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STABLE INDEX PAIRS
FOR DISCRETE DYNAMICAL SYSTEMS

TOMASZ KACZYNSKI AND MARIAN MROZEK

ABSTRACT. A new shorter proof of the existence of index pairs for discrete dynam-
ical systems is given. Moreover, the index pairs defined in that proof are stable with
respect to small perturbations of the generating map. The existence of stable index pairs
was previously known in the case of diffeomorphisms and flows generated by smooth
vector fields but it was an open question in the general discrete case.

1. Introduction. Index pairs constitute a basic tool in the construction of the Conley
index, which is a topological invariant used in qualitative studies of dynamical systems.
The original construction of the Conley index by Charles Conley and his students (cf.
[1]) concerned flows but in the recent years it was generalized to discrete dynamical
systems [6, 7] and discrete multivalued systems [2]. This opened the way to many new
applications, in particular to a computer assisted proof of chaos in the Lorenz equations
[3, 4, 5].

The Conley index is associated with an isolated invariant set, i.e. an invariant set
which is maximal in some its compact neighborhood called an isolating neighborhood.
The construction of the Conley index for a discrete dynamical system consists of two
steps that differ by the techniques employed. The first step, based on pure set-theoretical
topology, is to construct a pair of subsets (P1ÒP2) of the isolating neighborhood, called
an index pair. The second step consists in extracting algebraic information from the
topology of the index pair by means of algebraic topology tools and certain purely
algebraic functors.

The fundamental fact in the Conley index theory is that both the isolating neigh-
borhood and the Conley index are preserved under a small perturbation. This is almost
straightforward for isolating neighborhoods but required a rather complicated proof until
recently, because the index pairs need not be stable under perturbations in general.

In a recent paper [2], the definitions of isolating neighbourhood, index pair, and the
Conley index, together with the proof of homotopy and additivity property of the index,
were generalized for discrete multivalued dynamical systems.

The main motivation of that paper was to provide a theoretical background of numer-
ical computation used by Mischaikow and Mrozek [3] in their computer assisted proof
of chaos in the Lorenz system, where finitely represented multivalued maps appear as a
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tool for discretisation. However, the consequences of that generalization surpassed the
authors’ initial expectations. The multivalued mapping approach not only is a convenient
model for certain numerics but also permits to simplify certain proofs and to obtain new
results concerning single-valued continuous maps.

The aim of this short report is twofold: First, we provide a new proof of the existence
of index pairs for continuous maps which is shorter and, as we believe, more intuitive
than the previous ones given in [6] and [2]. Second, the index pairs we get in the proof
are stable under small perturbations of the map generating the dynamical system. The
existence of stable index pairs was previously known in the case of diffeomorphisms
and flows generated by C1 vector fields, cf. [7] and [10], but is was an open question
in the case of a general discrete dynamical system (i.e. iterates of a homeomorphism)
and a fortiori, in the case of a discrete semidynamical system (i.e. positive iteratives of
a continuous map).

We refer the reader to [9] for another interesting application of multivalued dynamical
systems to single-valued ones. It is proved there that, in the case of a dynamical system
on Rn, there always exist index pairs P = (P1ÒP2) such that Pi are finite polyhedra.

2. Basic concepts. In this section, we recall from [2] basic definitions.
Let us recall that a mapping F: X ! P (Y), where XÒY are metric spaces and

P (Y) is the set of all subsets of Y, is called upper semicontinuous (usc) if F�1(A) :=
fx 2 X : F(x) \ A 6= ;g is closed for any closed A ² Y or, equivalently, if the set
fx 2 X : F(x) ² Ug is open for any open U ² Y. If A ² X, we denote by F(A) the unionS
fF(x) : x 2 Ag ² Y and not a subset of P (Y). Given a positive integer n, Fn denotes

the n-th superposition of F defined recursively by Fn(x) := F
�
Fn�1(x)

�
. The graph of

F is the set G(F) := f(xÒ y) 2 X ð Y : y 2 F(x)g. Let us recall that any usc mapping
with compact values has a closed graph and it sends compact sets to compact sets. If
F: X ! P (Y) is usc then the set D(F) := fx 2 X : F(x) 6= ;g (called the effective domain
of F) is closed.

Let now (XÒ d) be a given locally compact metric space. If A ² X, we denote the
boundary of A by bd A, its interior by int A, and we let B¢(A) := fx 2 X : d(xÒA) Ú
¢gÒ ¢ Ù 0. We denote the sets of all integers, nonnegative integers, and nonpositive
integers by ZÒ Z+, and Z�, respectively. By an interval we mean an interval in Z, i.e. an
intersection of a closed real interval with Z.

