(ψ ′i )∗ f∗σ

1
r 2

i

ωi =

∫
f∗σ
ψ ′i
∗

(
1
r 2

i

ωi

)
i→∞
−−→

∫
f∗σ
ω′
∞
=

∫
σ

f ∗ω′
∞
=

∫
σ

ω̃ > 0

(3.31)

which contradicts with (3.30). This implies that X ′
∞

is isomorphic to C2/Γ .
The Hirzebruch signature theorem for an ALE SFK orbifold with group Γ at

infinity, and a single orbifold point p with group Γ ′,

τ(Y ) = −
1

12π 2

∫
Y
‖W−
‖

2 dVg + η(S3/Γ )− η(S3/Γ ′). (3.32)
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In our case Y = X ′
∞
= C2/Γ , so τ(Y ) = 0, and since Γ = Γ ′ this implies that

W−(g′
∞
) ≡ 0. The Chern–Gauss–Bonnet theorem in this setting states that

χ(Y ) =
1

8π 2

∫
Y

(
‖W−
‖

2
−

1
2
|E |2

)
dVg +

1
|Γ |
+ 1−

1
|Γ ′|

. (3.33)

Again, since Y = X ′
∞
= C2/Γ , we have χ(Y ) = 1, and this implies that E ≡ 0.

Consequently, g′
∞

is a flat metric.
To finish the proof, we next show the convergence (3.18). If there is no smooth

energy concentration point in X ′
∞

, then the sequence of highest curvature points
x ′i converges to the only singular point, which is the vertex of the cone. As a
result, the metrics converge smoothly on X ′

∞
\ B1/2(x ′∞, g′

∞
), and (3.18) is a direct

consequence of this.

LEMMA 3.2. There exists no smooth energy concentration point in X ′
∞

.

Proof. Assume on the contrary that there exists a smooth energy concentration
point p ∈ X ′

∞
. Then there exists a sequence of points pi ∈ X that converges to p in

the Gromov–Hausdorff topology. For i sufficiently large, there exists a δ > 0, such
that the geodesic ball Bδ(pi , (1/r 2

i )gi) is homeomorphic to the bubble tree that
‘bubbles-off’ at p. Since p is a smooth energy concentration point, by choosing
δ > 0 small enough, Bδ(p, g′

∞
) is diffeomorphic to the standard 4-ball. Then

when i is sufficiently large, there exists a smooth function ρi which is close to the
radius function of the geodesic ball Bδ(pi , (1/r 2

i )gi), such that B(i, δ) := {ρi < δ}

⊂ B2δ(pi , (1/r 2
i )gi), the boundary ∂B(i, δ) is diffeomorphic to the standard 3-

sphere, and ρ2
i − δ

2 is a strictly plurisubharmonic function near the boundary.
Then B(i, δ) is a strictly pseudoconvex relative open subset in X . By [Nar62a,
Theorem 1], there exists a Remmert reduction that maps B(i, δ) to a Stein space
B ′(i, δ), which contracts a compact analytic subset to isolated points in B ′(i, δ).
By the Stein factorization theorem [GR84], since B(i, δ) is a normal complex
space, B ′(i, δ) is also a normal complex space. Then by [Nar62b, Theorem a],
any local holomorphic function in B ′(i, δ) can be extended to a global function
in B ′(i, δ). As a direct consequence, B ′(i, δ) can be embedded into a Euclidean
space. Furthermore, the boundary sphere ∂B(i, δ) together with its CR-structure
I induced by the complex structure J can be embedded into B ′(i, δ). Then (∂B(i,
δ), I ) is a CR-embeddable 3-sphere and I is a small perturbation of the standard
CR-structure on 3-sphere. Then by [Lem94, Section 5], the Stein space enclosed
by ∂B(i, δ) is smooth and is diffeomorphic to standard ball in C2. As a result,
B(i, δ) is obtained by iterative blowups of a 4-ball. Since p is a smooth energy
concentration point, by Lemma 2.11, the second Betti number of the first bubble
must be positive. Then the topology of B(i, δ) is nontrivial, and there exists at
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least one (−1)-curve in B(i, δ). However, this contradicts with the assumption
that X is minimal.

It follows from the above that (3.18) holds, which is a contradiction since g′
∞

is a flat metric. This contradiction finishes the proof of Proposition 3.1.

4. Compactness II. The limit is birationally dominated by X

Recall that, (X, J ) is a minimal complex surface, and g0 is a fixed background
Kähler ALE metric, with Kähler form ω0. Without loss of generality we can
assume that there is a fixed ALE coordinate system for g0,

Ψ : X \ K → (R4
\ B)/Γ, (4.1)

with g0 ALE of order −2 < −µ < −1 and J − J0 ∈ C∞
−µ.

As a result of Proposition 3.1, we have

(X, gi , J, xi)
pointed Cheeger–Gromov
−−−−−−−−−−−−→ (X∞, g∞, J∞, x∞) (4.2)

with uniform ALE asymptotic rate −2 < −µ < −1, that is, the sequence
convergence in the pointed Gromov–Hausdorff pseudo-distance, and for any
δ > 0, there exists a diffeomorphism ψi : X∞ \ Bδ(x∞) → X i , such that

ψi
∗gi

C∞−µ
−−→ g∞, ψi

∗ J
C∞−µ
−−→ J∞, and (X∞, J∞) is birationally equivalent to (X,

J ). Furthermore, as can be seen in the proof of Proposition 3.1, Ψ is common
ALE coordinate

Ψ : X \ K → (R4
\ BR)/Γ (4.3)

where K is a compact subset of X , and BR is a Euclidean ball of radius R centered
at 0, such that for any i > 1, xi ∈ K , and there exists some constant C(k) > 0
independent of i such that ‖Ψ∗gi − gEuc‖Ck,α

−µ (gEuc)
< C(k), ‖Ψ∗ J − JEuc‖Ck,α

−µ (gEuc)
<

C(k).

REMARK 4.1. Without loss of generality, we may assume for the rest this section
that there is only one energy concentration point x∞ ∈ X∞. It is a straightforward
generalization to the case of multiple energy concentration points.

Before giving the proof, we first demonstrate the no singularity result in the
case when X is Stein by a simple topological argument.

PROPOSITION 4.2. If (X, J ) is moreover assumed to be Stein then Theorem 1.5
is true.

Proof. By Proposition 3.1, X∞ is birationally equivalent to X . Let X̃∞ be the
minimal resolution of X∞. Blow down all (−1)-curves in X̃∞ to obtain a Stein
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surface Z . By Proposition 2.5, Z is biholomorphic to X . Clearly, we have
b2(X̃∞) > b2(X∞) > b2(Z) = b2(X), with equality if and only if X∞ ' Z .
From (2.42), b2(X) > b2(X∞). Then b2(X) = b2(X∞) = b2(Z). This implies that
X∞ is isomorphic to Z , and thus X∞ is smooth. If x∞ is an energy concentration
point, then the first bubble Y1 there is an AE SFK orbifold. But by the above
inequalities and (2.42), we would have b2(Y1) = 0. Lemma 2.11 implies that
Yi is biholomorphic to C2 with the flat metric, but this is a contradiction,
since any bubble must have a point with nonzero curvature. Since there are no
energy concentration points, Theorem 1.5 follows (see Section 5.4 below for the
remainder of the argument).

When X is not Stein, the vanishing of holomorphic curves makes the above
topological argument fail. Heuristically, the orbifold singularity in X∞ is formed
by the vanishing (in area) of some (real) 2-dimensional submanifolds in X which
represent some homology classes. When those submanifolds are holomorphic
curves, the vanishing of their areas implies the degeneracy of the Kähler form,
which leads to a contradiction. The difficulty is, a priori, the diffeomorphisms in
the pointed Cheeger–Gromov convergence could be far from being holomorphic.
They could map some submanifold in X which is far from being holomorphic to
a holomorphic curve in X∞. As a result, the integral of Kähler form over those
submanifolds could be much smaller than their areas and one could conclude
nothing about the degeneracy of the Kähler form. Our strategy is to ‘chase’ the
submanifolds in X that homologically contract to form the singularity in X∞,
and show that they are ‘very close’ to being holomorphic. The fact that X is
birationally equivalent with X∞ plays an important role in our proof. Our first
theorem in this section deals with this difficulty. Roughly, it says that, when
i is sufficiently large, the error between the diffeomorphism ψi in the pointed
Cheeger–Gromov and a holomorphic map is very small.

THEOREM 4.3. Consider the convergent subsequence in Theorem 1.5, where X
is assumed to be minimal,

(X, gi , J, xi)
pointed Cheeger–Gromov
−−−−−−−−−−−−→ (X∞, g∞, J∞, x∞) (4.4)

with uniform ALE asymptotic rate −2 < −µ < −1. For any δ > 0, there exists
a diffeomorphism ψi : X∞ \ Bδ(x∞)→ X, with ψ∗i gi → g∞, ψ∗i J → J∞. Then
there exists a surjective bimeromorphism Φ : X → X∞, that is, X is the minimal
resolution of X∞, such that on X∞ \ Bδ(x∞)

‖Φ ◦ ψi − Id‖Ck,α
dN
(g∞) < ε(i | δ, k) (4.5)

where dN is the highest degree among holomorphic functions u1, . . . , uN .
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Proof. In the following proof we denote E =
⋃

j E j as the union of exceptional
divisors in (X, J ) and E∞ =

⋃
j E∞, j as the union of exceptional divisors in

(X∞, J∞).
From Section 2.3, we know the complex structure J is determined by

holomorphic functions u1, . . . , uN with polynomial growth rate on X that
satisfy certain polynomial relations. Therefore, we have a mapping

πX : X → Z , (4.6)

where Z ⊂ CN is a Stein space given by the image of the mapping πX (p) =
(u1(p), . . . , uN (p)). Note that πX is the contraction of E .

Furthermore, by Proposition 3.1, (ψ∗i u1, . . . , ψ∗i uN ) converge to holomorphic
functions (u1

∞
, . . . , uN

∞
) on X∞ \ Bδ(x∞), which satisfy the same polynomial

relation(s) as u1, . . . , uN . Since X∞ is one-convex, (u1
∞
, . . . , uN

∞
) can be extended

to holomorphic functions on Bδ(x∞). Then we have a holomorphic map:

πX∞ : X∞→ Z , (4.7)

where πX∞(p) = (u
1
∞
(p), . . . , uN

∞
(p)). The image is exactly Z because outside of

a large ball the mappings πX∞(X∞ \ BR(x∞)) ⊂ Z and the image of πX∞ must be
isomorphic to Z by the proof of Proposition 2.5. Note that πX∞ is the contraction
of E∞.

