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ON THE HANKEL AND SOME RELATED
TRANSFORMATIONS

P. HEYWOOD AND P. G. ROONEY

1. Introduction. The transformations we will discuss in this paper are
the Hankel transformation H,, defined for f € C, the collection of
continuous functions compactly supported in (0, co), by

[e¢]
A N = [ 0V e0f 0,
and the %, and /%, transformations defined for such f by

mu%m=ﬁwﬁmmm

and

13 &N = [, V0o,

where J, and Y, are the Bessel functions of the first and second kinds
respectively, and H, is the Struve function; for the theory of these
functions see [1, Chapter VII].

These transformations were studied extensively by one of us in [5] and
[6] on the spaces & p defined in [7; Sections 1 & 5]. In those papers the
boundedness of the three transformations was fully given on the spaces
£, p for 1 < p < oo, but not for p = 1. Also inversion formulae were
given for the transformations only for portions of their respective ranges
of boundedness.

In this paper we shall study the boundedness of the transformations on
<%, and give inversion formulae for them for nearly their whole range of
boundedness. The .%, ; boundedness will be studied in Section two, while
Sections three, and four will be concerned with the inverses of H,, and %,
respectively except for the case of 4, on%,, , ,. It transpires that this is a
special and more difficult case, for reasons that will be explained, and we
shall treat this case in Section five. This may seem odd, since it includes
the case of % on ¥, , and entre nous & ,,, = L,(0, 00), where usually
things are simpler. Finally in Section six we find an inverse for J%,

The notation here will be the same as that of [6] or [7]. In particular, if
1 =p = oo,
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Y(p) = max(1/p, 1/p’)
where, as usual, p’ = p/(p — 1).
2. Boundedness. Theorems 2.1, 2.2 and 2.3 below deal with the

boundedness of H,, %, and J respectively on %, |. However, we first need
a lemma.

LEMMA 2.1. Let
[e.e]
M, = /0 xm_“IJU(x) |dx,
o0
M, = fo x"27HYy(x) ldx and

o0
M, = fo x27HH(x) |dx.

Then (a)if 1l <p<v+ 3/2, My <oo; (b)if ] <p<3/2, M, < co;
©@ifv+12<p<v+52andp>1, M, < .

Proof. From the series for J,, J(x) = O(x") as x — 0. Also, from
[1,7.13.13) 1,

J(x) = 0(x %) asx— co.

Hence M| < oo if and only if

% —ut1n2 el
0 xVTH dx and R X Fdx

are both finite; that is if 1 < p < v + 3/2. The proof for M, and M; is
similar.

THEOREM 2.1. If 1 S p=v + 3/2, H, €[4, 4 _,. ] If 1 <p <

v+ 3/2, then for allp, 1 = p < oo, H, €[4, 4 _, I

Proof. Since J(x) = O(x") as x = 0 and J(x) = O(x~ /%) as x — oo,
there is a constant K, so that for all x > 0,

Vy(x) | = K, - min(x’, x V) = Kux#—3/2’

ifl =p=v+ 3/2.Butthenif f€ Cp, x >0and 1 = p =v + 3/2,

| (H )| = K, f o )" 2Cxn) | 1£0) b

IA

[ee)
Kt [T 0 e = Kt
Thus

IH, [l — poo = €ss sup,~o x' *| (H,/)x) | = K,/ fll,,
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for f € C,, so that H, can be extended to %, | for 1 = p = v + 3/2,isin
[%.1> 4 ool and is clearly given by (1.1) on % ;.
Ifl<p<ov+ 3/2

S5 €M e
= f°° “Hdx f ()2, x0) 11f(@) N
f o V2 f(r) |dt f . x"27H T (1x) |dt

= fo ) ldtf V2TH(x) ldx = M| fll,)-
Hence, since by Lemma 4, M| < oo,
H, € 4 Lyl

But then by interpolation, using [8, Theorem 2], if 1 < p < v + 3/2,
1= p = oo

H, e[nl’ ~npl
THEOREM 2.2. If v # 0 and 1 = p = 3/2 — |v|, then
Y € %1 L o)
Ifv+#0and1 < p < 3/2 — |v|, then for allp, 1 = p < oo,
AN LA
Iflép<3/2
€ [ pl"’?i—p,oo]'
If1<p<3/2 then for allp, 1 = p < oo,
% € 14,

fIA

1— pp]

(TN Y = #P]

