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ON THE HANKEL AND SOME RELATED 
TRANSFORMATIONS 

P. HEYWOOD AND P. G. ROONEY 

1. Introduction. The transformations we will discuss in this paper are 
the Hankel transformation Hv, defined for / e C0, the collection of 
continuous functions compactly supported in (0, oo), by 

foo 
(1.1) (Hj)(x) = J0 (xt)mJv{xt)f(t)dt, 

and the % and 3tfv transformations defined for such / by 

foo 

(1.2) (XfKx)= J0 (xt)mYu(xt)f(t)dt, 

and 
foo 

(1.3) (Jfvf)(x) = J 0 (xt)mHv(xt)f(t)dt, 

where Jv and Yv are the Bessel functions of the first and second kinds 
respectively, and H^ is the Struve function; for the theory of these 
functions see [1, Chapter VII]. 

These transformations were studied extensively by one of us in [5] and 
[6] on the spaces ^ p defined in [7; Sections 1 & 5]. In those papers the 
boundedness of the three transformations was fully given on the spaces 
JPpp for 1 < p < oo, but not for p = 1. Also inversion formulae were 
given for the transformations only for portions of their respective ranges 
of boundedness. 

In this paper we shall study the boundedness of the transformations on 
o^ j and give inversion formulae for them for nearly their whole range of 
boundedness. T h e J ^ j boundedness will be studied in Section two, while 
Sections three, and four will be concerned with the inverses of Hv, and <3fv, 
respectively except for the case of % on^x/1_vp. It transpires that this is a 
special and more difficult case, for reasons that will be explained, and we 
shall treat this case in Section five. This may seem odd, since it includes 
the case of % on «^ / 2 2

 a n d entre nous jS^/22
 = L2(0, oo), where usually 

things are simpler. Finally in Section six we find an inverse for J Ç 
The notation here will be the same as that of [6] or [7]. In particular, if 

1 â p ^ oo, 
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990 P. HEYWOOD AND P. G. ROONEY 

y(p) = max(l//?, \/p') 

where, as usual, pf = p/(p — 1). 

2. Boundedness. Theorems 2.1, 2.2 and 2.3 below deal with the 
boundedness of Hv, % and J^v respectively on J^ x. However, we first need 
a lemma. 

LEMMA 2.1. Let 

foo 

M, = J 0 x^^x) \dx, 
foo 

M2= J 0 xx,1~ii\Y{)(x)\dx and 

foo 

M3 = J0 xV2-mv(x) \<k. 
Then (a) if 1 < /x < v + 3/2, A^ < oo; (b) if 1 < /x < 3/2, M2 < oo; 
(c) / / v + 1/2 < /x < y + 5/2 awJ jit > 1, M3 < oo. 

Proo/l From the series for Jw Jv(x) = 0(xu) as x —» 0. Also, from 
[1,7.13.1(3)], 

jv(x) = 0(x~l/2) as x -> oo. 

Hence Mj < oo if and only if 

/

s A » 

0 x u - ^ + 1 / 2 ^ and J ^ x ~ ^ x 
are both finite; that is if 1 < /i < y 4- 3/2. The proof for M2 and M3 is 
similar. 

THEOREM 2.1. / / l ^ | i ^ u + 3/2, i/„ G [^ , , « S ^ o J . If 1 < ju < 
y + 3/2, then for all p, I ^ p < oo, Hv <E [^h£\-^p]. 

Proof Since /^ JC) = 0(xu) as x -> 0 and Jv(x) = 0 ( x " 1 / 2 ) as x -^ oo, 
there is a constant ^ so that for all x > 0, 

!/„(*) | â Kv • min(jcu, x" 1 / 2 ) ^ Ky~3/2, 

if 1 ^ ju ^ y 4- 3/2. But then if / e C0, JC > 0 and 1 ^ /x ^ y + 3/2, 

foo 

I (//„/)(*) \^KVJ0 (xt)V2\Jv(xt) | |/(0 |A 
/*oo 

â xy~l J0 t^x\f(t)\dt = K^-WfW^. 
Thus 

WHJWX-^OO = ess supx>0x
l-"I (Hj)(x)\ ë jgi/HM>1 
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f o r / e C0, so that Hv can be extended t o i £ x for 1 â \i â u + 3/2, is in 
[< ,̂i> ^1-^,00] and is clearly given by (1.1) on JS£ x. 

If 1 < /x < v 4- 3/2, 
/*oo 

J 0 x^\(Hvf)(x)\dx/x 

/

oo Ax> 

0 *-"<& J o (*o1/2W*011/(01<# 

/

bo /*oo 

o ty2\m\dt J0 xw2-vv(tx)\dt 
/

oo /*oo 

0 ?-\ftt)\dt J0 xV2-»\Ux)\dx = M.H/IÎ !. 
Hence, since by Lemma A, Mx < 00, 
But then by interpolation, using [8, Theorem 2], if 1 < /* < v 4- 3/2, 
1 ^ /? ^ 00 , 

THEOREM 2.2. If v ¥= 0 #«(i 1 ^ /x ^ 3/2 — |u|, r/ie« 

Ifv¥=0 and 1 < JU < 3/2 - |u|, then for all p, 1 ^ /? < 00, 

/ / 1 ^ < 3/2, 

If 1 < IL < 3/2, then for all p, 1 ë /? < 00, 

Proof The results for u ^ 0 follow from Theorem 2.1 since from 
[1,7.2.1(4)], 

% = cot(7ru) • #„ - CSC(TTI;) • H_v. 