Denote X̃∞ as the minimal resolution of X∞ with the projection map π : X̃∞→
X∞. Since X is minimal, and X̃∞ is smooth and in the same birational class,
Proposition 2.5 implies this existence of a surjective bimeromorphism

f : X̃∞→ X. (4.8)

We summarize all of the maps in the following diagram

X̃∞ X̃∞ \ π−1(Bδ(x∞))

X X∞ \ Bδ(x∞)

Z

f π

πX

ψi

πX∞

. (4.9)

Consider the mapping A = πX ◦ f ◦ (πX∞ ◦ π)
−1
: Z → Z . It is easy to see this

mapping is invertible, and thus is an automorphism of Z . Since X is minimal, any
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automorphism of Z can be lifted up to an automorphism of X . Then there exists
an automorphism B : X → X , such that A−1

◦ πX = πX ◦ B. Redefining f to be

B ◦ f : X̃∞→ X. (4.10)

We then have

πX ◦ f ◦ (πX∞ ◦ π)
−1
= Id : Z → Z . (4.11)

Denote (E∞)η as the η-tubular neighborhood of E∞ in X∞ with respect to g∞.
Restrict f on X∞ \ E∞, then we have a biholomorphic map f : X∞ \ E∞ onto
its image in X . As a result of this, by part (3) in Proposition 3.1 we can choose a
radius R > 0 sufficiently large so that the composite

τi := π ◦ f −1
◦ ψi : X∞ \ BR(x∞)→ X∞ (4.12)

is well defined, since by the uniform ALE asymptotic rate, when R is sufficiently
large, any holomorphic curve contracted by f is contained in B̃R(x∞).

By (4.11), we have

τ ′i ≡ πX∞ ◦ τi ◦ π
−1
X∞ = πX ◦ ψi ◦ π

−1
X∞ : Z \UR → Z (4.13)

where UR := πX∞(BR(x∞)).
We then have

lim
i→∞

τ ′i = lim
i→∞

(πX ◦ ψi) ◦ π
−1
X∞ = πX∞ ◦ π

−1
X∞ = Id, (4.14)

which implies that

lim
i→∞

τi = Id : X∞ \ BR(x∞)→ X∞, (4.15)

where the convergence is in any C k,α
dN

-norm on X∞ \ BR(x∞), since any ψ∗i u j

converges in C k,α
dN

-norm, which implies ‖πX ◦ψi −πX∞‖Ck,α
dN
(X∞ \ BR(x∞)) converges

to 0.
We next want to show that τi converges to the identity away from Bδ(x∞).

For this, we need a surjective bimeromorphism from X i to X∞. Since (X, J )
is minimal, such a mapping does not exist precisely when there is a (−1)-curve
in X̃∞. The following lemma shows that this cannot happen.

LEMMA 4.4. There exists no (−1)-curve in X̃∞.

Proof. Without loss of generality, assume there exists a single (−1)-curve
Ẽ∞,−1 ⊂ X̃∞ which is not in the image of any birational map from X to X̃∞ (the
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argument for multiple (−1)-curves is similar). Denote the image of π(Ẽ∞,−1)

in X∞ as E∞,−1. Since X̃∞ is the minimal resolution of X∞ and Ẽ∞,−1 is not
contracted by π , E∞,−1 has its regular part nonempty.

Denote q = f (Ẽ∞,−1), which is a single point since X is a minimal Kähler
surface with no (−1)-curve in it. If τi = π ◦ f −1

◦ψi cannot be extended to a map
on X∞ \ Bδ(x∞), then for any i sufficiently large, q ∈ ψi(X∞ \ Bδ(x∞)). Denote
pi = ψ

−1
i (q). Then as i →∞, up to a subsequence, pi converges to a point p∞

in the closure of X∞ \ Bδ(x∞). Without the loss of generality, we can assume that
p∞ ∈ X∞ \ B2δ(x∞), since we can always shrink δ to δ/2. Let c > 0 be a positive
number which can be chosen to be arbitrarily small, and Bc·δ(p∞) be a geodesic
ball centered at p∞ with radius of c · δ.

Then τi can be extended to a mapping

τi = π ◦ f −1
◦ ψi : W → X∞, (4.16)

where W = X∞ \ {Bδ(x∞) ∪ Bcδ(p∞)}.
Let (E∞)η denote the tubular neighborhood of E∞ with respect to g∞.

On W \ (E∞)η, by the convergence of complex structure, τ ∗i u1
∞
, . . . , τ ∗i uN

∞

converge to some holomorphic functions v1, . . . , vN . Since we have shown that τi

converges to Id on X∞ \ BR(x∞), v j
= u j

∞
outside of BR(x∞). Then by the unique

extension of holomorphic functions, v j
= u j

∞
on W \ (E∞)η. Since (u1

∞
, . . . , uN

∞
)

embeds W \ (E∞)η into CN , this implies that for any η > 0,

lim
i→∞

τi = Id : W \ (E∞)η → X∞. (4.17)

Let p ∈ E∞,−1∩W be a point in the regular part of E∞,−1 (which is nonempty for
δ sufficiently small) and such that BCδ(p) does not intersect any other exceptional
curve in E∞ for some C > 0. Near p, we have a holomorphic coordinate φ =
(z1, z2) : U → C2 of (X∞, J∞) with the property that E∞,−1 ∩ U = {x ∈ U |
z1(x) = 0}, and p = (0, 0). Define T as a small polydisc neighborhood of p by
T := {x ∈ U | |z1(x)| 6 C · δ, |z2(x)| 6 C · δ}, such that T ⊂ W .

By a result of Greene and Krantz [GK82, Theorem 1.13], there exists a
diffeomorphism νi : φ(T )→ C2, such that, |νi − Id| < ε(i | δ), and ν∗i (JEuc) =

φ∗ψ
∗

i (J ) on T . We can choose η = 1
2 C ·δ. On the annulus A := {(z1, z2) : 3

4 C ·δ <
|z1| <

5
4 C · δ}, φ ◦ τi ◦ φ

−1 converges to Id. The mapping

ζi := φ ◦ τi ◦ φ
−1
◦ ν−1

i : T → C2 (4.18)

is biholomorphic to its image since

(ζi)∗ JEuc = (φ ◦ τi)∗(νi ◦ φ)
−1
∗

JEuc

= φ∗(τi ◦ ψ
−1
i )∗ J = φ∗(π ◦ f −1)∗ J = φ∗ J∞ = JEuc. (4.19)
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Therefore, ζi can be represented as a pair of holomorphic functions (ζ 1
i , ζ

2
i ), and

by the maximum principle, we have |ζi − Id| < ε(i | δ) on T . We must therefore
have

f ◦ π−1
:= ψi ◦ φ

−1
◦ ν−1

i ◦ ζ
−1
i ◦ φ (4.20)

on T , since both sides are holomorphic function which agree on φ−1(A). By the
estimates of ψi , νi , ζi above, we have | f ◦ π−1

− ψi | < ε(i | δ) on T .
Choose another point p′ 6= p ∈ E∞,−1 ∩ T such that the distance dg∞(p, p′) >

C ′ · δ for some C ′ > 0. Recall that f contracts Ẽ∞,−1 to a point, so f ◦ π−1 maps
E∞,−1 ∩ T to a point, therefore f (p) = f (p′). However, by the estimates above

|( f ◦ π−1)∗gi − g∞| 6 C · |ψ∗i gi − g∞| 6 ε(i | δ), (4.21)

on T so we must have dgi ( f (p), f (p′)) > (C ′ · δ)/2 when i is sufficiently large.
This implies a contradiction, and thus there is no such (−1)-curve in X̃∞ as
assumed at the beginning of the proof.

We now complete the proof of Theorem 4.3. By Lemma 4.4, the mapping f :
X̃∞→ X , which we can assume satisfies (4.11), is an isomorphism. Consider the
bimeromorphism

Φ ≡ π ◦ f −1
: X → X∞ (4.22)

which satisfies πX∞ ◦Φ ◦πX
−1
= Id on Z . By a similar argument as in the analysis

above, the composite

τi := Φ ◦ ψi : X∞ \ Bδ(x∞)→ X∞ (4.23)

converges to Id. Clearly, the estimate (4.5) is satisfied on X∞ \ Bδ(x∞).

REMARK 4.5. In the case when X is asymptotic to C2/Γ and Γ is a finite
subgroup of SU (2), that is, the case of gravitational instantons, by [Ban90],
the limit X∞ is an Einstein orbifold. It is shown that the bubble tree must be
diffeomorphic to a cyclic quotient of a hyperkähler ALE manifold. It is a direct
consequence of this that there is no (−1)-curve in X̃∞. This illustrates that the
singularity of ALE SFK orbifold limit could be much more complicated than in
the Ricci-flat case.

We end this section with the following direct consequence of Theorem 4.3.

COROLLARY 4.6. There are no smooth energy concentration points in X∞.
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Proof. Without loss of generality, assume x∞ ∈ X∞ is a smooth energy
concentration point and there is no other energy concentration point in X∞.
Then the bimeromorphism Φ from X to X∞ is moreover an isomorphism. Then
by (2.42) and Lemma 2.11, the bubble that degenerates at x∞ is C2 with the flat
metric, which is a contradiction.

5. Compactness III. Bubbles are resolutions

Our first goal is to show that each bubble in the bubble tree is a resolution of
the corresponding singularity in the previous bubble. Here are some notations and
facts. Denote the rescaled sequence (Bδ(xi), (1/r 2

i )gi , xi) as (Yi , g′i , yi), where
Bδ(xi) is a geodesic ball of radius δ with respect to gi , and the scaling factor ri

is to be determined below. By Theorem 4.3, there exists a δ > 0 such that Bδ(xi)

contains and only contains holomorphic curves that are contracted to {x∞} in
the limit. Specifically, there exists a bimeromorphismΦ, which maps X onto X∞,
andΦ ◦ψi converges to Id on X∞ \ Bδ(xi). Then we also haveΦ−1(x∞) ⊂ Bδ(xi),
where Φ−1(x∞) is a union of exceptional divisors E ′1 ∪ · · · ∪ E ′m .

The natural scale of ri to choose is the ‘energy scale’, that is, choose ri such
that ∫

Yi \ B1(yi )

‖Rm(g′i)‖
2 dVg′i =

ε0

2
(5.1)

where ε0 is the energy threshold introduced in Section 2.4. The naturality is in
the sense that, the ‘energy scale’ preserves the topology, that is, after gluing
the ‘bubble tree’ to the limit space, we acquire the topology of the original
manifold [Ban90]. We begin with the following lemma, which says that the
diameter of the exceptional divisors is controlled on the ‘energy scale’.