Proof. The results for v # 0 follow from Theorem 2.1 since from
1, 7.2.1(4) ],

% = cot(mv) - H, — csc(mv) - H_

From [1, 7.2. 4(33) I, Yy(x) = O(log x) as x — 0, and from [1, 7.13.1(4) ],
Yo(x) = O(x~ 2) as x — oo. Hence there are constants A, B and C such
that

|Yo(x)| = Allog x| + B, 0 <x <1, and
Y(x)| = Cx 72, x> 1
But then if f € Cjand x > 0,

(&%) | = f o G ¥txn) | L) L
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1/x
= a [, a0 oseen 1/ lar

+ B f e o+ c [ i a

0

.say. Now, if p = 1,

(]
-1 -1 -1
L=t [ g e S
Also, if p = 3/2,

1/x
x|/2 /0 t3/2—p.ty—1|f(t) ‘dt

1/x
Ll fo AN @) ldt = x”—lllfllu,l-

Il

I,

IA

Let
h(t) = t>? Hlog (xt) .

Then if p < 3/2, h(t) > 0ast — 0, h(l/x) = 0, and if 0 < ¢ < 1/x,
h(t) > 0. Hence the maximum value of 4 occurs at the point ¢, in that
interval where A’(zy) = 0. Since

() = —tY27#((3/2 .~ p) log(xt) + 1),
to = K/x, where
K — ¢ VG2 ~ 1,
so that 0 < ¢y < 1/x, and thus
h(t)) = Lx*7372
where L = 7 !/(3/2 — p). Hence if 0 < t = 1/x,
0= h(t) = Lx* %2
Thus if p < 3/2,

1/x 1/x
I, = x'? /0 RO f(2) ldr = Lx* ! fo Y f@) |de

= Le* Y| fll,0-
Hence
[(B)x) | = AL + B + Ox* Y fll,.1.

and thus, as for H, in the proof of Theorem 2.1, %, can be extended to
<., as amember of [ |, #_, Jif 1 =p =3/ 2, and clearly formula
(2.1) remains valid. The proof that %, € [%, |, &£ _, ] if 1 = p < oo,
1 < p < 3/2 is practically the same as for H, in Theorem 2.1 using that
M, < oo from Lemma 2.1.
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THEOREM 2.3. If v + 1/2 = p=v + 5/2and p = 1, then

Xe[ﬂ,, p,oo].
If v+ 172 <u<v+ 5/2andp > 1, then for allp, 1 = p < oo,
ﬂe[y]& p,p]

Proof. Much the same as the proof of Theorem 2.1, usmg H(x) =
O(x""") as x — 0, from [1, 7.5.4(55) ], Hyx) = O(x"" ") as x — oo if
v=1/2and Hy(x) = O(x ) as x > coif v < 1/2, from [1, 7.5.4(63) &
7.13.1(4) ], and from Lemma 2.1, M; < oo.

3. Inversion of the Hankel transformation. In [6, Theorem 2.3] we found
an inverse for the Hankel transformation H, on % » but with the
restriction that p < 1. In the theorem below we find an inverse without

this restriction.

THEOREM 3.1. Suppose that [ € £, , where either 1 < p < oo and
Yp)=p<v+ 3/2,orp =1landl f = v + 3/2. Choose n > pn. Then
for almost all x > 0

_ 1 dl” _ 0
f(x) = x U+l/2; . ; xv+n 1/2 /0 (.xt)l/z.]v+n(xt)

X (H,f)(t)dt/t".
Proof. Suppose first that 1 < p < oo, and for x > 0 let

gx(t) — _n+l/2JU+n(Xt)-

Then g (1) = O@* %) ast— 0, and g (1) = O(t" ") as t = co. But the
hypotheses imply that p = 1/2 since y(p) = 1/2, and that v > —1, for
the same reason. Thus, since also p < n, g, € & . From [2, 8.11.(7) ],

tU+l/2( )n-—l/zn 1 U+nr(n) O < t < X,
(Hg,)(1) = 0

> Xx.

b

Hence, from [6, Theorem 2.1],

@ X2 f ZO Get) 2T, (xt) - (HLf)(t)dt/ 1"
= X" f o 80 H O = 57 f o Hg)) - [t

_ (zn—lr(n))—] f; tU+1/2(x2 _ tz)"_lf(t)dt.