From [1, 7.2.4(33) ], Y0(x) = 0(log x ) a s j c - ^ 0, and from [1, 7.13.1(4) ], 
Y0(x) = 0(x~l/2) as x -» 00. Hence there are constants A, B and C such 
that 

|y0(jc) \^A\logx\+B, 0 < x < 1, and 

\Y0(x)\ ^ Cx _ 1 / 2 , x > 1. 

But then if / e C0 and x > 0, 

foo 

(%f)(x)\ ^ J 0 (xO1/2ir0(xOII/(OI^ 
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^ A / " * (xt)m\ log(xt) | | / (0 \dt 

0 (*01/2l/(0 \dt + c J 1/je 1/(0 |A 
= ^ 4- BI2 + C/3, 

say. Now, if ft ^ 1, 

/

oo 

Also, if /i â 3/2, 

h = xm f^X ty2-V-'\f(t)\dt 

£ x?-1 j " * t"-*\f{t)\dt £ x?-*\\f\\^. 

Let 

* (0 = *3/2~11og (xt) |. 

Then if ju < 3/2, /i(f) -» 0 as t -» 0, / i ( l /x) = 0, and if 0 < * < 1/x, 
h(t) > 0. Hence the maximum value of h occurs at the point t0 in that 
interval where h'(t0) = 0. Since 

h'(t) = - f 1 / 2 " " " ( ( 3 / 2 . - M)log(*0 + 1), 

*0 = K/x, where 

A - = e - l / ( 3 / 2 - r t < ! 

so that 0 < f0 < 1/x, and thus 

h(t0) = LxM~3/2, 

where L = e~~l/(3/2 - /x). Hence if 0 < f ^ l/x, 

0 ^ A(0 ^ Lx^~3/2. 

Thus if JU < 3/2, 

/ i = * m / r *(o^"!i/(o I* s LX -̂1 /̂  ^-^/(o I* 
sz^ll/IUi-

Hence 

| (%/)(*) | ^ (^L + 5 + C)x^-l\\f\\^ 

and thus, as for Hv in the proof of Theorem 2.1, % can be extended to 
SP x as a member of [J^ 1? -S^-^od if 1 = /A = 3/2, and clearly formula 
(2.'l) remains valid. The proof that % e [J^ 1? -S^-^ ] if 1 ë /> < oo, 
1 < /x < 3/2 is practically the same as for Hv in Theorem 2.1 using that 
M0 < oo from Lemma 2.1. 
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THEOREM 2.3. If v + 1/2 ^ ju ^ u + 5/2 and /* ^ 1, f/œw 

Ifv+ 1/2 < jLt < u + 5/2 a/w/ /i > 1, then for all p, 1 ^ /? < oo, 

<K e [^i,h^\-^pi-
Proof Much the same as the proof of Theorem 2.1, using HU(JC) = 

0(xv+x) as x -> 0, from [1, 7.5.4(55) ], H^x) = 0 ( JC U _ 1 ) as JC -* oo if 
u â 1/2 and HU(JC) = 6>(JC~1/2) as JC -> oo if u < 1/2, from [1, 7.5.4(63) & 
7.13.1(4) ], and from Lemma 2.1, M3 < oo. 

3. Inversion of the Hankel transformation. In [6, Theorem 2.3] we found 
an inverse for the Hankel transformation H„ on &. _, but with the 
restriction that \x < 1. In the theorem below we find an inverse without 
this restriction. 

THEOREM 3.1. Suppose that f e J? where either 1 < p < oo and 
y(p) = ju. < v 4- 3/2, orp = 1 and 1 ^ JU, ̂  i> + 3/2. Choose n > /A. 77ze« 
/or almost all x > 0 

/ ( * ) = *" 
r i //1/7 Too 

xv+"-V2 j 0 (xt)l/2Jv+n(xt) 
x dxl J ° 

X (Hj)(t)dt/t". 

tv+]/2(x2 - / 2 ) " - 1 / 2 n ~ V + T ( n ) , 0 < / < x, 

t > X. 

Proof Suppose first that 1 < p < oo, and for x > 0 let 

gx(t) = r"+1/Vu+„(xO. 

Then gx(t) = 0(tv+V2) as t -» 0, and gx(/) = 0 ( r " ) as ? -» oo. But the 
hypotheses imply that ju is 1/2 since y(/>) =S 1/2, and that v > — 1, for 
the same reason. Thus, since also ju < n, gx e .££„<. From [2, 8.11.(7) ], 

_ f?H  

(0, 

Hence, from [6, Theorem 2.1], 
A» 

(3.1) xv+"-m J0 {xt)x/2Ju+n(xt)-(Hvf){t)dt/tn 

/
oo Too 

o gx(t) ' (Hvf)(t)dt = xv+n J0 (HjrJit) - f(t)dt 
= (2n-lT(n)yl

 / Q / U + 1 / V ~ t2f-lf(t)dt. 

Now (3.1) also holds if p = 1. For it holds if / e C0, which is dense 
in & x, and for each x > 0 both sides of (3.1) represent bounded 
linear functionals on J^ j if 1 ^ JLI ̂  u + 3/2; for, if / G j ^ where 
1 ^ JU ^ 3/2, then 
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If 
\J o 

Jo 

tv+v\x2 - t2)"-}f(t)dt 

tv+ 3 / 2 - ^ 2 _ t2y-\\ty^ | r f / / / ^ x 
u + 2« —/A— 1/2 

M' 

so that the right-hand side of (3.1) represents a bounded linear functional; 
and 

-«+1/2 •Jv+n(xt) • (Hvf)(t)dt if 
/*oo 

= Jo ^~"~1/Vu+,,(*oik1~fW)(')i^ 

JO 
f\x — n— l / 2 i 

^ n /̂iii-,,oo ;n ^-"-'nw*')!* 
^ X 

n - 1 / 2 -
/

OO 

0 ^-"-,/V„+„(OI*<«> 

by Lemma 2.1, ^ being the norm of Hv. Hence (3.1) is valid on JS ?̂1 if 
1 â /A S u 4- 3/2. But if we call the right hand side of (3.1) (Tnf)(x\ then 
it is obvious that 

l_ 

x dx 

d 

(Tnf)(x) = (Tn__J)(x) i f / i > 1, and 

dx 
(Tj)(x) u + l / 2 7(*) a.e. 