LEMMA 5.1. Let (Yi , g′i , yi) be the rescaled sequence defined above, with the
scaling factor chosen to be the ‘energy scale’, that is, the property (5.1) is satisfied.
Then there exists a constant Ren > 0 independent of i , such that, when i is
sufficiently large, each holomorphic curve in Yi is contained in the geodesic ball
BRen (yi).

Proof. By the choice of ri as in (5.1) and the ε-regularity theorem of [TV05a],
there exists a constant C > 0 independent of i when i is sufficiently large, such
that ‖Rm(y)‖g′i < C · r−2 for y ∈ Yi \ B1(yi). Then for i sufficiently large,
there exists a radius R > 1, such that on Yi \ BR(yi), r 2 is a plurisubharmonic
function. If Lemma 5.1 is false, then there exists a holomorphic curve E that
intersects with Yi \ BR(yi) nontrivially for infinitely many i . Let pi be the point in
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E where r 2 achieves its maximum value. Since r 2 is a plurisubharmonic function,
its restriction on E is a subharmonic function. By the maximum principle, r 2 is
constant on E ∩ Yi \ BR(yi), which contradicts with the fact that E 6⊂ Yi \ BR(yi).
Then we can set Ren = R, and the lemma is proved.

We next need a more precise estimate connecting the bubbles in the ‘energy
scale’ to the birational structure. Before we state and prove this, we next
summarize some results in [Lem92, Lem94] with mild modifications under our
setting which are the crucial ingredient for this step.

5.1. Summary of Lempert’s results. Let (S1/Γ
′, I ) be the unit sphere

centered at {0} in R4/Γ ′ associated with a CR-structure I , where Γ ′ is a finite
subgroup of U (2) with no complex reflection. We have the lifting of the CR-
structure in the universal cover S1 ⊂ R4 still denoted as I . Assume (S1, I )
is embeddable, that is, there exists a diffeomorphism compatible with the CR-
structure I , that embeds S1 into Cm for some integer m. Let (S1, Istd) be the CR-
structure induced from the standard complex structure in C2. Denote (W, Jstd)

as the analytic compactification of C2
\ B1(0) constructed by attaching a divisor

D ' P1 analytically to its end, with Jstd the analytic extension of the complex
structure JEuc on C2. Then (W, Jstd) is a compact strictly pseudoconcave manifold.

L.1. There exist ε1 > 0, a positive integer k, such that if ‖I − Istd‖Ck (S1) < ε1,
there exist ε2 = ε2(ε1 | k), 0 < k ′ < k, a complex structure J on W such that
‖J − Jstd‖Ck′ (W ) < ε2, J |S1 = I , and D is also holomorphic with respect to J . The
norm C k′(W ) is defined by using the restriction of Fubini–Study metric on W .

Since J is a small perturbation of Jstd, by [HV16, formula (4.6)], J = E Jstd(φ),
where φ is a section of Λ0,1

⊗ T 1,0 with a small norm. Since (W, Jstd), (S1, I )
are Γ ′-equivariant, we can have J to be Γ ′-equivariant by averaging φ ∈ Γ (W,
Λ0,1
⊗ T 1,0) with the Γ ′-action.

L.2. The divisor D is associated with a holomorphic line bundle L on (W, Jstd).
There exists a basis s0, s1, s2 of H 0(W, L), where s0|D = 0 is the defining section
of D. When ε1 is small enough, the divisor D also induces a line bundle L ′ on
(W, J ), which is holomorphic with respect to the complex structure J . There
exists a smooth bundle isomorphism Π : L → L ′, where Π |D = Id. Since Jstd, J
are Γ ′-equivariant, we can requireΠ to be Γ ′-equivariant, that is, for any γ ∈ Γ ′,
γ ∗ ◦Π = Π ◦ γ ∗. (This is because, we can choose a set of open charts {U j }16 j6r ,
such that U j1 6=U j2 if j1 6= j2, and {σ(U j) : σ ∈ Γ

′, 16 j 6 r} is a covering of W .
Applying the construction of Π in [Lem94, Lemma 4.2] on each U j , and apply
the Γ -action to constructΠ on other charts of the same orbit.) There exist sections
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σ0, σ1, σ2 ∈ H 0(W, L ′), such that for each j = 0, 1, 2, ‖Π−1(σ j)− s j‖Ck′′ (W ) < ε3

for some ε3 = ε3(ε | k), 0 < k ′′ < k.

L.3. Denote σ (1)j as the first-order truncation of σ j over D (which is the projection
of σ j to the normal bundle of D). We have σ (1)j = s(1)j ∈ H 0(D, L). Each σ j is
determined by σ (1)j . Specifically, since s0 is Γ ′-invariant and Π is Γ ′-equivariant,
σ0 is Γ ′-invariant. Let

sd0
0 P0(s1, s2), . . . , sdN

0 PN (s1, s2) (5.2)

be generators of Γ ′-invariant elements in H 0(W, Lk), where each Pj(a, b) is a
homogeneous polynomial of degree k − d j , and specifically, sd0

0 P0(s1, s2) = sk
0 .

Since s0 is Γ ′-invariant, each Pj(s1, s2) is also Γ ′-invariant. As Pj(σ
(1)
1 , σ

(1)
2 ) =

Pj(s
(1)
1 , s(1)2 ) on D, and Pj(σ1, σ2) is determined by Pj(σ

(1)
1 , σ

(1)
2 ), then Pj(σ1, σ2)

is Γ ′-invariant. As a result, σ0
d j Pj(σ1, σ2) ∈ H 0(W, L ′k) is also Γ ′-invariant.

L.4. Let (v1, v2) = (σ1/σ0, σ2/σ0). Then v = (v1, v2) embeds (W \ D, J ) into
C2, and the image of S1 is close to the unit sphere centered at {0} in C2. For each
1 6 j 6 N , Let

u j
=
σ0

d j Pj(σ1, σ2)

σ k
0

= Pj(v
1, v2). (5.3)

Then u = (u1, . . . , uN ) embeds N = (W \ D)/Γ ′ into Z ⊂ CN , under which
N is biholomorphic to an open subset of the cone Z ⊂ CN , where Z ' C2/Γ ′,
{0} ∈ Z is the quotient singularity of the cone.

5.2. The first bubble Y∞ is a resolution. From now on, we choose ri as the
‘energy scale’ as defined in (5.1). Up to a subsequence (Yi , g′i , yi) converges to
(Y∞, g′

∞
, y∞) in the pointed Cheeger–Gromov sense, where Y∞ is an ALE SFK

orbifold with an end asymptotic to R4/Γ ′. Without loss of generality, we can
assume y∞ is the only energy concentration point in Y∞. By Lemma 5.1 above,
there exists a constant Ren > 0 independent of i , such that each holomorphic curve
in Yi is contained in the geodesic ball BRen (yi). Without loss of generality, we can
assume Ren = 1.

LEMMA 5.2. Y∞ is birationally equivalent to C2/Γ ′, where C2/Γ ′ is the
corresponding quotient singularity at x∞ ∈ X∞. Furthermore, there are no
smooth energy concentration points in X∞.
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Proof. In the following, the Cheeger–Gromov convergence always be understood
up to picking a subsequence. Consider the sequence (Yi , g′i , yi) that converges
to (Y∞, g′

∞
, y∞) in the pointed Cheeger–Gromov sense. Denote Aa,b(yi) as the

closed annulus in Yi between the geodesic balls Ba(yi), Bb(yi), a < b. Denote
Aa,b(0) as the annulus in C2/Γ ′ centered at the origin between the radius a < b. In
the next several paragraphs, we follow the idea of Lempert’s method in [Lem94]
to show that when the radius is large, the annulus is very close to the standard
annulus (up to a diffeomorphism that is close to the identity map).

Let R > 1 be fixed with its value to be determined later. By Lemma 5.1,
all holomorphic curves that degenerate at Y∞ are contained in BR(yi) for each
i sufficiently large. Denote V3R(vi) as the image of B3R(yi) after contracting
the exceptional divisors in B3R(yi) to the point vi . Let V3R(vi) be the orbifold
universal cover of V3R(vi) with a single orbifold point vi , which has a strictly
pseudoconvex boundary. V3R(vi) can be embedded into C2. The reason is, for i
sufficiently large, the bimeromorphismΦ in (4.22) maps Bδ(xi) to a subdomain of
B2δ(x∞). By possibly shrinking δ even smaller, we have B2δ(x∞) is biholomorphic
to a strictly pseudoconvex domain in C2/Γ ′. As a result of Theorem 4.3, V3R(vi)

can be mapped into B2δ(x∞), henceforth can be mapped into C2/Γ ′. Then V3R(vi)

can be embedded into C2. The embeddability implies that there exists a pair of
holomorphic coordinate functions, which determines the complex structure of
V3R(vi) as J ′i .

On the limit (Y∞, g′
∞
, y∞), there is an ALE coordinate

Ψ : Y∞ \ B(1/16)R(y∞)→ (R4
\ K )/Γ ′

where K is a compact subset contained in B(1/8)R(0) with respect to gEuc. For
any δ > 0, we also have a diffeomorphism ψ ′i : B4R(y∞) \ Bδ(y∞) → B5R(yi),
such that ψ ′i

∗g′i converges to g′
∞

, ψ ′i
∗ J ′i converges to J ′

∞
on B4R(y∞) \ Bδ(y∞).

In order to simplify our symbols, we use J ′i , J ′
∞

to denote complex structures
(ψ ′i ◦ Ψ

−1)∗ J ′i and Ψ∗ J ′∞ respectively on A(1/2)R,3R(0) and also on its universal
cover A(1/2)R,3R(0) ⊂ R4; denote Sr as the boundary of Br (0). Our goal is to find
a diffeomorphism close to the identity map that perturbs the complex structure
J ′i to the standard one on AR,2R(0). Henceforth, a sequence of the ‘perturbed’
coordinate functions will converge as holomorphic functions, which implies that
Y∞ is a resolution.

We define the normalized annulus

(Aa,b(0), g′′i , J ′′i ) =
(

AR·a,R·b(0),
1
R2
· g′i , J ′i

)
(5.4)

and similar for (Aa,b(0), g′′
∞
, J ′′
∞
). We can choose R to be large enough, such

that for any k > 0 and any sufficiently small ε(k) > 0, when i is sufficiently
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large, ‖J ′′
∞
− JEuc‖Ck (A(1/2),3(0)) < ε(k)/2, ‖J ′′i − J ′′

∞
‖Ck (A(1/2),3(0)) < ε(k)/2, and

consequently

‖J ′′i − JEuc‖Ck (A(1/2),3(0)) < ε(k). (5.5)

Next we apply Lempert’s results L1–L4 on A1,2(0). We consider (A1,2(0), JEuc)

as a standard annulus domain in C2. In the following paragraphs, each norm is
defined based on the standard metrics, that is, either the Euclidean metric or the
Fubini–Study metric on the ‘compactification’.