Now (3.1) also holds if p = 1. For it holds if /' € C,, which is dense
in & ,, and for each x > 0 both sides of (3.1) represent bounded
linear functionals on &, if 1 = p = v + 3/2; for, if f e £, where
1 = p = 3/2, then
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,.[0 (1202 2)n—1f([)dt~

X _ _ —u—1 )
= f() P32 — 2T k() |di/ e = x vt2n—p /ZHfHM’

so that the right-hand side of (3.1) represents a bounded linear functional;
and

UZO RS N R (Huf)(t)dt‘
< n— n~1/2 1—p
= fo t Mo nlxt) [ 167 H(H, (@) |dt

lH A1l - ,mf VR () Ldt

IIA

1A

—1/2= —I/2
XN M fo () 1dE < oo

by Lemma 2.1, K, being the norm of H,. Hence (3.1) is valid on % ; if
1 = p =v+ 3/2. But if we call the rlght hand side of (3.1) (T, f)(x), then
it is obvious that

l '—d—(7;f)(x) (T, f)x) ifn>1, and
x dx

d )
(L)) = XT(x) ae.

Hence

1 dI” _
[— : —] (TN)(x) = "7 *(x) ae,
x dx

and the result follows.

It seems worth remarking that for a particular value of v one can find a
value of n, namely [v + 3/2] + 1, so that the inversion given in Theorem
3.1 is valid for all p for which H, is bounded. However, for a particular
value of p, this value of n may well be unnecessarily large.

4. Inversion of the %, transformation. The inverse for the %/, transforma-
tion found in [6 Theorem 6.2] was only valid on £ , for p < 1/2 — v,
which, since p = y(p) = 1/2, necessarily entails that v < 0. In this
section we find formulae for the inverse of the % transformation valid for
p > 1/2 — v. The case when p = 1/2 — v will be treated in the next
section. First, however, we need a definition and several lemmas.
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Definition. Let
A1) mys) = 2"V + s + 1/2)/2)/T((v — s + 3/2)/2),
42) g/fs) = mys) - tan(m(v + s + 1/2)/2)/(v — s + 3/2),
(4.3) 4, = 1/Q""’Tw + 3/2)),
44) h) = 1 P{H, (1) — 4%,

v+|/2/xu+3/2’ 0<t<x

We also use the operator D, defined for a > 0 in [7, (2.12) ].
LEMMA 4.1. If 1/2 =S pn < 3/2and 1/2 — p < v < 1, then
. 1 [tk
Rll_)n;o 7 fﬂ_m x g (s)ds = h(x).
Proof. Forn = 1, 2, ..., consider
Ig =5 o % ae)ds

where I, p is the rectangle with vertices p = iR and o, =+ iR, where
o, = —2n — 1/2 — v, oriented counterclockwise. Note that, using

I'z) T — z) = a/sin(wz) and T'(z + 1) = zI'(2),
gfs) = - 2272/(D((372 — 5 — v)/)T((1/2 — 5 + v)/2)
X cos(m(s + v + 1/2)/2))
and thus the integrand has simple poles at the points
S, = —2m+ 1/2 —v, m=0, x1, =2,...,

and since 1/2 — v < p < 3/2 < 5/2 — v, 5, 1s within T, p if and only if
m=0,1,2,...,n; some of the poles are cancelled by some of the zeroes
if v = =£1/2, but these are all outside T, . The residue of x ‘g,(s)
at s, is

R, = (m - x°Tm V= @H2m+ D Doy 4+ 1/2)T(w + m + 3/2))
X (lim (s — s,,)/cos(m(s + v + 1/2)/2)

$38,,
= (= 1yt 2m= 12, vt 2y + 1/2)T(w + m + 3/2)),
and hence

n
In,R = 2 Rm.
m=0
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Ontop of I g, s =0 + iR, =2n — 1/2 —v =0 = p, and as R — oo,
from [1, 1.18(6) ],

Imy(s)/(v + 3/2 — s)| ~ RT3

uniformly in ¢ for o in any finite interval, so that for sufficiently large R,
on top of I, g,

|mu(s)/(v + 3/2 — s)l = 2R0_3/2 = 2R#_3/2,
Also, if [Im z| > 1, |tan z| < K, and hence on the top of T, g,
Ix g, (s) | = 2Kx °RFT2,

Butx °= x *if0<x=1,andx ° = x*"""1"2 | = x < o0, and thus
on top of I, r,

x"'g(s) = OR*™¥3),

uniformly in o, so that the integral along the top of T, z tends to zero as
R — oo, as does the integral along the bottom in a similar fashion. Hence
letting R — oo, it follows that

. 1
lim —
R—oo 2

f}rf-iR _, fa"+iR a n
u—ir X g,(s)ds — on—in g, (8)ds| = ”EORm.