Hence 

1 d]n 

ix dx 
(T„f)(x) . . u - l / 2 7(x) a.e., 

and the result follows. 

It seems worth remarking that for a particular value of v one can find a 
value of n, namely [v -f 3/2] 4- 1, so that the inversion given in Theorem 
3.1 is valid for all fi for which Hv is bounded. However, for a particular 
value of jit, this value of n may well be unnecessarily large. 

4. Inversion of the % transformation. The inverse for the % transforma­
tion found in [6, Theorem 6.2] was only valid o n J ^ for ju < 1/2 — u, 
which, since JU, ^ y(p) = 1/2, necessarily entails that v < 0. In this 
section we find formulae for the inverse of the &v transformation valid for 
/A > 1/2 — v. The case when [i = 1/2 — v will be treated in the next 
section. First, however, we need a definition and several lemmas. 
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Definition. Let 

(4.1) mv(s) = 2 5 - 1 / 2 r ( (u + s + l /2) /2) / r ( (u - s + 3/2)/2), 

(4.2) gu(s) = mv(s) • tan(7r(u + .s + l/2)/2)/(u - s + 3/2), 

(4.3) 4W = 1/(2V/2I> + 3/2)), 

(4.4) /ao = r 1 / 2 {H u + 1 (o -^ u }> 
If , + l / 2 / x u + 3 /2 0 < , < J C 

/ > X. 

We also use the operator Da defined for a > 0 in [7, (2.12) ]. 

LEMMA 4.1. If 1/2 ^ p < 3/2 and 1/2 - /x < y < 1, /Aew 

l i m ^T~ / „ —/» ^ *&/*)* = hv(xl R-*oo 2m J P m 

Proof. For n = 1 , 2 , . . . , consider 

where TnR is the rectangle with vertices /x ± /i? and on ± iR, where 
an = — 2n — 1/2 — u, oriented counterclockwise. Note that, using 

I\z) • r ( 1 - z) = 7r/sin(7Tz) and T(z + 1) = zl \z) , 

g^j) = 77 • 2 5 _ 3 / 2 / ( r ( (3 /2 - s - v)/2)T((l/2 - s + u)/2) 

X cos(77(̂  + v + 1/2)/2)) 

and thus the integrand has simple poles at the points 

sm = -2m + 1/2 - v, m = 0, ± 1 , ± 2 , . . . , 

and since 1/2 — v < \x < 3/2 < 5/2 — v, sm is within YnR if and only if 
m = 0, 1, 2 , . . . , n; some of the poles are cancelled by some of the zeroes 
if v = ± 1 / 2 , but these are all outside TnR. The residue of x~sgv(s) 
at sm is 

Rm = (v • xv+2m~l/22~(v+2m+l)/(T(m + 1/2)I> + m + 3/2)) 

X (lim (s - sm)/cos(7r(s + u + l/2)/2) 

= ( - l ) m + V + 2 m " 1 / 2 / ( 2 u + 2 m r ( m 4- 1/2)I> + m + 3/2)), 

and hence 

n 

InR = 2a Rm-
m = 0 
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On top of Tn R9 s = o + iR9 -In - 1/2 - v ^ a ^ ju, and as # -> oo, 
from[l, 1.18(6)], 

|mu(j)/(u + 3/2 - 5 ) | ~ £ a _ 3 / 2 , 

uniformly in a for a in any finite interval, so that for sufficiently large R, 
on top of TnR, 

\mv(s)/(v + 3/2 - J ) | g 2R°~3/2 ^ 2 i ^~ 3 / 2 . 

Also, if |Im z| > 1, | tan z| < K, and hence on the top of TnR, 

\x~sgv(s) I =i 2Kx-°]p-*n. 

But x~° â x ^ if 0 < x ^ 1, and x _ a â x 
on top of Tn R, 

x-s
gv(s) = 0 ( ^ - 3 / 2 ) , 

,2n + u+ l /2 , 1 ^ x < oo, and thus 

uniformly in a, so that the integral along the top of TnR tends to zero as 
R —> oo, as does the integral along the bottom in a similar fashion. Hence 
letting R —> oo, it follows that 

lim 
R-^OO 2m 

But on Re s 

1 [ />+/* _ /•*„+/* 

-\J *-**'*&** - J0n-lR 
~ ^ Rm-

m = 0 

gv(s)ds - J n _.Rx sgv(s)ds\ 

/T, and from [1, 1.18(6) ], as |T| —> oo, 

\x-sgv(s)\ = x2n+v+V22-2"-v-2\T((-2n + IT)/2) 

X tanh(wT/2)/r((2u + 2w + 4 - ZT)/2) | 

2tt+u+l/2i i - u - 2 w - 2 
~ X |T| , 

so that since u < 1 and n ^ 0, J t^g^s) , with 5 = a„ + /T, is in L^R), and 
thus 

1 Çp+iR " 1 fan + i°° 
i™ ^ A - « * Sg"(j)^ = 2 ** + ^ Jo - too * **•<<*>* #^>oo Z777 J I1 lK

 m = Q 2lTl J an l°° 

- 2a Rm + /„, 
m = 0 

say. Now, setting ,s = aw + 2/7, 

ir | < 2« + u+1/2^ —2n —u—2 

/*oo 

X w _ 1 J -oo | r ( ~ M + *') tanh(irO/r(u + « + 2 - if) |A. 