DEFINITION 2.1. An usc mapping F: X ð Z ! P (X) with compact values is called a
discrete multivalued dynamical system (dmds) if the following conditions are satisfied:

(i) For all x 2 XÒ F(xÒ 0) = fxg;
(ii) For all nÒm 2 Z with nm ½ 0 and all x 2 X, F

�
F(xÒ n)Òm

�
= F(xÒ n + m);

(iii) For all xÒ y 2 XÒ y 2 F(xÒ �1) () x 2 F(yÒ 1).
We use the notation Fn(x) := F(xÒ n). Note that Fn coincides with a superposition of

F1: X ! P (X) or its inverse (F1)�1. This justifies that we will call F1 the generator of
the dmds F. We will usually denote the generator simply by F and identify it with the
dmds. This will cause no misunderstanding unless a value of F is considered but in that
case the meaning will be clear from the number of arguments.
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We do not assume that the values of F are non-empty. Thus, the definition of dmds
extends, to the multivalued case, not only the definition of a discrete dynamical system
f : X ð Z ! X (generated by a homeomorphism) but also the definition of a discrete
semidynamical system f : X ð Z+ ! X (generated by a continuous map) since one may
define negative-time values by the property (iii). More precisely, an uscmap F: X ! P (X)
with compact values generates a dmds if and only if it is proper, i.e. F�1(K) is compact for
any compact K ² X. If X is compact (and problems are often reduced to that case) then
any continuous map f : X ! X generates a dmds by F(xÒ 1) = ff (x)gÒF(xÒ �1) = f�1(x),
for x 2 X.

DEFINITION 2.2. Let I be an interval in Z with 0 2 I. A single valued mapping
õ: I ! X is a solution for F through x 2 X if õ(n + 1) 2 F

�
õ(n)

�
for all nÒ n + 1 2 I, and

õ(0) = x.
Note that if õ: I ! X is a solution for F then õ(n) 2 Fn

�
õ(0)

�
for all n 2 I (The proof

is straightforward by induction on m and k, where I = [�kÒm]Ò kÒm 2 Z+). The existence
of a solution through x forces Fn(x) to be nonempty for n 2 I. Note that if f : X ! X is

continuous and proper, and F(x) := Bõ

�
F(x)

�
then the definition of a solution õ:Z ! X

for F coincides with the definition of a é-pseudo trajectory of f , cf. [8].
Given a subset N ² X, we introduce the following notation:

inv+ N := fx 2 N : there exists a solution õ:Z+ ! N for F through xg
inv� N := fx 2 N : there exists a solution õ:Z� ! N for F through xg
inv N := fx 2 N : there exists a solution õ:Z ! N for F through xg

By (i) we have: inv N = inv+ N \ inv� N. It was proved in [2] that the sets inv(š) N
are compact for any compact N.

Let diamN F := supfdiam F(x) : x 2 Ng and dist(AÒB) := minfd(xÒ y) : x 2 AÒ y 2
BgÒAÒB ² X.

DEFINITION 2.3. A compact subset N ² X is called
(a) an isolating neighbourhood for F if

BdiamN F(inv N) ² int N(2.1)

or equivalently
dist(inv NÒ bd N) Ù diamN F

(b) an isolating block for F if

BdiamN F

�
F�1(N) \ N \ F(N)

�
² int N(2.2)

or equivalently
dist

�
F�1(N) \ N \ F(N)Ò bd N

�
Ù diamN F

A straightforward verification shows that (2.2) implies (2.1), i.e. every isolating block
is an isolating neighbourhood but not necessarily vice versa. The importance of the
notion of isolating block lies in the fact that it may be verified even if the set inv N is not
known, which is usually the case.

Notice that when F is single valued then diamN F = 0 and conditions (2.1), (2.2)
reduce to standard definitions of the isolating neighbourhood and isolating block.
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DEFINITION 2.4. Let N be an isolating neighbourhood for F. A pair P = (P1ÒP2) of
compact subsets P2 ² P1 ² N is called an index pair if the following conditions are
satisfied:

(a) F(Pi) \ N ² Pi, i = 1Ò 2;
(b) F(P1 n P2) ² N;
(c) inv N ² int (P1 n P2)
The following result was proved in [2]:

THEOREM 2.5. Let F be a dmds, N an isolating neighbourhood for F and W a
neighbourhood of inv N. Then there exists an index pair P for N with P1 n P2 ² W.

In the next section, a new proof of the above theorem will be provided in the case when
F is generated by a continuous map. We shall need two lemmas from [2] on parametrised
families of dmds. For the sake of completeness we shall also recall their proofs.

Let Λ ² R be a compact interval and F: Λ ð X ð Z ! P (X) an usc mapping with
compact values such that, for each ï 2 ΛÒFï: X ð Z ! P (X) given by Fï(xÒ n) :=
F(ïÒ xÒ n) is a dmds. Given a compact subset N ² X and ï 2 Λ, the sets inv(š) N with
respect to Fï are denoted by inv(š)(NÒ ï).