But on Re s = 0,, s = 0, + i, and from [1, 1.18(6) ], as |1| — oo,
|X‘ng(s)| — x2n+v+l/22—2n—v—-2lr((_2n + ”_)/2)

X tanh(w1/2)/T((2v + 2n + 4 — i1)/2) |
_ x2n+v+l/2|1_|—u—2n-—2

so that sincev < 1 and n = 0, x™ g (s), with s = 0, + ir, is in L,(R), and
thus

. 1 /u+iR s n 1 /on-i—ioo _
1}11)1:02~m uir X g, (s)ds = m§0 R, + 77 Jaico X g,(s)ds

n

R, +1,
m=0

say. Now, setting s = o, + 2it,

I[ I < x2n+v+l/22—2n—v—2
al =

[ee]
X a7 f_oo IT(—n + it) tanh(wt)/T(v + n + 2 — it) |dt.
But,
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IT(—n + it)|
= TG/ (=1 + it)(=2 +it) ... (—n + it)|
= TG 1/(QA + 1D)@G + 2y ... (0> + 2?2
= |T@t) |/n!, and,
T +n + 2 —it)]
=|@+n+1—it)v+n—it)
w42 =il + 2 — i)
Z@w+n+Do+n)...v0+ 2T+ 2 —ir)]
=T +n+2)Tw+2—in|/Tw + 2),
and thus
11, = 220 + 2/¥ P el - T + n + 2))

o0
X f——oo |T'(it) tanh(wt)/T(v + 2 — it) |dt = 0
as n — oo. Thus, letting n — oo,
1 p+iR s >
Rh_)n:o el Ry TOTLRS mgo R, = hy(x).

LEMMA 42. If 1/2 S p < land 1/2 — p < v < 1, then as a function
o 1,
8 + it) € Ly(R).

Proof. From (4.1), m,(s) is holomorphic in Re s > —(v + 1/2), and
clearly p > —(v + 1/2), so that m(pu + it) is continuous on R. Also,
tan(m(s + v + 1/2)/2) is holomorphic in the strip 1/2 — v < Re s <
5/2 — v, and thus since

172 < p+v<5/2,

it follows that tan(s(p + it + v + 1/2)/2) is continuous on R. Hence,
g,(u + it) is continuous on R. In addition,

[tan(m(pn + it + v + 1/2)/2)| = 1 as |t| = oo,
while from [1, 1.18(6) 1,

Imy(p + i) | ~ [ef 712

as |t| = oo,
and thus

gn + it) ~ |t
and hence since p < 1, g,(n + it) € Ly(R).

B2 as |t — oo,
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LEmMA 43. If 1/2 —v < p < 1, then h, € &, , for 1 = p < oco.
If 172 = p < land 172 — p < v < 1, thenforRes=p,
(Mh,)(s) = 8s).

Proof. From [1, 7.5.4(63) & 7.13.1(4) ], h (x) = O(x 1) as x = co, and
from [1, 7.5.4(55)] and (4.4), h(x) = O(x"~ 172y as x — 0. Thus for
1=p<oosincel/2 —v<p<lh, €L,

By [4, Lemma 4.1], /4 is a unitary transformatlon of %, , onto Ly(R).
Hence by Lemma 4.2 there is a function G, € %, , so that when Re s = K,

(AG,)(s) = g(s)- By [6, (1.9)],

1 n+iR —
u(x) - ngl;)lo 5; //.L’“iR X gu(s)ds’

where the limit is in the topology of % ,. But by Lemma 4.1, this
limit exists pointwise everywhere for x > 0 and equals A, (x). Thus
G (x) = hyx) a.e, and hence if Re s = p, #h(s) = g,(s).