But, 
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HX-n + it)\ 

= | r ( /0 |/ | ( - 1 + it)(~2 + it) . . . ( - « + it) | 

= \T(it) |/( (1 + t2)(4 + t2)... (n2 + t2) ) 1 / 2 

^ | r ( /0 |/«!, and, 

\T(v + n + 2 - it)\ 

= | (v + n + 1 - /7)(u + n — /7) 

. . . (v + 2 - it)T(v + 2 - zO | 

â (u + n + l)(v + n) ... (v + 2) |r(i> + 2 - /7) | 

= r(w + n + 2) |r(u + 2 - /r) | / I > + 2), 

and thus 

\I„\ â (x 2 " + u + 1 / 2 r (u + 2)/(22"+ l , + 1«! • 77 • T(v + n + 2)) 

x J -oo 'r^/Y) t a n h (^) /r(u + 2 - //) |A -» o 
as « —> oo. Thus, letting « —> oo, 

1 />+'* _ S 
l i m V- } u-inx SSv(s)d* = 2< Rm = K(x). 

LEMMA 4.2. If \/2 ^ ^i < 1 a«<i 1/2 — /x < u < 1, //ze« as a function 
oft, 

gv(ix + i7) G L2(R). 

Proof From (4.1), m ^ ) is holomorphic in Re s > — (u + 1/2), and 
clearly ti > — (u + 1/2), so that m^/x + /7) is continuous on R. Also, 
tan(7r(.s + v + l/2)/2) is holomorphic in the strip 1/2 — u < Re s < 
5/2 — u, and thus since 

1/2 < JU + y < 5/2, 

it follows that t a n ^ / i 4- it + v + l/2)/2) is continuous on R. Hence, 
gv(ji + /7) is continuous on R. In addition, 

ItanK/A + *7 + u + l/2)/2) |.—> 1 as \t\ -> oo, 

while from [1, 1.18(6)], 

K ( / i + i7) | ~ k r 1 / 2 a s | / | - > o o , 

and thus 

&X/1 + / 7 ) ^ k r 3 / 2 a s | / | - > o o , 

and hence since JU, < 1, £„(/* + *7) e L2(R). 

https://doi.org/10.4153/CJM-1988-039-2 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1988-039-2


998 P. HEYWOOD AND P. G. ROONEY 

LEMMA 4.3. If 1/2 - v < ju < 1, then hv G £e^p for 1 ê p < oo. 
7/" 1/2 ^ jit < 1 AH*/ 1/2 - /A < u < 1, then for Re s = /x, 
( ^ ) ( s ) = g„(5). 

Proo/. From [1, 7.5.4(63) & 7.13.1(4) ], hv(x) = 0(x~l) as x -> oo, and 
from [1, 7.5.4(55)] and (4.4), hv(x) = 0 ( J C U _ 1 / 2 ) as JC -> 0. Thus for 
1 ^ /? < oo, since 1/2 — v < /x < 1, hv G «££ 

By [4, Lemma 4.1], J( is a unitary transformation of J^ 2
 o n t o ^ W -

Hence by Lemma 4.2 there is a function Gv G JŜ  2 so that when Re 5 = /A, 
(^Gu)(s) = g l / s ) . By [6, (1.9)], 

Gu(x) = lim — / . « * '&,(*)*, 

where the limit is in the topology of J£^2. But by Lemma 4.1, this 
limit exists pointwise everywhere for x > 0 and equals hv(x). Thus 
G^x) = hfx) a.e., and hence if Re s = /x, Jthfs} = gv(s). 

LEMMA 4.4. Ifx > 0, 1/2 ^ ix < 1 awd 1/2 S /x + u < 3/2, then 

Proof Since 1/2 ^ [x < 3/2 — u, u < 1, and hence from Lemma 4.3, 
hv G ^ 2. Also, since /x < 1, u > 1/2 - /x > - 1 / 2 and thus u + 3/2 > 
1 > /x. Hence since /x < v 4- 3/2, and from the hypotheses /x < 3/2 — v, 
it follows that tx < 3/2 — |u|, and thus by [6, Theorem 4.2] and by 
[7, (2.16) ], WvDJtv exists, is in « ^ - ^ a n d if Re J = 1 - /x, 

( ^ ^ P A X * ) = -*nv(s) cot(ir(s + 1/2 - u)/2) • (JifDJiv)(l - s) 

= -mv(s) cot(ir(s + 1/2 - v)/2)x?~\jfhv)(l - s) 

= ~mv(s) cot(ir(s + 1/2 - u)/2)xs~1g„(l - J ) 

= xs~l/(v + 1/2 + j ) . 

But clearly since / x < l < u + 3/2, rUjX G i ^ - ^ and thus if Re s = 
1 - /x, 

(A, J J C ) (J) = JC" ( U + 3 / 2 ) / * / 5 + U " 1 / 2 A = J C 5 - 1 / ^ + 1/2 + s). 

Hence ^ £ > A = rvx. 