LEMMA 2.6. Let N ² X be compact. Then the mappings ï ! inv+(NÒ ï)Ò ï !
inv�(NÒ ï), and ï ! inv(NÒ ï)Ò ï 2 Λ, are usc.

PROOF. We prove the assertion for the first mapping, since the other two proofs are
by extending the same argument to negative integers. Suppose that ï ! inv+(NÒ ï) is
not usc at ï0 2 Λ. Then there exists an open U and a sequence ïn ! ï0 such that
inv+(NÒ ï0) � U but inv+(NÒ ïn)\N nU 6= ;. Let xn 2 inv+(NÒ ïn)\ (N nU). Since N nU
is compact, we may assume that xn ! x 2 N n U. In order to achieve a contradiction,
we have to show that x 2 inv+(NÒ ï0). Indeed, let õn:Z+ ! N be a solution for Fïn

with õn(0) = xn. Then õn(k) ² inv+(NÒ ïn) � N n U for all k = 1Ò 2Ò    . We construct
a solution õ:Z+ ! N n U for Fï by induction on k. Let õ(0) = limn õn(0) = x. Let õ(k)
be constructed for a given k, so that õ(k) = limi õni (k), where fõni (k)gi is a subsequence
of fõn(k)gn convergent in N n U. Passing again to a subsequence, we may assume that
fõni (k + 1)gi is convergent. Define õ(k + 1) to be its limit. Since õn(k + 1) 2 F

�
ïn(k)

�
for

all n, the closed graph property of F implies that õ(k + 1) 2 F
�
ïÒ õ(k)

�
.

LEMMA 2.7. Let ï0 2 Λ and let N be an isolating neighbourhood for Fï0 . Then N is
an isolating neighbourhood for Fï for all ï sufficiently close to ï0.

PROOF. By the compactness of N, the condition (2.2) implies that

BdiamNFï0
+3¢

�
inv(NÒ ï0)

�
² inv N

for some ¢ Ù 0. Since F is usc, Fï(x) ² B¢

�
Fï0 (x)

�
for all ï close to ï0 and all x 2 N.

Again by compactness of N,

diamN Fï Ú diamN Fï0 + 2¢
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for all ï close to ï0. By Lemma 2.6 inv(NÒ ï) ² B¢

�
inv(NÒ ï0)

�
for all ï close to ï0 and

we get

BdiamNFï

�
inv(NÒ ï)

�
² BdiamNFï0

+2¢

�
B¢

�
inv(NÒ ï0)

��

= BdiamN Fï0+3¢

�
inv(NÒ ï0)

�

² int N

3. Existence of stable index pairs. Another way of stating Lemma 2.7 is by saying
that isolating neighbourhoods are stable with respect to small perturbations of generators
of dmds. That would not be true about index pairs, as pointed out in [7] and the goal of
this paper is to show that there exist ones which are stable. Let us start from the following
simple but important observation.

PROPOSITION 3.1. Let F: X ! P (X) be a generator of a dmds, N an isolating
neighbourhood for F, and P an index pair for N and F. If G: X ! P (X) is an usc proper
map which is a selector of F, i.e. G(x) ² F(x) for all x 2 X, then N is an isolating
neighbourhood for G, invš(NÒG) ² invš(NÒF) and P also is an index pair for G.

PROOF. The proof is a routine verification.

THEOREM 3.2. Let f : X ! X be a continuous proper map, N an isolating neighbour-
hood for f and W an open neighbourhood of inv N. Then there exists an index pair P for
N with P1 n P2 ² W which is stable under small usc perturbations of f , i.e. there exists
¢ Ù 0 such that if G: X ! P (X) is an usc proper map with the property

G(x) ² B¢

�
f (x)

�
Ò for all x 2 XÒ(3.1)

then P also is an index pair for G.

PROOF. Define a family of dmds on generators by

Fï(x) := Bï

�
f (x)

�
Ò x 2 XÒ ï ½ 0(3.2)

By Lemma 2.6 and Lemma 2.7, there exists ú Ù 0 such that N is an isolating neighbour-
hood for Fï and inv(NÒ ï) ² W provided 0 � ï � ú. Define

P1 := inv�(NÒ ú)

P2 := P1 n int inv+(NÒ ú)

Note that P1 n P2 = inv(NÒ ú) ² W. We shall verify below that P := (P1ÒP2) is an index
pair for all Fï with 0 � ï Ú ú. In particular, it is an index pair for F0 = ffg. Moreover, if
G: X ! P (X) is an usc map satisfying (3.1) for ¢ Ú úÒ ú found above, then G is a selector
of Fï for ¢ � ï Ú ú and the conclusion follows from Proposition 3.1.