LEMMA 44. Ifx > 0,1/2=p<land1/2 = p + v < 3/2, then
O“Z/vahv = Tox

Proof. Since 1/2 = p < 3/2 — v, v < 1, and hence from Lemma 4.3,
h, € %, ,. Also, sincep < 1,v > 1/2 — p> —1/2 and thus v + 3/2 >
1 > u. Hence since p << v + 3/2, and from the hypotheses p < 3/2 — v,
it follows that p < 3/2 — |v|, and thus by [6, Theorem 4.2] and by
(7, (2.16) ], ¥D,h, exists, is in 4 _ 5, and if Re s = 1— p,

(MY,Dh)(s) = —mys) cot(m(s + 1/2 — v)/2) - (ADh)1 — 5)
= —m(s) cot(m(s + 1/2 — v)/2)x* " (M) — 5)
= —m(s) cot(m(s + 1/2 — v)/2)x* g, (1 — s)
=x"Yw+ 172 + 5).

But clearly since p < 1 <v + 3/2,r,, € #_,, and thus if Re s =
I — p,

X
(Mr, )s) = x~ TP fo FTV 2 = T + 172 + ).
Hence ,D,h, = r,,

THEOREM 4.1. Suppose [ € &, , where 1 < p < coand y(p) = p <1
and 1/2 < p + v < 3/2. Then for almost all x > 0,

f(x) _ x~(u+l/2)ixu+l/2
dx

X f Zo ) H, 4y (xt) — A xt) W Z )@/ .
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Proof. As in the proof of Lemma 4.4, v < 1 and thus by Lemma 4.3.
h, € &, ,, and p < 3/2 — |v], so that by [6, Theorem 4.2] %, f exists and
from [6, Theorem 4.3] and Lemma 4.4,

X1 f ZO () P[H,  (xet) — A, ()N S )i/

XV f o D)) (G )0t
= X" f o (GDA)W) - f()dt = "7 f o ToudD) - f0)dt
_ f; V2,

and the result follows on differentiating.

COROLLARY. Under the hypotheses of the theorem, if x > 0, then
X
fo "V 2f(ydt

Kot12 /Zo (xt)l/z[H,,+ [(xt) — U(Xf) (%, f)(@)dr/t.

Proof. This was proved in the course of the proof of the theorem.

THEOREM 4.2. Suppose [ € ,S,’;’p where either (a) 1 < p < ocoandy(p) =
u<3/2—|v|andu>1/2—-vor(b)p—lv#Oandl w=3/2 -
[vl,or () p = 1, v = 0and 1 = p < 3/2. Then for almost all x >0,

_ —(v+1/2)1 i 2 0t3n
Jex) = x (x dx)x
X f;o )V H 4 y(xt) — Ay (x0T NG )()dt/ 1.

Proof. By the Corollary to Theorem 4.1, if f € C,, and v satisfies
hypotheses (a), (b) or (c), and if u > 0, then

f; V200 dr

[ ) ) — A o

for example, with hypotheses (a), 3/2 — |v| > 1/2 — vimpliesv > —1/2
and thus 1/2 — v < 1, and 3/2 — |v| > y(p) implies 3/2 — |v| > 1/2 s0
that we can choose p,,

max(1/2 — v, 1/72) < p; < min(3/2 — |vl, 1),

and then clearly f € %, 2
Multiply both sides of the above equation by u and integrate from 0 to
x. The left-hand side becomes
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X u X X
]; udu fo V2 ()dr = fo V2 (1)dr [t udu

= [F e = oypoa,
while the right-hand side becomes, using [1, 7.5.4(48) ],
f Z W 2du f ZO (ur)"*[H, ;. \(ut) — A (ut)'NF,f)(t)di/t
= f Zo At f ; WH, (tu) — A (tu)’)du
[T o [, w0 - Apd
- f o TGO ) A, (1)

— A,(xt)" /v + 3))dt
— vt3n /Zo (xt)1/2[HU+2(xt) — AU+l(xt)UJrl](@Uf)(t)d[/tz,

provided we justify the interchange of the order of integrations. For this

we note that by [6, Theorem 4.2], % [ € fl_ml, and thus,

/; w32 fzo ()", (ur) — A (ut)’] | (FF)@) ldt/t

= /Z W%y fzo [t#h(ur) | 1V P(Ff)(e) |de/t

< /X S5
=Jo

X
—p,+5/2
Az 1% s [ 55 < oo,

by Lemma 4.3 since 1/2 < p; < 1 and since 1/2 — p; < v < 1. Thus by
Fubini’s theorem, the interchange of the order of integrations is
justified. :

Hence if / € C, then for all x > 0,

(=] 1/2
/O [t¥1h, (urt) |2dt/z] du - |9 fll1 2

L[> v, 2 2
(4.6) ifot“(x — ) f(t)dt

— 2 [ ) P, ) — A0 @ o

But for each x > 0, under the hypotheses of the theorem both sides of
(4.6) represent bounded linear functionals on .S,’L’p. For from [6, Theorem
42],if 1 < p < oo, then

% € Hp Ayl
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since 1/p’ = y(p) = p, and hence if f € <,

D?