We can compactify C2 to P2 by adding a divisor D = P1 at the infinity
analytically. The standard complex structure JEuc on C2 extends to the standard
complex structure on P2 which is denoted by Jstd, and C2 is embedded into P2 by
(z1, z2)→ (z1, z2, 1). Denote Wr = P2

\ Br (0). By choosing R to be large enough,
we can assume ε(k) < ε1, where ε1, k as in L.1. Then for i sufficiently large,
‖J ′′i − JEuc‖Ck (A1,2(0)) < ε1. By L.1, in the pseudoconcave manifold W2, there exists
a Γ ′-equivariant complex structure J ′′′i on W2, such that ‖J ′′′i − Jstd‖Ck′ (W2)

< ε2, D
is holomorphic with respect to J ′′′i and J ′′′i = J ′′i as CR-structures on the boundary
S2. Since J ′′i and J ′′′i are compatible on S2, there exists a complex structure,
denoted as Ji , on the pseudoconcave manifold W1, such that, Ji = J ′′′i on W2,
Ji = J ′′i on A1,2(0), and Ji is close to Jstd on W1 under C k-norm, and is Γ ′-
equivariant.

By L.4, we have vi = (v
1
i , v

2
i ) on (W1 \ D, Ji). Restrict vi on A1,2(0), then we

have a map

vi : A1,2(0)→ R4 (5.6)

which is a diffeomorphism into its image, and where v1
i , v

2
i are holomorphic

functions with respect to J ′′i , and there exists a small number λ that depends on
ε(k), such that

‖v
j
i − z j

‖Ck′′ (A1,2(0)) < λ. (5.7)

Also by L.4, there exists a diffeomorphism defined by ui = (u1
i , . . . , uN

i )

ui : N = (W1 \ D)/Γ ′→ CN (5.8)

where u1
i , . . . , uN

i are holomorphic functions on (N , Ji), and there exists a small
number λ′ > 0 that depends on ε(k), such that

‖u j
i − Pj(z1, z2)‖Ck′′ (A1,2(0)) < λ′. (5.9)

The geodesic ball BR(yi) can be attached to N analytically along the boundary
S1/Γ

′. Denote the glued manifold as Mi . Since Mi is one-convex, each
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holomorphic function u j
i can be extended to a holomorphic function on Mi ,

which is still denoted as u j
i . Then ui = (u1

i , . . . , uN
i ) maps Mi onto Z ⊂ CN .

Each holomorphic curve in Mi is mapped to {0} ∈ CN for the reason given
below. Restrict ui on N , it can be lifted up to a map on the universal cover
ui : W1 \ D→ CN , which can be decomposed as

W1 \ D
(v1

i ,v
2
i )

−−−→ C2 (P1(z1,z2),...,PN (z1,z2))
−−−−−−−−−−−−→ CN (5.10)

where P1, . . . , PN are homogeneous polynomials as in L.3 and {0} ∈ C2 is
mapped to the vertex of the cone by the latter map. Then the singularity point
of ui(Mi) in CN is {0}, and holomorphic curves are mapped to {0} ∈ CN by ui .

When i →∞, up to a subsequence, v j
i ( j = 1, 2) converges to v j

∞
, and

v∞ = (v
1
∞
, v2
∞
) : A1,2(0)→ C2 (5.11)

is an embedding, and is holomorphic with respect to J ′′
∞

. This implies that the
inner boundary S1 with CR-structure induced by J ′′

∞
is embeddable.

Now we construct holomorphic coordinate functions on A1,∞(0)(as the
universal cover of the ALE end of the limit space). Since (A1,∞(0), g′′

∞
) has an

ALE asymptotic rate of O(r−µ) for some µ > 1, we can compactify A1,∞(0)
analytically to a strictly pseudoconcave space W1,∞ by attaching a divisor
D ' CP1 to its end, and extend J ′′

∞
to a complex structure on W1,∞ such that D

is holomorphic with respect to J ′′
∞

. By choosing the scaling factor R sufficiently
large, we have ‖J ′′

∞
− Jstd‖Ck′ (W1,∞)

< ε2. Since (S1, J ′′
∞
) (as the boundary of W1,∞)

is embeddable as shown above, then by applying Lempert’s result L.2, L.4, there
exists a pair of holomorphic functions (w1

∞
, w2
∞
) on A1,∞ ' W1,∞ \ D, which

induces an embedding

w∞ = (w
1
∞
, w2
∞
) : A1,∞→ C2. (5.12)

Then (w1
∞
, w2
∞
) is a pair of coordinate function on the universal cover of the end

of the limit space. Thus Y∞ is birationally equivalent to C2/Γ ′.
Smooth energy concentration points can be ruled out using the same argument

in the proof of Corollary 4.6.

5.3. Each deeper bubble is a resolution. We are going to apply an induction
argument to show that each deeper bubble is a resolution to the corresponding
singularity in the previous bubble. By Lemma 5.2, the geodesic ball BR(yi) is
birational to an open neighborhood of y∞ ∈ Y∞. As in the proof of Lemma 5.2,
A1,2(0) (associated with the complex structure (ψ ′i ◦ Ψ

−1)∗ J ′i ) is a subset of N .
By L.4, ui maps N to a subset of the cone Z ⊂ CN . Recall that in the proof of
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Lemma 5.2, we can obtain a manifold Mi by attaching BR(yi) to N analytically.
Each holomorphic function u j

i extends over Mi by one-convex property. Then the
map ui : N → Z can be extended to:

πi : Mi → Z . (5.13)

Since u j
i converges and extends to a holomorphic function u j

∞
on Y∞ for each

1 6 j 6 N , there exists a map:

π∞ : Y∞
(u1
∞,...,u

N
∞)

−−−−−→ Z (5.14)

where πi , π∞ are surjective holomorphic maps that contract the holomorphic
curves. Let Ỹ∞ be the minimal resolution of Y∞, with the projection map

π : Ỹ∞→ Y∞. (5.15)

Following the same argument that proves (4.11), for each i , there exists a
holomorphic map

fi : Ỹ∞→ Mi (5.16)

which is surjective to its image, and such that πi ◦ fi ◦ (π ◦ π∞)
−1
= Id on the

subset of Z where it is defined. Define

τi = π ◦ f −1
i ◦ ψ

′

i : Aδ,R(y∞)→ Aδ,2R(y∞). (5.17)

By a similar procedure as we did in the proof of Proposition 4.3, we can show
that τi converges to the identity map from Aδ,R to itself. Henceforth, we can
show that there exists no (−1)-curve in B̃R(y∞), and there exists a surjective
bimeromorphism from BR(yi) to its image in B2R(y∞). Furthermore, this implies
that, for a sufficiently small δ > 0, Bδ(y∞) is isomorphic to a neighborhood of the
singularity in C2/Γ ′′, where C2/Γ ′′ is type of the quotient singularity at y∞. Then
we can continue our iteration step, and analyze the next bubble as we did for the
first one. Since for each step, the energy ‖Rm‖2

L2 loses a definite value which is
>ε0/2, where ε0 is the energy threshold, the iteration could last for at most finite
steps. By doing the induction after finite steps, we can show that each bubble is a
resolution to the corresponding singularity in the previous bubble. Finally, exactly
as in the previous steps, there are no smooth energy concentration points at any
stage in the bubble tree.

5.4. Completion of proof of Theorem 1.5: ruling out bubbling. Since
each bubble is a resolution, the bubble tree is diffeomorphic to a sequence of
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resolutions. A priori, the bubble tree could have more than one branch. But
without the loss of generality, we can assume that the bubble tree has only one
branch, and is diffeomorphic to Y1#Y2# · · · #Yr , where Y1 is the first bubble, Yr

is the deepest bubble, each bubble Y j+1 is a resolution of the corresponding
singularity in Y j . Since Yr is smooth and is a resolution, and b2(Yr ) is nontrivial,
there exists a holomorphic curve E r

⊂ Yr . By Laufer’s [Lau79, Theorem 2.1], E r

is homologous to a positive cycle E r−1 in Ỹr−1. Since Ỹr−1 is a resolution of the
singularity in Yr−2, E r−1 is again homologous to a positive cycle E r−2 in Ỹr−2. By
induction, finally, E r is homologous to a nontrivial positive cycle E1 in Ỹ1. Then
there exists a rational combination [E1

] = a1[E ′1] + · · · + am[E ′m] that converges
to [E1

], where a j are nonnegative rational numbers with at least one larger than
0, E ′1, . . . , E ′m ⊂ Φ

−1(x∞). However, by the assumption,
∫

E1 ω
2
i > C > 0. This

implies a contradiction.
Recalling Corollary 4.6, there can be no energy concentration points in the limit,

so X∞ must be a smooth manifold, and there exist diffeomorphisms

ψi : X∞→ X i (5.18)

such that ψ∗i gi
Ck,α
−µ

−−→ g∞, ψ∗i J
Ck,α
−µ

−−→ J∞, where −2 < −µ < −1, k is any
nonnegative integer, 0 < α < 1. Since X∞ is biholomorphic to X , the gauging
map Φ in Theorem 4.3 can be considered as an automorphism of X , which
preserves the rate of ALE coordinate. By the proof of Lemma 2.10, away
from a compact subset of X , the diffeomorphism ψi is constructed by using
harmonic coordinates, and the convergence in Theorem 4.3 can be improved to
‖ψi−Id‖Ck+1,α

−µ+1
< ε(i | k). Then gi converges to g∞ in C k,α

−µ(g∞)-norm. Without the
loss of generality, we can choose −µ < δ0. Then g∞ is also an ALE metric with
respect to the fixed ALE coordinate Ψ of rate O(r δ0). By a standard bootstrapping
argument, ω∞ ∈ P(X, J, ω0, δ0), and this finishes the proof of Theorem 1.5.