THEOREM 4.1. Suppose f G £e^p where 1 < /? < oo and y(/?) g /x < 1 
W l / 2 < / i + u < 3/2. Then for almost all x > 0, 

/ ( J C ) = J C - < B + 1 / 2 > - J C U + 1 / 2 

/*oo 

x Jo (x01/2[Hu+i(^) - AixiWtjywtit. 
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Proof. As in the proof of Lemma 4.4, v < 1 and thus by Lemma 4.3. 
K G <&!i,p'> a n d M < 3/2 - |y|, so that by [6, Theorem 4.2] ^ / e x i s t s and 
from [6, Theorem 4.3] and Lemma 4.4, 

foo 
xv+m J0 (xt)U2[Hv+l(xt) - Av{xt)u](%f)(t)dt/t 

foo 
= xv+3/2 J0 (Dxhv){t) • (%f)(t)dt 

/

oo foo 

0 (^AXO -AW = xv+3/2 J0 rvJt) -f(t)dt 
= jX

0t»
+"2f(t)dt, 

and the result follows on differentiating. 
COROLLARY. Under the hypotheses of the theorem, if x > 0, then 

jlf+x/2f{t)dt 
foo 

= xv+V2 J0 (xt)U2[Hv+l(xt) - Av{xt)"](%f)(t)dt/t. 

Proof This was proved in the course of the proof of the theorem. 

THEOREM 4.2. Suppose f e & where either (a) 1 < p < oo andy(p) ^ 
ix < 3/2 - \v\ andu > 1/2 - v, or (b) p = I, v ¥* 0, and I ^ p ^ 3/2 -
\v\, or (c) p = 1, u = 0 fl«d 1 ^ n < 3/2. Then for almost all x > 0, 

zoo = x-^Wl •-)V3 / 2 

/*oo 

X J o (xt)l/2[Hv+2(xt) - Av+x(xt)v+x](%f)(t)dt/t\ 

Proof By the Corollary to Theorem 4.1, if / e C0, and v satisfies 
hypotheses (a), (b) or (c), and if u > 0, then 

Ju
0t

v+]/2f(t)dt 
foo 

= uv+m J0 (ut)m[Hv+l(ut) - Av(ut)v)(%f)(t)dt/t; 

for example, with hypotheses (a), 3/2 — \v\ > 1/2 — v implies v > — 1/2 
and thus 1/2 — v < 1, and 3/2 — \v\ > y(p) implies 3/2 — |i>| > 1/2 so 
that we can choose /il9 

max(l/2 - u, 1/2) < /ij < min(3/2 - |y|, 1), 

and then clearly / e ££ 2-
Multiply both sides of the above equation by u and integrate from 0 to 

x. The left-hand side becomes 
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fl udu fl tv+v2f(t)dt = fl tv+v2f(t)dt j] udu 

= \jX
0t

0+u\x2-t2)f(t)dt, 

while the right-hand side becomes, using [1, 7.5.4(48) ], 

/

x foo 

0 uv+i/2du ) 0 («01/2[H0+1(«/) - Av(ut)\%f)(t)dt/t 

/
oo fx 

0 ru\%f){t)dt J 0 uv+2[Hv+i(tu) - Au(tu)v]du 

/
oo fxt 

0 rv-1/2(%f)(t)dt ) 0 uv+2[Hv+l(u) - Avu
v]du 

foo 
= J o t~V~V2(%f)(0[(xt)v+2(Hv+2(xt) - Au(xt)v+:/(2v + 3))]dt 

= X 
foo 

V+V2 J0 (xt)V2[Hu+2(xt) - Av+x{xt)v+\%f){t)dt/t2, 

provided we justify the interchange of the order of integrations. For this 
we note that by [6, Theorem 4.2], %f e &x_^ 2>

 a n d t n u s > 

/

x foo 

0 uv+V2du J 0 («0 , /2 |H0+1(«/) - Au(utf\ | («50(0 \dtlt 

/
x foo 

0 uv+5/2du J 0 |/"'A„(«0 | k ^ W X O \dtlt 

/
x \ foo i l / 2 

0 " [Jo l ' " ' / ! >' ) | 2 J / / ' J rf" ' l^ /Hl-^ ,2 
= IIAJU.2 • l l^/IL-,,,2 / o «""'" + 5 / 2 ^ < OO, 

by Lemma 4.3 since 1/2 < /Xj < 1 and since 1/2 — \ix < u < 1. Thus by 
Fubini's theorem, the interchange of the order of integrations is 
justified. 

Hence if / e C0 then for all x > 0, 

cu + 3/2 J / v , \ l / 2 r u / w \ _ ^ ^ A ^ + 1 V ^ / A / ^ ^ / , 2 oo 
(xt)l/z[Hv+2(xt) - Av+x{xt)v^{]{%f\t)dt/t\ 0 

But for each x > 0, under the hypotheses of the theorem both sides of 
(4.6) represent bounded linear func t iona l on & For from [6, Theorem 
4.2], if 1 < p < oo, then 
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If 
\J 0 

v/p\\%f\u-,,P 

since \lp' ^ y(p) îâ /x, and hence if / G JŜ  
Too 

'0 (Hu+2(x?) - A0+W+]x%TKt)dt/t 

= * l / 2 | jo h0+x(xt)-(!3tj){t)dt/t\ 

^ xx'^f™\t*-%+i{xt)rdt/t 

where Kv is the norm of %. But a hypothesis of this theorem in the present 
case is that /x > 1/2 — y, and thus /i — 1 > 1/2 — (y + 1), so that by 
Lemma 4.3, 

H*u+llU-l,p' < °°-

Hence the right-hand side of (4.6) represents a bounded linear functional 
on £P if 1 < p < oo, and the proof is similar if p = 1, using, from 
Theorem 2.2, that 

% G [°^>,l>°^l-/i,oo]-

The proof that the left-hand side of (4.6) represents a bounded linear 
functional on £P is almost trivial from Holder's inequality, and hence 
(4.6) holds under the hypotheses of the theorem, and differentiating twice, 
as in the proof of Theorem 3.1, we obtain the conclusion. 