' f s (Hoxt) = A, (0 YN0

_ L2

f o Pori(xt) - (G f)()dt/t

v [ n1 o e
= x folt" hv+1(xt)|”dt/t] NS —p

= Kvx3/2k"||f||,1,p Myl

where K|, is the norm of %,. But a hypothesis of this theorem in the present
case is that p > 1/2 — v, and thus p — 1 > 1/2 — (v + 1), so that by
Lemma 4.3,

gl 1,y < 0.

Hence the right-hand side of (4.6) represents a bounded linear functional
on% if 1 < p < oo, and the proof is similar if p = 1, using, from
Theorem 2.2, that

@U € [%,1’ %—‘u,oo]‘

The proof that the left-hand side of (4.6) represents a bounded linear
functional on £  is almost trivial from Holder’s inequality, and hence
(4.6) holds under the hypotheses of the theorem, and differentiating twice,
as in the proof of Theorem 3.1, we obtain the conclusion.

S. Inversion of the % transformation on % ,, , ,. From [6, Theorem
42],if 1 < p < oo and y(p) = p < 3/2 — |v|, then except when

p=12—u,
Y. = H(Z, ).
However, when p = 1/2 — v the situation changes radically; for, as

Theorem 5.1 and its Corollary below show,
YL * By,

Note that when p = 1/2 — v, then p > 1; for p < v + 3/2 gives
v> —1/2, whilep = y(1) = 1 givesv = —1/2.

We use the notations f 7% and f _,o Which are explained in [9, Sec-
tion 1.7].

/2—u,p

Tueorem S.1. If f € £, , where 1 < p < oo, —1/2 < v =
1/2 — y(p), then

|2 v o

converges and equals zero.
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Proof. Note that y(p) = 1/2 — v < 1 = 3/2 — |v] and thus from
[6, Theorem 4.2], %, f exists and

@vf = _(M—(u—l/Z)H—MU‘l/ZHv)f'
Butif f € 4,,_,, then
Hf € £,
and thus
M1 pH) € My )& 1102)) = 4 p
so that
(M, 1,%)f € H.(Z).
Hence, by [3, Corollary 4.3],

—00

f :Zo VG = | (M %))
converges and equals zero.
COROLLARY. If 1 < p < oo, =1/2 < v = 1/2 — y(p), then
YL r—vp) * H(ZG 2 p)-
Proof. Let
fx) = @202 4+ 1)L

Then for all v and for any p, 1 < p < oo, f € 4 since

/2—v,p
f:’ /(2 + 1) Ydx/x < oo.

But from [2, 8.5(12) ],
(H/)(x) = x'?K (x),

and since K (x) > 0 for x > 0, we cannot have

—00
f Lo X VAH(x)dx = .
(Actually, from [2, 6.8(26) ],

f ZO X" VXH f)(x)dx = 2°"'7'’Tw + 1/2).)

The case v = 0, p = 2, of this result says, since & ,,, = Ly(0, c0),
that

B (Ly(0, 00) ) # Hy(Ly(0, 00)).

Since, from [6, Theorem 2.3] et seq., Hy(L(0, 00) ) = L,(0, oo), we thus
have that %(L,(0, c0) ) is a proper subset of L,(0, 00). In this case we can
characterize %;(L,(0, oo) ), which is done in the following theorem.
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THEOREM 5.2. 4 function g is in %y(L,(0, o)) if and only if

(a) g € Ly(0, o0),

(b) [Tt~ 2g(t)dt converges, and

(¢) k € Ly(0, 00), where

k(x) = x~ 12 fx 1~ 2g(t)dr.

Proof. Suppose f € L,(0, o) and g = % f, and let h = M_,,,g and
I = M_,,5k. Then from [6, Theorem 4.2], (a) g € L0, c0), and from
Theorem 5.1, (b) is satisfied. Also, from [6, Theorem 4.2],

g = —M, ,H M_,,Hf,

and thus since Hy(Ly0, o0)) = L,(0, o), h € &£ ,, so that from
[3, Theorem 4.4] I € .4 ,, which is equivalent to (c).