6. Existence results

In this section, we prove Corollary 1.7, Theorems 1.10, 1.11, and Corollary 1.12

6.1. Proof of Corollary 1.7. For any Kähler class κ ∈ K(J ), let gb,1 ∈ P(J )
with [gb,1] = κ . Consider the family of background ALE Kähler metrics gb,t =

(1− t)g0+ tgb,1 for t ∈ [0, 1]. We want to construct a family of ALE SFK metrics
gt for t ∈ [0, 1], and [gt ] = [gb,t ], with gt − g0 ∈ C k,α

δ (g0). Let S ⊂ [0, 1] be the
subset where such ALE SFK metric exists. By the openness result in [HV16], S
is an open subset. By Theorem 1.5, S is closed, so S = [0, 1] and the desired ALE
SFK metric exists, which completes the proof.
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6.2. Theorem 1.10: construction of background ALE Kähler metrics. Let
(X, J1) be a complex surface, where J1 ∈ J M

k (k > 0). Our goal is to construct
an ALE Kähler metric g1 on (X, J1). Outside of a compact subset K ⊂ X , X \ K
has a universal cover X \ K , which can be compactified analytically to an open
surface S by attaching a divisor D ' P1 to its end. By Pinkham [Pin78], the
surface (S, J1) is a deformation of (S, Jstd) (which is a subset in P2), and the
deformation fixes the divisor D. The kth-order formal infinitesimal neighborhood
of D is defined as O(k)

S = OS/Ik , where I is the ideal sheaf of D. By [Pin78],
we know that D has the same first-order infinitesimal neighborhood in (S, J1)

and (S, Jstd), that is, O(1)
S is identical with respect to different complex structures.

(Indeed, O(3)
S is identical with respect to different complex structures.) The divisor

D is associated with a line bundle L over (S, Jstd), and a line bundle L ′ over (S,
J1). There exists a defining section of D σ0 ∈ H 0(S,O(L ′)) with σ0|D = 0, and
smooth sections ζ1, ζ2 ∈ Γ (S,A(L ′)), of which the restriction of ζ1, ζ2 on D are
generators of H 0(D,O(L)). We can use (σ0, ζ1, ζ2) to map S into P2, and denote
the pullback of the complex structure on P2 by Jstd on S. Since ∂̄ζ j = O(|σ0|) for
j = 1, 2, where ∂̄ is with respect to J1, this implies that

J1 ∼ Jstd + O(|σ0|). (6.1)

The functions ζ1/σ0, ζ2/σ0 are well-defined smooth functions on S \ D. We use

x1
= Re

(
ζ1

σ0

)
, x2

= Im
(
ζ1

σ0

)
, x3

= Re
(
ζ2

σ0

)
, x4

= Im
(
ζ2

σ0

)
(6.2)

as coordinate functions of X \ K . Be aware that (x1
+
√
−1x2, x3

+
√
−1x4) are

holomorphic functions with respect to Jstd. Then

ωEuc =

√
−1
2

∂std∂̄std

(∣∣∣∣ ζ1

σ0

∣∣∣∣2 + ∣∣∣∣ ζ2

σ0

∣∣∣∣2) (6.3)

defines a positive (1, 1)-form on (S \ D, Jstd), which is the Kähler form associated
to the Euclidean metric under the coordinate (x1, x2, x3, x4).

Moreover, by (6.1),

∂̄ − ∂̄std = O(|x |−1). (6.4)

Then
√
−1
2

∂∂̄

(∣∣∣∣ ζ1

σ0

∣∣∣∣2 + ∣∣∣∣ ζ2

σ0

∣∣∣∣2) = ωEuc + O(|x |−1). (6.5)
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By taking |x | sufficiently large, we can assume
√
−1
2 ∂∂̄(|ζ1/σ0|

2
+ |ζ2/σ0|

2) is
positive definite, therefore a Kähler form. Averaging with the Γ ′-action, we can
assume |ζ1/σ0|

2
+ |ζ2/σ0|

2 is Γ ′-invariant, and can be pushed down to X \ K .
After contracting all exceptional divisors on X , there exists a Stein space X ′.

Without loss of generality, assume p ∈ X ′ is the only singular point. We also
identify X with X ′ away from the exceptional divisors and p. Furthermore, there
exists an integer k ′ > 0, such that L ′k

′

can be extended to a line bundle on the
analytic compactification X̂ (which is an orbifold), O(L ′k′) is globally generated,
and there exists a basis s0, . . . , sN ∈ H 0(X̂ ,O(L ′k′)) which embeds X ′ into CN .
We have

ϕ = (1+ |u1
|
2
+ · · · + |uN

|
2)α, (6.6)

where u j
= s j/s0, 0 < α < 1, and ϕ is a strictly plurisubharmonic function on

X ′ \ p.
Let K ′ ⊂ X be a compact subset and K ⊂ K ′. Let χ be a smooth cutoff function

defined on X , such that χ = 0 on K , and χ = 1 on X \ K ′. Define the (1, 1)-form
ω′1 as:

ω′1 = A ·
√
−1∂∂̄ϕ +

√
−1
2

∂∂̄

(
χ ·

(∣∣∣∣ ζ1

σ0

∣∣∣∣2 + ∣∣∣∣ ζ2

σ0

∣∣∣∣2)). (6.7)

By choosing A to be sufficiently large, ω′1 is positive definite on X ′ \ {p}. By
choosing 0 < α < 1 to be sufficiently small, ω′1 is an ALE Kähler form with
asymptotic rate of at least O(r−ν), for any 0 < ν < 1, with respect to the
coordinate:

Ψ : X \ K
(x1,x2,x3,x4)
−−−−−−→ R4. (6.8)

By using the gluing argument used in the proof of Lemma 2.11 locally near p, we
can modify ω′1 to be an ALE Kähler metric ω1 on X .

By [HV16, (4.7)], we have

J1 = JEuc + Re(φ)+ Q, (6.9)

where φ ∈ Γ (X,Λ0,1
⊗ T 1,0) and satisfies the integrability condition ∂̄φ + [φ,

φ] = 0, where Q ∼ φ ∗ ∇φ as |φ| → 0, and φ ∼ O(r−ν). Noting that proof
of [HV16, Lemma 5.3] remains valid under the weaker assumption that δ < 0,
we may use a sublinear growth vector field Y in that argument to assume that φ
is divergence free, that is, ∂̄∗φ = 0. Then (∂̄∗∂̄ + ∂̄ ∂̄∗)φ = ∂̄∗[φ, φ] = O(r−3+ε)

for any small ε > 0. By standard elliptic estimate, we have φ ∼ O(r−2+ε) and
J1− JEuc ∼ O(r−µ). Furthermore, by formula (6.7), the asymptotic rate of g1 can
be improved to O(r−µ), −2 < −µ < −1. The argument above completes the
proof of Theorem 1.10.
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REMARK 6.1. When (X, J ) is a Stein ALE Kähler surface, then the Kähler cone
K(X, J ) (see Definition 1.3) is isomorphic to the entire space H 2(X,R). This
can be shown by the following. Let ω0 be the fixed background Kähler form.
By weighted Hodge theory, any element in H 2(X,R) can be represented by a
harmonic (1, 1)-form h = O(r−3), as r → ∞. Clearly, ω0 + h is a positive
(1, 1)-form outside of a compact set. As mentioned above, the function ϕ =
(1+|u1

|
2
+· · ·+|uN

|
2)α (0 < α < 1) is a strictly plurisubharmonic function on X ,

since (X, J ) is assumed to be Stein. Then there exists a constant C > 0, such that
ωh = ω0+ h +C ·

√
−1∂∂̄ϕ is a Kähler form on X . We can choose α to be small

enough, such that ωh is an ALE Kähler metric of order O(r−µ), −2 < −µ < −1.

6.3. Smoothing of the M-resolution. In this subsection, we construct a
deformation which will be used in the proof of Theorem 6.2 below. Following
the definition in Section 2.3, we have the deformation to the normal cone X̂ ′ ⊂
Proj(R[z])× C. For t ∈ ∆∗, the punctured unit disc in C, there is a simultaneous
resolution of X ′, X̂ → ∆∗, and we identify X̂1 with X̂ . Then we can apply a
C∗-action such that

(s0, . . . , sN )→ (t k′s0, s1, . . . , sN ) (6.10)

which induces a map from X̂ ′t to X̂ ′1, which can be lifted to a diffeomorphism:
ft : Xt → X1, which furthermore induces a sequence of ALE Kähler metrics:

(Xt , gt , Jt) = (Xt , |t |2 · f ∗t g1, f ∗t J1). (6.11)

Note that (Xt , Jt) extends to a deformation of complex structure, with central
fiber isomorphic to C2/Γ , that is, C2/Γ ↪→ Y → ∆. Without loss of generality,
assume Y → ∆ is in the versal deformation of C2/Γ . Furthermore, as t → 0,
there are basepoints xt ∈ Xt such that (Xt , gt , Jt , xt) converges to (C2/Γ, gEuc,

JEuc, 0) in the sense of pointed Cheeger–Gromov convergence with uniform ALE
asymptotic rate. After a base change

Y ′ Y

∆ ∆
t→td

(6.12)

we have a partial resolution π : Z → Y , such that the central fiber Z0 is a M-
resolution, and Z → ∆ is a Q-Gorenstein deformation of Type T singularities.

By assumption Z0 admits an orbifold ALE SFK metric g0, with π as the
ALE coordinate, and of ALE asymptotic rate O(r−µ). Without loss of generality,
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assume that there is only one orbifold point in z0 ∈ Z0. By the convergence above,
for each 0 < t 6 1, there exists a diffeomorphism

ψt : C2/Γ \ Bη(0)→ Xt (6.13)

where Bη(0) is with respect to the Euclidean distance, such that ψ∗t gt converges to
gEuc under C k,α

−µ(C2/Γ \ Bη(0), gEuc)-norm for any integer k > 0, and 0 < α < 1.
Let Uη = π

−1(Bη(0)) ⊂ Z0 be the lifting of the unit ball of C2/Γ . Then the map
ψt can be lifted to a map

ψ̃t : Z0 \Uη → Xt . (6.14)

We can assume that Uη is contained in the unit geodesic ball B1(z0, g0) in Z0. We
have

‖ψ̃∗t Jt − J̃0‖Ck,α
−µ (g0)

∼ O(|t |d) (6.15)

where the norm is taken on the domain on Z0 \ B1(z0) as |t | → 0. This is because,
the family Y → ∆ is a deformation of ALE Kähler metrics. By a standard
argument (normalizing each annulus A2k ,2k+1(z0) to unit size), it is not hard to
see that along this deformation, away from the singularity, the complex structure
has a convergence rate of O(|t |d · r−µ). The power d comes from the base change.
Exactly as is [BR15, Lemma 15], the estimate (6.15) will be needed below to
control the perturbation of the Kähler form and complex structure. Moreover,
since our base space is noncompact, we also need to control the asymptotic
behavior as r →∞.

6.4. Smoothing of ALE SFK orbifold metrics. In [BR15], Biquard–Rollin
use a gluing method to construct the smoothing of a CscK orbifold along a one-
parameter nondegenerate Q-Gorenstein deformation. We adapt their proof under
the ALE setting, which will produce a family of ALE SFK metrics that degenerate
to an orbifold metric at the central fiber.