5. Inversion of the % transformation on £\/2-v,p' F r o m [6, Theorem 
4.2], if 1 < p < oo and y(p) ^ /x < 3/2 — \v\, then except when 
/x = 1/2 — y, 

%(^p) = Hv{^p). 

However, when /x = 1/2 — v the situation changes radically; for, as 
Theorem 5.1 and its Corollary below show, 

Note that when /x = 1/2 — v, then p > 1; for /x < y + 3/2 gives 
y > - 1 / 2 , while /x ^ y(l) = 1 gives v ^ - 1 / 2 . 

We use the notations /~*°° and /_*0 which are explained in [9, Sec­
tion 1.7]. 

THEOREM 5.1. Iff e i ^ / 2 _ where 1 < p < oo, —1/2 < y ^ 

1/2 — y(/?), ^ W 

->oo 

, 0 tv-V2(%f)(t)dt 

converges and equals zero. 

/ : 
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Proof. Note that y(/>) â 1/2 - u < 1 S 3/2 - |u| and thus from 
[6, Theorem 4.2], %f exists and 

%f= -(M_iv_l/2)H_Mv_V2Hv)f. 

B u t i f / e ^ 1 / 2 _ ^ t h e n 

and thus 

(Mv„xnHv)f e M„_1/2(J2S+1/2(P = J2?,,, 

so that 

( M „ _ 1 / 2 ^ ) / e i / _ ( ^ > 

Hence, by [3, Corollary 4.3], 

/

->oo r-^oo 

^ 0 t"-v\%f)(t)dt = ) ^ 0 (Mv_xn%f\t)dt 
converges and equals zero. 

COROLLARY. If 1 < p < oo, - 1 / 2 < v ^ 1/2 - y(p\ then 

Proof Let 

/(x) = ^ + 1 / V + I)"'-
Then for all v and for any p, 1 < p < oo, f ^ ,^\/2_up since 

(JC/OC2 + l ) ) ^ x / x < oo. f 
y o 

o 
But from [2, 8.5(12) ], 

(i /^/Xx) = xl/2Kv(x), 

and since ^ ( x ) > 0 for x > 0, we cannot have 

/ : 

•oo 

>0 xv-m(Hvf)(x)dx = 0. 

(Actually, from [2, 6.8(26) ], 
/"oo 

JO 0 xv-l/z(Hvf)(x)dx = 2v~l7Tl/zT(v + 1/2).) 

The case u = 0, p = 2, of this result says, since ££XI2 ?2 = L2(0, oo), 
that 

%(L2(0,oo)) * tf0(L2(0,oo)). 

Since, from [6, Theorem 2.3] et seq., H0(L2(0, oo) ) == L2(0, oo), we thus 
have that %(L2(0, oo) ) is a proper subset of L2(0, oo). In this case we can 
characterize ^0(L2(0, oo) ), which is done in the following theorem. 
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THEOREM 5.2. A function g is in %(L2(0, oo) ) if and only if 
(a) g G L2(0, 00), 

(b) /7*°° t~ ' g(t)dt converges, and 

(c) k e L2(0, oo), where 

rV2
g(t)dt. 

Proof Suppose / e L2(0, oo) and g = % / , and let h = M_l/2g and 
/ = M_l/2k. Then from [6, Theorem 4.2], (a) g e L2(0, oo), and from 
Theorem 5.1, (b) is satisfied. Also, from [6, Theorem 4.2], 

g = -Ml/2H_M_V2H0f 

and thus since i/0(L2(0, oo) ) = L2(0, oo), h e j£J 2, so that from 
[3, Theorem 4.4] / e j£j 2, which is equivalent to (c). 

Conversely, suppose g satisfies (a), (b) and (c). Then if h = M_l/2g, 
h satisfies (a), (b) and (c) of [3, Theorem 4.4] with p = 2, and thus there 
is a function r e JâfJ 2 so that /z = H_r. But then since M1 /2r e L2(0, oo), 
and 7/0(L2(0, oo) ) = L2(0, oo), there is a function / e L2(0, OO) so that 
Ml/2r = ~H0f Thus, 

g = Ml/2h = Mx/2H__r = Ml/2H_M_l/2Ml/2r 

= -Ml/2H_M_l/2H0f= %f 

and hence g G ^(L 2 (0 , OO) ). 

In our final theorem of this section and its corollary we find that either 
the inverse for % given for /i < 1/2 — v in [6, Theorem 6.2] or the one 
given for [x > 1/2 — v in Theorem 4.1 works for /x = 1/2 — v provided 
one takes the correct limit of integration to be an arrow limit. 

THEOREM 5.3. Iff e Sexi2_vp where 1 < p < oo, - 1 / 2 < v ^ 1/2 -
y(p), then for almost all positive x, 

f(X) = , - ( « + 1 / 2 ) ^ + 1 / 2 J o ix()^Uv+](xt)(%f)(t)dt/t. 

Proof As in the proof of Theorem 5.1, %f exists. There are two cases to 
distinguish, 1/2 — v > y(p) and 1/2 — v = y(p). 