Conversely, suppose g satisfies (a), (b) and (c). Then if h = M_,,,8,
h satisfies (a), (b) and (c) of [3, Theorem 4.4] with p = 2, and thus there
is a function r € 4, so that & = H_r. But then since M, ,r € Ly(0, c0),
and Hy(L,(0, 00) ) = L,(0, c0), there is a function /' € L,(0, co) so that
M,,,r = —H,f. Thus,

g =M h =M ,H r=M,HM ,M,/,r
= _M1/2H—M—1/2H0f = @()f,
and hence g € %(L,(0, 00)).

In our final theorem of this section and its corollary we find that either
the inverse for % given for p < 1/2 — v in [6, Theorem 6.2] or the one
given for p > 1/2 — v in Theorem 4.1 works for p = 1/2 — v provided
one takes the correct limit of integration to be an arrow limit.

THEOREM 5.3. If f € £, _, , where 1 < p < oo, —1/2 <v =1/2 —
Y(p), then for almost all positive x,

ot d 00
Jx) = x (H/Z)Zz}x 172 fo )" 2H, ()P, f)(t)dt /1.

Proof. As in the proof of Theorem 5.1, %, f exists. There are two cases to
distinguish, 1/2 — v > y(p) and 1/2 — v = y(p).

If 172 — v > y(p), let f; = [+ X(1,00) Where xg is the characteristic
function of the set E, and let f, = f — f|. Also, choose € > 0 so that
1/2 —v —e€>y(p). Thenwithp;, = 1/2 —v —¢and p, = 1/2 — v + ¢,
/i € ‘g;tpp’ and if g; = %, f, i = 1, 2, from [6, Theorem 6.2],

_ d 0
f](x) = x (v+1/2)axu+l/2 fo (xt)l/2Hv+l(xt) . gl(t)dt/t,

and from Theorem 4.1,
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- d &0
fz(x) = x (U+1/2)_‘;x_xv+|/2 fo (xt)l/Z[HU+l(xz)

— Ay(x1)’1gy(t)dt/t.

But from Theorem 5.1,

fﬁo 1"~ (t)dt = 0,
and thus adding we obtain, since g, + g, = %,/,

—00
f(x) — x—(l)+l/2)dixl)+l/2 fo (.xt)l/2Hv+1(Xt) . (@vf)(t)dt/t,
X
the arrow being unnecessary at 0, as is easy to see.
Suppose 1/2 — v = y(p). Let x be positive and a > 1, and let
O (1) = 1 M,y (x) = A5 X (go0(D) )-
By [1, 7.5.4(63) & 7.13.1(4) ], as t — oo,
H,,\(xt) = A,(xt) + 0@~ '),
so that
@ (1) = o™ Y.
Also, as t — 0, from [1, 7.5.4(55) ],
(Dx(t) — 0(tu+3/2).
Thus @, € &,,_, -
Let f; and g; be as before, i = 1, 2. Then from [6, Theorem 4.3],
(0] (ee]
s [ s o0d = [ @0 - o0
— 7 hw - @0

= f @) - (%))t

Now from Theorem 5.1,

—00
/a tv_l/2gl(t)dt

converges, and thus we can write the left-hand side of (5.1) as

—00 00
fo t—]/2HU+l(xt) . gl(t)d[ — AvxU fa t”_'/zgl(t)dt.
Also from [2, 9.4(37) ],

—00
172 - —u—
_[0 () 2Y (tu) - u 1/ZHUH(xu)du =x" lt"Jrl/zx(Ov\.)(t).
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Further, it is clear from [1, 7.13.1(4) ] that, since v = 0, for all z > 0,

f , WY (tu)du

converges. Hence

f U7 @) Y ) - @ (u)du

converges for all + > 0 and equals

—o—1,u+1/2 =12 [T,
x t X001 — Ax't o W Y(w)du.