THEOREM 6.2. Let Z → ∆ be the Q-Gorenstein deformation from above, where
the central fiber Z0 a M-resolution (or a P-resolution), and p ∈ Z0 is the only
singularity in Z0, which is of type T0 (of type T ). Assume there exists an ALE SFK
orbifold metric (Z0, J0, g0). Then along this deformation, there exists a smooth
family of ALE SFK metrics (Zt , Jt , gt) of order O(r−µ) that degenerates to the
orbifold metric (Z0, J0, g0) as t → 0.

Proof. Without loss of generality, assume that t real, and let ε(t) = td/2. Denote
(As, gAs ) as a Zn-quotient of a An−1-type gravitational instanton (As, gAs

) that
associated to the type T0 singularity {p} ∈ B of the form 1

n2 (1, na − 1). For the
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family of gravitational instantons (As, gAs
), Kronheimer’s construction gives the

expansion

F∗ε(s)gAs
= gEuc + ξ(s) (6.16)

where ξ(s) = O(s2
· R−4), and F is a diffeomorphism from As to the

minimal resolution of C2/ 1
n (1, n − 1) (see more details in [Kro89] and [BR15,

Section 2]). In the current setting, s = td . The C k,α
−µ(At , gAt )-norm is defined as in

Definition 2.1 for the weighted Hölder norm on ALE manifolds. Let U ⊂ Z0 be an
open neighborhood of p, which is isomorphic to an open neighborhood of {0} ∈
C2/ 1

n2 (1, na− 1). Let r ∈ C0(Z0)∩C∞(Z0 \ {p}) be a function such that r(p) is
the Euclidean distance to p in U and coincides with the radius of the ALE metric
g0 outside of a compact subset. Define the weighted Hölder norm C k,α

−µ(Z0, g0)

as in Definition 2.1, where r is defined as above. For any u ∈ C k,α
−µ(Z0, g0), when

r → 0 or r →∞, u = O(r−µ). We can define C k,α
−µ(Zt , gt) in a similar way.

Define the gluing scale b(t) = ε(t)β , where β = 2/(2+ µ), −2 < −µ < −1
is the ALE asymptotic rate of the metric constructed such that β is close to 1

2 . Let
χ : R+→ R+ be a smooth nondecreasing function

χ(t) =

{
0 t < 1/2
1 t > 1.

(6.17)

Let Hε−1 be the homothety that identifies b 6 r 6 4b in Zt with b/ε 6 R 6
4b/ε in At . Attach At and Zt together by Hε−1 to obtain a manifold Xt , which is
diffeomorphic to Zt . Define a Riemannian metric on Xt

h̃t =


ε2
· H ∗

ε−1(gEuc + ε
−2ξ(ε2)) r 6 b

gt r > 4b

ε2
· H ∗

ε−1

(
gEuc +

(
1− χ

(
ε

b
R − 1

))
ε−2ξ(ε2)

)
b 6 r 6 2b.

(6.18)

Define the Hermitian metric ht =
1
2 (h̃t+h̃t(Jt ·, Jt ·)). Note that as ε→ 0, the limit

of gEuc + ε
−2ξ(ε2) is called the tangent graviton to the deformation in [BR15].

The weighted Hölder norm C k,α
−µ(Xt , ht) can be defined by using χ to separate a

function on Xt into functions supported separately on At and Zt , and adding the
corresponding norms together. See more details in [BR15, Section 3.3.3]. Denote
ωt as the (1, 1)-form corresponding to the Hermitian metric ht . By the same
calculation as done in [BR15, Section 3.4], when β is close to 1

2 , using (6.15),
it follows that

‖dωt‖Ck,α
−µ (Xt ,ht )

6 Ck · ε
2 (6.19)

‖∇
LC Jt‖Ck,α

−µ−1(Xt ,ht )
6 Ck · ε

2. (6.20)
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We next employ these estimates to perturb ht into to a Kähler metric. As in [BR15,
Section 3.5], there is a map of spaces of harmonic (1, 1)-forms

H 1,1
At
⊕ H 1,1

Z0
→ K 1,1

t ,

where elements in K 1,1
t are very close to harmonic elements in H 1,1(Xt). This

implies an L2-‘almost orthogonal’ decomposition for 2-forms on Xt . The ∂̄t -
Laplacian �t = ∂̄t ∂̄

∗

t + ∂̄
∗

t ∂̄t is defined by using the background hermitian form
ωt , which is a Fredholm operator with respect to the C k,α

−µ-norm. Then H 1,1(Xt) is
represented by ∂̄t -harmonic forms in H−µ(Xt ,Λ

1,1). Since Xt is Kähler outside
of a compact subset, by a similar proof as in [HV16, Proposition 3.5], H−µ(Xt ,

Λ1,1)'H−3(Xt ,Λ
1,1), so that the L2-orthogonal decomposition still makes sense

under the ALE setting.
By the perturbation argument in [BR15, Section 3.5], there exists a (1, 1)-form

γt which is ‘almost orthogonal’ to K 1,1
t , such that ωt − γt is �t -closed, and

‖γt‖Ck+2,α
−µ (Xt )

6 Ck · ‖�tωt‖Ck,α
−µ−2(Xt )

. (6.21)

Exactly as in [BR15, Lemma 26], ωt − γt can then be perturbed to a d-closed
(1, 1)-form, whose real part ωt ′ , is a Kähler form. The adaptation of Biquard–
Rollin’s argument to the ALE case is entirely analogous to [HV16, Section 7].

By an implicit function type argument as in [BR15, Section 4] adapted to the
ALE case in [HV16, Section 8], we can solve the equation R(ωt) = 0 (t > 0)
where each ωt is a small perturbation of ω′t . It should be emphasized here that,
in the compact case, there is an obstruction to the smoothing of a CscK orbifold
which is given by holomorphic vector fields on Xt for t > 0 small. However, under
the ALE setting, the scalar curvature defines a 4th-order nonlinear PDE

R : C k,α
a (Xt)→ C k−4,α

a−4 (Xt) (6.22)

ϕ→ R(ωb,t +
√
−1∂∂̄ϕ) (6.23)

where 0 < a, α < 1, k > 4, t > 0 is sufficiently small. The cokernel of the
linearization of R corresponds to the space of decaying holomorphic vector fields
on Xt , which is trivial as proved in [HV16, Proposition 3.3]. As a result, there is
no obstruction in the ALE case. We have therefore obtained a family of ALE SFK
metrics ωt , which, by construction, degenerate to the original ALE SFK orbifold
metric on the M-resolution as t → 0.

REMARK 6.3. In case of a P-resolution, for Theorem 6.2, we require the
direction of the deformation Z → ∆R to be away from the discriminant locus
(the subset of J P

k where the Weyl group does not act freely). See more details
in [BR15].
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6.5. Completion of proof of Theorem 1.11. For the proof of (a), over the
Artin component J0, an initial ALE SFK metric (X, J0, g0) on the minimal
resolution of C2/Γ can be constructed by using [CS04] in the cyclic case,
and [LV19] in the general case. By [HV16, Theorem 1.4], there exists an open
neighborhood of J0 in J0, such that for any complex structure J in this open
neighborhood, there exists an ALE SFK metric on (X, J ). We then apply the C∗-
action on J0. As in (6.11), by the pullback under the C∗-action, and a rescaling
of metrics such that the ALE coordinate is fixed, we can construct an ALE SFK
metric in K(J ) for any J in J0.

For the proof of (b), take J ∈ J M
k . By the assumption of (b), there exists an

ALE SFK orbifold metric on the associated M-resolution Z M
k . Then there exists

an open neighborhood U ⊂ J M
k of Z0, such that for any complex structure J ∈

U \ {0}, there exists a ALE SFK metric on (X, J ), by applying Theorem 6.2. By
the pullback of the C∗-action, and a rescaling of metrics to fix the ALE coordinate,
we can also construct a ALE SFK metric for some Kähler class in K(J ), for all
J ∈ J M

k \ {0}.
For the proof of (c), denote J P

k
′
⊂ J P

k as the subset away from the discriminant
locus, with J P

k
′ is open and dense in J P

k . Following exactly Case (b), we can
construct an ALE SFK metric for some Kähler class in K(J ), for all J ∈ J P

k
′.

6.6. Proof of Corollary 1.12. The Artin component follows from Case (a)
in Theorem 1.11. Next, assume J ∈ J M

k with k > 0. We can obtain an ALE
SFK orbifold metric on the corresponding M-resolution X0 using the Calderbank–
Singer construction. To see this, notice that the M-resolution of C2/Γ is toric. Let
π : X̃0 → X0 be its minimal resolution. In the corresponding moment polygon
of X̃0, each segment in the boundary represents an exceptional divisor in X̃0.
By using Joyce’s construction as done in [CS04], there exists a family of ALE
SFK metrics on X̃0, which is parameterized by lengths of boundary segments. By
decreasing the lengths of segments that correspond to the exceptional divisors
contracted by π to 0, the Gromov–Hausdorff limit will be the desired ALE SFK
orbifold metric on X0. Equivalently, these orbifolds can be directly constructed by
choosing the lengths of the corresponding boundary segments to be exactly zero,
in which case the Calderbank–Singer metrics are ALE SFK metrics with orbifold
singularities. Corollary 1.12 is then a consequence of this observation and Case
(b) in Theorem 1.11.

7. Examples

In this section, we give the details of the examples in Section 1.2 from the
Introduction. Namely, we prove Theorems 1.13 and 1.16. First we recall some
important details of cyclic quotient singularities.
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7.1. Cyclic quotient singularities. Let 1 6 q < p be relatively prime integers.
For a type 1

p (1, q)-action, let X̃ be the minimal resolution of C2/Γ (q, p). Integers
k and ei , i = 1 · · · k, are defined by the following Hirzebruch–Jung modified
Euclidean algorithm:

p = e1q − a1, q = e2a1 − a2, . . . , ak−3 = ek−1ak−2 − 1,
ak−2 = ekak−1 = ek, (7.1)

where the numbers ei > 2 and 0 6 ai < ai−1, i = 1 · · · k, see [Hir53]. The integer
k is called the length of the modified Euclidean algorithm. This can also be written
as the continued fraction expansion

q
p
=

1

e1 −
1

e2 − · · ·
1
ek

≡ [e1, e2, . . . , ek]. (7.2)

Recall that exceptional divisor in X̃ is a string of rational curves, Ei for i =
1 · · · k with Ei · Ei = −ei , and each curve has intersection +1 with the adjacent
curve, where it has a simple normal crossing singularity. This is represented by
the following graph. u

−e1

u
−e2

u
−ek−1

u
−ek

which we also denote as (e1, . . . , ek). For details on cyclic quotient singularities
see [Rie74].