If 1/2 — v > y(p), let f\=f' X(i,oo) where x# is the characteristic 
function of the set E, and let f2 = f — fv Also, choose e > 0 so that 
1/2 — v — e > y(p). Then with/Xj = 1/2 — v ~ e, and ju2 = 1/2 — u + €, 
^ G jg£ ^, and if gz = <3^, / = 1,2, from [6, Theorem 6.2], 

A Coo 

f(x) = , - ( - + 1 / 2 ) ^ + 1 / 2 / ( x 0 l / 2 H u + 1 ( ^ ) - g 1 ( 0 ^ , 

and from Theorem 4.1, 
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f2(x) = x~(^^d_xV+m f~ (x(yn[Hv+](xt) 

- Av(xt)v]g2(t)dt/t. 

But from Theorem 5.1, 

^ 0 tv-V2g2(t)dt = 0, 

and thus adding we obtain, since gx + g2 = %f, 

À /*—>00 

f(x) = ^ " ( « + 1 / 2 ) ^ + 1 / 2 j Q ( ^ ) l / 2 H u + 1 ( ^ ) • (%f){t)dt/U 

the arrow being unnecessary at 0, as is easy to see. 
Suppose 1/2 — v = y(p). Let x be positive and a > 1, and let 

$x(t) = r , / 2 ( H „ + 1 ( x O - Av(xt)v
X(ay00)(t) ). 

By [1, 7.5.4(63) & 7.13.1(4) ], as t -» oo, 

Hl)+1(*0 = ^(*Ou + 0(rm), 
so that 

$x(0 = o(r'). 
Also, as / -» 0, from [1, 7.5.4(55) ], 

$x(t) = 0(tv+3n). 

Thus * , e J2j/2_0i„,. 
Let /) and gt be as before, / = 1,2. Then from [6, Theorem 4.3], 

/

oo /*oo 

0 g,(0 • 0 , (0* = J 0 (%A)(t) • *x(t)dt 

/
oo 

0 /i(0 • ( % ) ( 0 ^ 

/

oo 

Now from Theorem 5.1, 

/

-»oo 

a tv-V2
S](t)dt 

converges, and thus we can write the left-hand side of (5.1) as 

/

—>oo /"—>oo 

0 rU2Hv+l(xt) • gx(t)dt -Aj?)a tv-l/2
gl(t)dt. 

Also from [2, 9.4(37) ], 

/
^ o o 

0 (tu)V2Yv(tu) • u-V2nu+x{xu)du = x - 0 - 1 r , ' + 1 / 2 x ( o^ ) (0 . 

https://doi.org/10.4153/CJM-1988-039-2 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1988-039-2


HANKEL TRANSFORMS 1005 

Further, it is clear from [1, 7.13.1(4) ] that, since v ^ 0, for all / > 0, 

uvYv(tu)du 

converges. Hence 

/

—»oo 

0 (tu)xnYv{tu) • ®x(u)du 

converges for all t > 0 and equals 

/

->oo 

at u"Yv(u)du. 

But it is obvious that if h e 3\/2-vp'> and 

/

—>oo 

0 (tu)mYv(tu) • h(u)du 

converges for almost all / > 0, then the value of this integral is {®/vh)(t) 
a.e. Hence, for almost all t > 0, 

/

->oo 

at uvYv(u)du, 

and substituting this into (5.1), we obtain 

0 r 1 / 2HU + i (*0 ' SAW - Ajcv J a f1/2 gx{t)dt 

= x-"-1 jX
0t»

+"2Mt)dt 

/

oo /*-»oo 

, rv-l/2f(t)dt J a( uvYv(u)du. 
Now from [1, 7.2.8(52) ], 

dz 

Hence, integrating by parts, 

ar uvYv(u)du = J at u-luv+]Yv(u)du 

/

OO 

so that the last term on the right of (5.2) is 

A^v\av j™ rv-mf{t)-tvYv+x(at)dt 

/

CO /"CO 1 

j r°-mAt)dt Jatu"-1 Yv+x{U)du\. 
Now, by Holder's inequality, 
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V -"2 
'"y<')n+.<«)*/> 

«i/; A/2-v %t) fdt/t 
Up 

•i/; \tvYv+x(at)fdt/t 
\iP' 

\/P> 
^\\f\\xn-„,P\ra n+\(t)fdt/t\ - 0 

as a —> oo since u < 1/2 and, from [1, 7.13.1(4) ], 

tvYu+x{t) = 0(t v~\/2 ) as / —> oo. 

Also, since at > 1, if u > at, then \YV+X(u) \ = C/ux/1 for some constant C 
and thus, 

/

oo Ax> 

, rv~U2f(t)dt ]ai u»-lYv+](u)dUl 

- / ; 
- u - l / 2 

1/(0 \dt 
foo 
/ M0" 

J at 

3/2 dw 

Ctf -, u - 1 / 2 
foo 

i, l/( 0 |A/r, 
where C = C/( l /2 — u). This expression tends to zero as a —> oo since 
L> < 1/2 and since from Holder's inequality, 

foo 

j, i/w \dtlt 

l/2-u u/(0 PA/* 
il//7 r A» 

1/2)-1 dt 
Up' 

< oo. 

Hence letting a —» oo in (5.2) we obtain, 

/

->oo fx 

0 r "2H„+I(*0 • sxWt = x-""1 J 0 ^+1/2/, 
(r)A 

or 

/ ; ^ i / 2 / , ( 
u+1/2 r 

J o 

*l/2i (5.3) J0t^
l'%(t)dt = x < ™ J 0 ( jc0 1 , zH„+ 1 (*0gi( ' )* / ' . 