P is an index pair for Fï provided 0 � ï Ú ú:
a) Fï(Pi) \ N ² Pi, qi = 1Ò 2:
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Let x 2 P1 and let õ:Z� ! N be a solution for Fú through x. If y 2 Fï(P1) \ N ²
Fú(P1) \ N then õ0:Z� ! N, õ0(0) := y, õ0(n) := õ(n + 1), n Ú 0, is a solution for Fú

through y. Thus y 2 P1.
Let now x 2 P2 and y 2 Fï(x) \ N ² Fú(x) \ N. Since we already know that

y 2 P1, it remains to show that y Û2 int inv+(NÒ ú). Suppose the contrary and let B¢(y) ²
inv+(NÒ ú)Ò ¢ Ù 0. Since f is continuous, there is é Ù 0 such that d

�
Fú(x)ÒFú (x0)

�
Ú ¢

provided d(xÒ x0) Ú é. Let x0 2 Bé(x), y0 2 Fú(x0). Then y0 2 B¢(y), so there exists a
solution õ:Z+ ! N for Fú through y0. Then õ0:Z+ ! NÒ õ0(0) := x0Ò õ0(n) := õ(n � 1),
n Ù 0, is a solution for Fú through x0. Thus Bé(x) ² inv+(NÒ ú) which contradicts that
x 2 P2.

b) Fï(P1 n P2) ² N:
This is straightforward since Fï(P1 n P2) ² Fú(P1 n P2) and P1 n P2 ² inv(NÒ ú).
c) inv(NÒ ï) ² int (P1 n P2):
Since int (P1 n P2) = int inv(NÒ ú), we need to prove that

0 � ï Ú ú ) invš(NÒ ï) ² int N invš(NÒ ú)(3.3)

continuous, there exists é Ù 0 such that, for any x0 2 N with d(xÒ x0) Ú é, we have
d
�
f (x)Ò f (x0)

�
Ú ú � ï. Therefore

Fï(x) = Bï

�
f (x)

�
² Bï

�
Bú�ï

�
f (x0)

��
= Fú(x0)

If õ:Z+ ! N is a solution for Fï through x then we define a solution õ0:Z+ ! N for F
through x0 by õ0(0) := x0 and õ0(n) := õ(n), n ½ 1. This shows that Bõ

�
inv+(NÒ ï)

�
²

inv+(NÒ ú) and (3.4) follows for inv+(NÒ ï). Let now x 2 inv�(NÒ ï) and let õ:Z� ! N
be a solution for Fï through x. If x0 2 Bú�ï(x) \ N then

x0 2 Bú�ï

�
Fï

�
õ(�1)

��
= Fú

�
õ(�1)

�
Ò

therefore we may define a solution õ0:Z� ! N for Fú through x0 by õ0(0) := x0 and
õ0(n) := õ(n)Ò n Ú 0. This shows that Bú�ï

�
inv�(NÒ ï)

�
² inv�(NÒ ú) and completes the

proof of (3.4).

REMARKS. 1. The arguments in the proof remain correct if we replace a single-
valued map f : X ! X by a map F: X ! P (X) with compact values which is continuous
(i.e. both usc and lsc or, equivalently, continuous with respect to the Hausdorff distance
between compact sets). That hypothesis is still more restrictive than the hypothesis of
Theorem 2.6 in [2] but a shorter proof based on a different idea makes stating the theorem
this way worthwhile.

2. The conclusion about the stability of P remains valid even if we consider a general
usc proper map F: X ! P (X) and

G(x) ² B¢

�
F(x)

�
Ò x 2 X
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inv+(NÒ ú)

í

N

inv�(NÒ ú)

FIGURE 2

Indeed, on may define Fï(x) = Bï

�
F(x)

�
as in (3.2) and use Theorem 2.6 in [2] to

conclude the existence of an index pair P for Fï with 0 � ï Ú ú. Then one may refer to
Proposition 3.1, as previously.

3. By the arguments in the proof and by Lemma 2.6, we obtain an additional
information:

inv(NÒ f ) =
\
ïÙ0

inv(NÒ ï)

EXAMPLE. Let f :R2 ! R2 be a time-one map of a downward flow with two stationary
points and a connecting trajectory as in Figure 1. The set S = inv N consists of the two
stationary points and the connecting interval. We assume that f is downward with a
constant speed v, i.e. f (xÒ y) = (xÒ y � v), on outside of some small neighbourhood of S.

If Fú(xÒ y) = Bú

�
f (xÒ y)

�
, then invš(NÒ ú) are two cones with “rounded vertices” as on

Figure 2. The angle í of the slope of each cone far from S is given by sin í = úÛv.
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