For Γ = 1
p (1, q), the following formula is proved in [AI08, LV15]

η(S3/Γ ) =
1
3

( k∑
i=1

ei +
q−1;p

+ q
p

)
− k, (7.3)

where the ei and k are as defined in (7.1), and q−1;p denotes the inverse of
q mod p.

7.2. Artin component examples. In these cases, we next discuss the
topological condition C(X) > 0. First, we consider the case that Γ ⊂ SU(2),
and X is diffeomorphic to the minimal resolution of C2/Γ . In this case, we have
equality in Nakajima’s Hitchin–Thorpe inequality [Nak90], so we have

2χ(X)+ 3τ(X) =
2
|Γ |
+ 3η(S3/Γ ). (7.4)
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The left hand side is equal to 2− b2(X), so we obtain

C(X) = 4
|Γ |

> 0. (7.5)

Next, consider the cases in Theorem 1.13. For the Artin component, if Γ is
cyclic it follows from (7.3) that

C(X) = 2− b2(X)+
2
p
− 3η

(
1
p
(1, q)

)
= 2−

k∑
i=1

(ei − 2)+
2− q−1;p

− q
p

.

(7.6)

For Γ = 1
3 (1, 1), we have p = 3, q = 1, e1 = 3, k = 1, 1−1;3

= 1. If X is in
the Artin component of Γ , then (7.6) yields C(X) = 1 > 0.

For Γ = 1
5 (1, 2), the dual graph is (3, 2), and we have p = 5, q = 2, k = 2,

2−1;5
= 3. If X is in the Artin component of Γ , then (7.6) yields C(X) = 2

5 > 0.
For Γ = 1

7 (1, 3), the dual graph is (3, 2, 2), and we have p = 7, q = 3, k = 3,
3−1;7

= 5. If X is in the Artin component of Γ , then (7.6) yields C(X) = 1
7 > 0.

Below, we consider various non-Artin components of cyclic quotient
singularities. For these, we have b2(X) < k. The modification to the formula for
C(X) is simply the following

C(X) = 2+ (k − b2(X))−
k∑

i=1

(ei − 2)+
2− q−1;p

− q
p

. (7.7)

7.3. Type T cyclic quotient singularities. We recall the main definition
from [KSB88].

DEFINITION 7.1. If Γ = 1
r2s (1, rsd − 1) where r > 2, s > 1, (r, d) = 1, then Γ

is said to be of type Ts−1.

We also denote this action by T (r, s, d). For type T singularities, there exists
non-Artin component such that the corresponding space X satisfies b2(X) = s−1.
Note that this group is covered by the group Γ̃ = 1

rs (1, rs − 1), quotiented by
a Zr -action. The spaces X in the non-Artin component admit Ricci-flat metrics
which are isometric quotients of an Ars−1 hyperkähler metric [Şuv12, Wri12].
We also note that the embedding dimension is r+3, and the base of the non-Artin
component has dimension s [KSB88, BC94]. The following Proposition gives a
useful description of the type T singularity in terms of their dual graphs.
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PROPOSITION 7.2. If (e1, . . . , ek) is of type Ts−1, then the graphs (2, e1, e2, . . . ,

ek−1, ek + 1) and (e1 + 1, e2, . . . , ek−1, ek, 2) are also of Type Ts−1. Type T0 are
those obtained starting from (−4). Type T1 are those obtained starting from (3, 3).
In general, for s > 2, type Ts−1 are those obtained starting from (3, 2, . . . , 2︸ ︷︷ ︸

s−2

, 3)

and iterating the above procedure (r − 2) times.

Using this characterization, we can prove the following.

PROPOSITION 7.3. Let Γ be of type T (r, s, d), ` denote the total number of
exceptional curves in the minimal resolution of C2/Γ , and −ei denote the self-
intersection number of the i th curve, i = 1 · · · `. Then

` = r + s − 2 (7.8)
`∑

i=1

ei = 3r + 2s − 4. (7.9)

Furthermore, we have

η(Γ ) =
1
3

(
3− s −

2
r 2s

)
(7.10)

C(X) = 4
r 2s

. (7.11)

Proof. The first two formulas follow easily from the description in
Proposition 7.2. Without loss of generality, assume that 1 6 d 6 r − 1. Then the
inverse of rsd − 1 modulo r 2s is given by rs(r − d)− 1. To see this,

(rsd − 1)(rs(r − d)− 1)− 1 = −r 2s(1+ d2s − rsd) ≡ 0 mod r 2s. (7.12)

Therefore, letting p = r 2s, and q = rsd − 1, and using (7.3), we have

η(Γ ) =
1
3

( `∑
i=1

ei +
q−1;p

+ q
p

)
− k =

1
3

(
3− s −

2
r 2s

)
. (7.13)

Finally, by (7.7), we have

C(X) = 2− (s − 1)+
2

r 2s
−

(
3− s −

2
r 2s

)
=

4
r 2s

. (7.14)
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REMARK 7.4. Note that C(X) = 4/|Γ |, something that we already knew had to
be true from the Nakajima–Hitchin–Thorpe inequality, similarly to (7.5).

REMARK 7.5. Without loss of generality, we can assume that 1 6 d 6 r − 1. We
showed above that

1
r 2s

(1, rsd − 1) ∼
1

r 2s
(1, rs(r − d)− 1). (7.15)

This means that T (r, s, d) ∼ T (r, s, r − d) are equivalent singularities, but note
that the ordering of the self-intersection numbers ei is reversed in each case.

7.4. Add a single (−2)-curve to a type T . Given (e1, . . . , ek) of Type Ts−1,
we consider the graph (2, e1, . . . , ek). Note that, we could also put the (−2) curve
on the right hand side. However, this would give an equivalent singularity taking
the conjugate Type T singularity (from Remark 7.5), which reverses the order of
the self-intersection numbers, and still putting the (−2) curve on the left. So let
us write the type T string as T (r, s, r − d), and attach the (−2) curve on the left.
For this type T singularity, we have

rs(r − d)− 1
r 2s

= [e1, . . . , ek]. (7.16)

So to determine what the new cyclic singularity is, we have

q
p
= [2, e1, . . . , ek] =

1
2− rs(r−d)−1

r2s

=
r 2s

1+ drs + r 2s
. (7.17)

So this singularity is of type (1/(1+ drs + r 2s))(1, r 2s).

PROPOSITION 7.6. We have

q−1;p
= dsr + d2s − 1 (7.18)

η

(
1
p
(1, q)

)
=

1
3

s(−1+ d2
+ 2dr + 2r 2

− r(d + r)s)
1+ drs + r 2s

. (7.19)

Proof. A simple computation shows that

r 2s(dsr + d2s − 1)− 1 = (−1+ drs)(1+ drs + r 2s). (7.20)

Note also that 1 6 dsr + d2s − 1 < r 2s + drs + 1.
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Next, using Proposition 7.3 we have

η(Γ ) =
1
3

(
3r + 2s − 4+ 2̃+

r 2s + dsr + d2s − 1
1+ drs + r 2s

)
− (r + s − 2+ 1̃)

=
1
3

s(−1+ d2
+ 2dr + 2r 2

− r(d + r)s)
1+ drs + r 2s

. (7.21)

Note that the 2̃ and 1̃ terms are there because we added a single (−2) curve.

Next, we blow down the Type T singularity, and let X denote the corresponding
Q-Gorenstein smoothing, which exists by [BC94, KSB88].

PROPOSITION 7.7. We have

C(X) = 4− d2s
1+ drs + r 2s

. (7.22)

Proof. The η-invariant was determined in the previous proposition, since the
group at infinity is the same. Note also that b2(X) = s − 1 + 1 = s, since the
smoothing of the type T singularity contributes s−1 and the (−2) curves donates
another 1 to this. We then have

C(X) = 2− s +
2

1+ drs + r 2s
−

s(−1+ d2
+ 2dr + 2r 2

− r(d + r)s)
1+ drs + r 2s

=
4− d2s

1+ drs + r 2s
. (7.23)

Clearly, for this to be positive, we require d = 1, in which case we have

C(X) = 4− s
1+ rs + r 2s

, (7.24)

which is positive for s = 1, 2, 3. Note that from Proposition 7.6, the group at
infinity is equivalent to

Γ =
1

1+ rs + r 2s
(1, s(r + 1)− 1), (7.25)

which yields the following.

THEOREM 7.8. Let Γ ⊂ U(2) be any of the following groups for r > 2

Γ =
1

r 2 + r + 1
(1, r) (1)
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Γ =
1

2r 2 + 2r + 1
(1, 2r + 1) (2)

Γ =
1

3r 2 + 3r + 1
(1, 3r + 2). (3)

There is a non-Artin component Ji of the versal deformation space C2/Γ with
b2 = i in Case (i), i = 1, 2, 3 which has C(Ji) > 0.

Note the first case is a M-resolution, but the second and third cases are P-
resolutions, but not M-resolutions. The dual graphs of the minimal resolutions in
these cases look like the following.

For s = 1, r > 2 : (

r−1︷ ︸︸ ︷
2, . . . , 2, r + 2).

For s = 2, r > 2 : (

r−1︷ ︸︸ ︷
2, . . . , 2, 3, r + 1).

For s = 3, r > 2 : (

r−1︷ ︸︸ ︷
2, . . . , 2, 3, 2, r + 1).

7.5. Add two (−2)-curves to a type T . We write the type T string as T (r, s,
r − d), with dual graph (e1, . . . , ek), and attach the two (−2) curves on the left.
To determine p and q , we have

q
p
= [2, 2, e1, . . . , ek] =

1

2−
1

2−
rs(r − d)− 1

r 2s

=
1+ drs + r 2s
2+ 2drs + r 2s

.

(7.26)

So this singularity is of type (1/(2+ 2drs + r 2s))(1, 1+ drs + r 2s).

PROPOSITION 7.9. We have

q−1;p
= dsr + 2d2s − 1 (7.27)

η

(
1
p
(1, q)

)
=

1
3

s(−2+ 2d2
+ 2dr + r 2

− r(2d + r)s)
2+ 2drs + r 2s

. (7.28)

Proof. A simple computation shows that

(1+ drs + r 2s)(dsr + 2d2s − 1)− 1 = (−1+ d2s + drs)(2+ 2drs + r 2s).
(7.29)

Note also that 1 6 dsr + 2d2s − 1 < r 2s + 2drs + 2.
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Next, using Proposition 7.3, we have

η(Γ ) =
1
3

(
3r + 2s − 4+ 4̃+

r 2s + drs + 1+ drs + 2d2s − 1
2+ 2drs + r 2s

)
− (r + s − 2+ 2̃)

=
1
3

s(−2+ 2d2
+ 2dr + r 2

− r(2d + r)s)
2+ 2drs + r 2s

. (7.30)

Note that the 4̃ and 2̃ terms are there because we added a two (−2) curves.