S ince / e - S ^ - u ^ and / 2 = 0 if r > l , / 2 e JS£ for every /x > 1/2 - y. 
Since y(/?) = 1/2 — v < 1, we can choose €, 0 < e < 1, so that 
1/2 — u + c < 1, and it then follows from the corollary to Theorem 4.1, 
with ju, = 1/2 — v + € that 

(5.4) / > + " 2 / ; < o * 
u+1/2 

/•oo 

J 0 (*01 / 2[HU + 1(*0 - AJixtf]g2(t)dt/L 

But by Theorem 5.1, since g2 = ^ / 2 , 

/

^ o o 
1/2 g2(0^ = o, 
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and thus the right-hand side of (5.4) reduces to 

/

—>oo 

0 (xt)l/2Hv+l(xt)'g2(t)dt/t, 

the arrow at 0 being unnecessary, as is easily seen. Adding this to (5.3) we 
find that 

o f+V2f(t)dt = x»+l/1 Jo (xt)l/2Hv+l(xt)(%f)(t)dt/t, 

and on differentiating, we arrive at the conclusion. 

COROLLARY. Iff e £\/2-V,P where - 1 / 2 < v ^ 1/2 - y(p) then for 
almost all x, 

f{x) = x^v+x/2^xv+X12 

dx 
/*oo 

X J^0(^)1 / 2[Hu + i (^) " Av(xt)v](%f)(t)dt/L 

Proof By Theorem 5.1, 
Too 

(x/)1/2[Hu+1(xO - Av(xt)v](%f)(t)dt/t 

i: 1/2, 
'0 {xtyiuv+x(xt)-(%f)(t)dt/u 

an arrow at zero again being unnecessary. 

6. Inversion of the 3% transformation. In [6, Theorem 6.3] we found an 
inverse for the J^v transformation on SÛ but only valid under the 
conditions JLI ^ y(p) and v + 1/2 < \x < min(l, v -f 3/2). In Theorem 6.1 
below we shall find a formula for the inverse of J% for nearly the full range 
of boundedness of the transformation. However, as in Section four, we 
first need some definitions and some lemmas. 

The proofs of the various lemmas and of Theorem 6.1 are very like the 
proofs of the corresponding lemmas and theorems of Section four, so we 
will largely omit the proofs, just calling attention to any special points that 
arise. 

Definition. 6.1. For s e C, let 

(6.1) %jn(s) = 2s~3/2(v - s + 3/2) cot(7r(i; - s + 3/2)/2) 

X T((v + 5 + l /2)/2)/T((7/2 - s + v + In)/2). 

For x > 0 let 

(6.2) <*>v(x) 

(2/x)' 
n-\ 

Yv+n(x) + 77"* 2 (x/2)2k~v~nT(u + n - k)/k\ 
k = 0 
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(6.3) Xvn(x) = xm[%n(x) - nQVtn+x(x)]. 

It should be noticed that (6.2) doesn't make sense when v = — 1 since 
the last term in the finite sum in (6.2) contains T(v 4- 1). However Xun 

does make sense since the T(v 4- l)'s in the two terms cancel each 
other. 

LEMMA 6.1. Suppose that max(i> 4- 1/2, —(v 4- 1/2) ) < /z < u + 5/2, 
and 1/2 = xi < n 4- 1/2. Then 

1 />+*•* 
l i m T~- J a-iR x ^v^)ds = Xvn(s). 

R-*OO liri 

LEMMA 6.2. Suppose that max(i> + 1/2, —(v 4- 1/2) ) < /x < v 4- 5/2 
««J //za/ 1/2 ^ jn < «. Then as a function of t, Xvn(ji + it) G ^ ( ^ ) -

LEMMA 6.3. Suppose that 1/2 ^ /x < w. TVze/? 
(a) / / max(u - 1/2, -(v 4- 1/2)) < /x < v 4- 7/2, X^ <= ^ 

/or 1 ^ p < oo; <z«d 
(b) / / max(y 4- 1/2, -(v 4- 1/2)) < /x < v 4- 5/2, f/iew /or 

Re s = /x, 

Proof The proof is essentially that of Lemma 4.3, but for the first part 

note that 

Xvn(x) = 0(x~p) as x —> oo, 

where p = min(«, v 4- 7/2), since the terms of highest order arising from 
the finite sums in $vn and $ ^ + 1 cancel each other. 

LEMMA 6.4. If x > 0, max(u + 1/2, -(v 4- 1/2) ) < /x < u + 5/2 aw J 
1/2 ^ /x < «, //*e« 

(^vDxXvn)(t) = (2/T(n))x-v-2"-V2tv + 5/2(x2 - t2)n~\ 0 < / < x, 

= 0, t ^ x. 

THEOREM 6.1. Suppose that f e <? where 1 ^ /? < 00, 

max(u 4- 1/2, -(v 4- 1/2)) < /x < u 4- 5/2 and y(p) ë /x < w. 

77zeft /or almost all x > 0, 

/ ( * ) = 2""x -u-5/2 
1 / / 1 " 

x u + 2«-f 3/2 

/*oo 

x J0 (x01/2(^,„(x/) - n^+^OX^/XO^. 
We note that even for n = 1 this result is an improvement over [6, 

Theorem 6.3], which had the hypothesis xi < v 4- 3/2, whereas Theorem 
6.1 replaces this with /x < y 4- 5/2, and the implicit hypothesis of [6, 
Theorem 6.3] that v > — 1 assures that 
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- ( y + 1/2) < 1/2 ^ /A. 

However, if /x < u + 3/2, one can obtain a rather simpler version of the 
theorem in which only one Ov n appears. One can also choose n so large 
that the inversion given by Theorem 6.1 is valid for all /i for which J^ is 
bounded, but as in the case of Hv, this will often be unnecessarily large. 
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