Next, we blow down the Type T singularity, and let X denote the corresponding
Q-Gorenstein smoothing, which exists by [BC94, KSB88].

PROPOSITION 7.10. We have

C(X) = 4− 2d2s
2+ 2drs + r 2s

. (7.31)

Proof. The η-invariant was determined in Proposition 7.9, since the group at
infinity is the same. Also, b2(X) = s − 1 + 2 = s + 1, since the smoothing
of the type T singularity contributes s − 1 and the (−2) curves donate another 2
to this. Then

C(X) = 2− (s + 1)+
2

2+ 2drs + r 2s

−
s(−2+ 2d2

+ 2dr + r 2
− r(2d + r)s)

2+ 2drs + r 2s

=
4− 2d2s

2+ 2drs + r 2s
. (7.32)

Clearly, for this to be positive, we require d = 1, in which case we have

C(X) = 4− 2s
2+ 2rs + r 2s

, (7.33)

which is only positive for s = 1. Also, by Proposition 7.9, the group at infinity is

Γ =
1

2+ 2r + r 2s
(1, r + 1), (7.34)

which yields the following.
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THEOREM 7.11. Let Γ ⊂ U(2) be any of the following groups for r > 2

Γ =
1

r 2 + 2r + 2
(1, r + 1). (7.35)

Then there is a non-Artin component Jk of the versal deformation space C2/Γ

with b2 = 2 which has C(Jk) > 0.

The dual graph of the minimal resolution of the M-resolution in these cases
looks like the following.

For r > 2 : (

r︷ ︸︸ ︷
2, . . . , 2, r + 2).

7.6. Add three (−2)-curves to a type T . We write the type T string as T (r,
s, r − d), with dual graph (e1, . . . , ek), and attach the three (−2) curves on the
left. To determine p and q we have

q
p
= [2, 2, 2, e1, . . . , ek] =

1

2−
1

2−
1

2− rs(r−d)−1
r2s

=
2+ 2drs + r 2s
3+ 3drs + r 2s

.

(7.36)

So this singularity is of type (1/(3+ 3drs + r 2s))(1, 2+ 2drs + r 2s).

PROPOSITION 7.12. We have

q−1;p
= dsr + 3d2s − 1 (7.37)

η

(
1
p
(1, q)

)
=

1
3
−2− s(3− 3d2

+ r(3d + r)s)
3+ 3drs + r 2s

. (7.38)

Proof. A simple computation shows that

(2+ 2drs + r 2s)(dsr + 3d2s − 1)− 1 = (−1+ 2d2s + drs)(3+ 3drs + r 2s).
(7.39)

Note also that 1 6 dsr + 3d2s − 1 < r 2s + 3drs + 3.

https://doi.org/10.1017/fms.2019.42 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2019.42


Existence and compactness theory 61

Next, using Proposition 7.3, we have

η(Γ ) =
1
3

(
3r + 2s − 4+ 6̃+

2+ 2drs + r 2s + dsr + 3d2s − 1
3+ 3drs + r 2s

)
− (r + s − 2+ 3̃)

=
1
3
−2− s(3− 3d2

+ r(3d + r)s)
3+ 3drs + r 2s

. (7.40)

Note that the 6̃ and 3̃ terms are there because we added a three (−2) curves.

Next, we blow down the Type T singularity, and let X denote the corresponding
Q-Gorenstein smoothing, which exists by [BC94, KSB88].

PROPOSITION 7.13. We have

C(X) = 4− 2d2s
2+ 2drs + r 2s

. (7.41)

Proof. The η-invariant term was determined in Proposition 7.12, since the group
at infinity is the same. Also, b2(X) = s − 1+ 3 = s + 2, since the smoothing of
the type T singularity contributes s − 1 and the (−2) curves donate another 3 to
this. Then

C(X) = 2− (s + 2)+
2

3+ 3drs + r 2s
−
−2− s(3− 3d2

+ r(3d + r)s)
3+ 3drs + r 2s

=
4− 3d2s

3+ 3drs + r 2s
. (7.42)

Clearly, for this to be positive, we require d = 1, in which case we have

C(X) = 4− 3s
3+ 3rs + r 2s

, (7.43)

which is only positive for s = 1. By Proposition 7.12, the group at infinity is
equivalent to

Γ =
1

3+ 3r + r 2
(1, r + 2), (7.44)

which yields the following.

THEOREM 7.14. Let Γ ⊂ U(2) be any of the following groups for r > 2

Γ =
1

r 2 + 3r + 3
(1, r + 2). (7.45)
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Then there is a non-Artin component Jk of the versal deformation space C2/Γ

with b2 = 3 which has C(Jk) > 0.

The dual graph of the minimal resolution of the M-resolution in these cases is
the following.

For r > 2 : (

r+1︷ ︸︸ ︷
2, . . . , 2, r + 2).

7.7. Completion of proof of Theorems 1.13 and 1.16. All of the groups in
Theorems 1.13 and 1.16 are cyclic groups. By Corollary 1.12, there exists an ALE
SFK metric in some Kähler class, for any J ∈ J M(i) away from the central fiber.
By Section 7.2, and Theorems 7.8, 7.11, and 7.14, all cases in Theorems 1.13
and 1.16 satisfy C(J M(i)) > 0. By Section 2.4, assumption (1.6) is satisfied. By
Corollary 1.7, it follows that there exists an ALE SFK metric in any Kähler class.

8. Conclusion

In this section, we give a family of examples which shows that smoothings
of nonminimal orbifolds can occur as limits of minimal ALE scalar-flat Kähler
surfaces. In particular, the moduli space of SFK ALE metrics exhibits new
phenomena which do not occur in the hyperkähler case Γ ⊂ SU(2).

THEOREM 8.1. There exists sequences gi of SFK ALE metrics on OCP1(−n) with
respect to complex structures Ji in the Artin component of C2/Γ , where Γ = 1

n (1,
1), such that

(OCP1(−n), gi , Ji , xi)→ (X∞, g∞, J∞, x∞) (8.1)

in the pointed Cheeger–Gromov sense to a limiting SFK ALE orbifold (X∞,
g∞, J∞) such that the limit (X∞, J∞) is birational to (C2/Zn, Jeuc), but is not
dominated by the minimal resolution.

Proof. For n > 3, take O(−n), perform the iterated blowup which obtained from
(n − 2) blowups starting on the (−n)-curve then blow down all curves except for
the (−1)-curve on the end, which yields a type T0 singularity. The dual graphs are
as follows.

For n = 3 : (−1,−4).
For n = 4 : (−1,−2,−5).

For n > 5 : (−1,

n−3︷ ︸︸ ︷
2, . . . , 2, n + 1).
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For each n > 3, denote the blowdown space with a type T0 singularity as Z .
Notice that Z is not an M-resolution. However, we show next that the smoothing
of the type T0 singularity is unobstructed. The smoothing has b2 = 1, and must lie
in the Artin component. This is because there are no non-Artin components for
n 6= 4, and for n = 4, the non-Artin component has b2 = 0.

Note that Z is obtained by blowups of OCP1(−n), and then blowdowns. Since
OCP1(−n) is toric, and each blowup is at a point fixed by the torus action, it
follows that Z is toric. As in Section 7.7, by Calderbank–Singer’s construction,
there exists a SFK ALE orbifold metric g0 on Z . We to apply the smoothing
construction as we did in Section 6.4 to find the desired smooth SFK ALE metrics
near this orbifold metric.

First we want to show that there is no local-to-global obstruction for the
deformation of the quotient singularity. Let X = Z ∪ D be the analytic
compactification of Z , where D is a (+n)-curve. We want to smooth out the
type T0 singularity in X while fixing the divisor D. Denote TX = H omOX (Ω

1,

OX ) as the dual sheaf of the (1, 0)-form sheaf on X , and denote TX (−log(D)) as
the subsheaf of T X where near each point of D, TX (−log(D)) is generated by
(1, 0)-vectors tangent to D. We have the following exact sequence

H 1(X, TX (−log(D)))→ Ext(Ω1(log(D)),OX )

→ H 0(X,E xt1
OX
(Ω1(log(D)),OX ))→ H 2(X, TX (−log(D))). (8.2)

Following the proof of [LP07, Theorem 2], the obstruction to the deformation
we want lies in H 2(X, TX (−log(D))) ' H 2(X̃ , TX̃ (−log(D + E))) ' H 0(X̃ ,
K X̃ ⊗Ω

1
X̃ (log(D + E))), where X̃ is the minimal resolution of X , E =

⋃n−3
j=0 E j

is union of the exception divisors resolved from the T0-singularity, and the last
isomorphism is due to Serre duality. The E j is ordered from the right to the left
in the graph above, with E0 · E0 = −(n + 1), E j · E j = −2 for 1 6 j 6 n − 3.
Note that X̃ is obtained by blowups of the Hirzebruch surface Fn . Denote F as
the generic fiber, and E ′ as the (−1)-curve in the dual graph above. The canonical
divisor can be represented as K X̃ = (n − 2)F − 2D +

∑n−3
j=1( j E j) + (n − 2)E ′,

and the divisor D = nF +
∑n−3

j=0 E j + E ′. By the definition of Ω1
X̃ (log(D + E)),

it is a subsheaf of Ω1
X̃ (D + E). Then

h0(X̃ , K X̃ ⊗ΩX̃ (log(D + E))) 6 h0(X̃ , K X̃ , K X̃ ⊗Ω
1
X̃ (D + E))

= h0

(
X̃ ,
(
(n − 2)F − 2D +

n−3∑
j=1

( j E j)+ (n − 2)E ′
)

⊗Ω1
X̃

(
D +

n−3∑
j=0

E j

))
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= h0

(
X̃ ,Ω1

X̃

(
−2F +

n−3∑
j=1

( j E j)+ (n − 3)E ′
))

6 h0(X̃ \ (E ∪ E ′),Ω1
X̃ (−2F)) = 0. (8.3)

The last equality holds because F can be a generic fiber, so the holomorphic
section vanishes generically and thus vanishes everywhere. This implies that there
is no local-to-global obstruction for deformations of X which preserve the divisor
D. The fixed divisor D can be used to construct the deformation to the normal
cone. As a result, there exists a deformation Z → ∆, where Z0 ' Z and ∆ ⊂ C,
and each smooth fiber Zt is a Stein manifold diffeomorphic to OCP1(−n). Then
by using the argument as in Section 6, we can construct a family of SFK ALE
metrics which degenerates to the orbifold metric on Z .
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