But it is obvious thatif h € &, , ,, and

f :oo ()" 2Y (tu) - h(u)du

converges for almost all # > 0, then the value of this integral is (Z,h)(¢)
a.e. Hence, for almost all ¢t > 0,

(@/v(px)(t) — x—v—ltv+1/2x(0‘x)(t) _ Avxvt—v—l/2 fat MU U(u)du,

and substituting this into (5.1), we obtain
T~ T v-1n2
(5.2) f o CVH () - g (0dt — A f T2 g
P
— x“l)—l fo tv+1/%f](t)dt

— A /1 T e /a, WY (u)du.
Now from [1, 7.2.8(52) ],

d
="ty L (2) = 2Ty 2).
dz

Hence, integrating by parts,

—00 —00
f Y (u)du = / u” WY (u)du

at at

(o]
—(at)’Y, (at) + f T Y w)du,
so that the last term on the right of (5.2) is

V)|

[ee]
Ax"a ./1 V21 - 1Y, (at)dt

- fl V2 (ar fa’ WY, (w)dul.
Now, by Holder’s inequality,

https://doi.org/10.4153/CJM-1988-039-2 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1988-039-2

1006 P. HEYWOOD AND P. G. ROONEY

[e.e]
a’ /1 tl/zf(t)YvH(at)dt/t'
00 1/p o , 1/p’
fl 16127 V(1) |”dt/t] . [/1 1t°Y, ;. ((at) Pdt/t

0 , 1/p’
”f||1/2—v,p : [./a ItuY;«*_](I) Wdt/’] -0
as a — oo since v < 1/2 and, from [1, 7.13.1(4) ],
1Y, (1) = 0"~ ast— co.

Also, since at > 1, if u > at, then |Y, | |(u) | = C/u"’? for some constant C
and thus,

© -1 < -1
fl ' f(0)dt fat 'Y, (u)du
(e e} (e}
= C/l 1T V2 £(t) |dt fm W32y

= Cca"'? fTo Lf(¢) |dt/1,

where C' = C/(1/2 — v). This expression tends to zero as a — oo since
v < 1/2 and since from Holder’s inequality, :

IOZ

12— A Y Ry, R
é[/l It Uf(t)|pdt/t] '/1 A dt] < oo.

Hence letting a — oo in (5.2) we obtain,

—00 X
fo V() - gy(ndt = x7VT! f o 1P

aU

IIA

lIA

or

(5.3) fo T2 (dt = xPTV? fo (xt)"H, ;| (xt)g,(t)d1/1.

Since f € &, , ,and f, = 0ift > 1, f/, € &  foreveryp>1/2 —v.
Since y(p) = 1/2 — v < 1, we can choose ¢, 0 < ¢ < 1, so that
1/2 — v + € < 1, and it then follows from the corollary to Theorem 4.1,
with p = 1/2 — v + € that

(5.4) f; "2 (e

[e0]
= xvt172 f o (x0)VH, , (xt) — A (xt)"]gx(2)dt/1.
But by Theorem 5.1, since g, = %,f,,

—00
f Lo 1 Pgylnydr = 0,
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and thus the right-hand side of (5.4) reduces to

—00
X012 fo (xt)"2H, , (xt) - g, (t)dt/1,

the arrow at 0 being unnecessary, as is easily seen. Adding this to (5.3) we
find that

/; T2 ()dr = x0T12 /;Oo (xt) PH, (<t ([0t

and on differentiating, we arrive at the conclusion.

CoroLLArY. If f € 4, , where —1/2 < v = 1/2 — y(p) then for
almost all x,

_ d
_ +1/2) v+1/2
X) =X —X
Sf(x) .
X f o GOVH, 4 ((x1) — A (x0)’ N )0t/ 1.
Proof. By Theorem 5.1,

f o GO (1) — AN e/

= f:oo (et) PH, 4 (xt) - (F )0t /1,

an arrow at zero again being unnecessary.

6. Inversion of the 5% transformation. In [6, Theorem 6.3] we found an
inverse for the J transformation on % , but only valid under the
conditions p = y(p)andv + 1/2 < p < min(l, v + 3/2). In Theorem 6.1
below we shall find a formula for the inverse of /% for nearly the full range
of boundedness of the transformation. However, as in Section four, we
first need some definitions and some lemmas.

The proofs of the various lemmas and of Theorem 6.1 are very like the
proofs of the corresponding lemmas and theorems of Section four, so we
will largely omit the proofs, just calling attention to any special points that
arise.

Definition. 6.1. For s € C, let
6.1) ¥,,(s) =272 — 5 + 3/2) cot(m(v — s + 3/2)/2)
X T(( + s + 1/2)/2)/T((7/2 — s + v + 2n)/2).
For x > 0 let
(6.2) @,,(x)

n—1

= @)Y, (x)+ 7" 2 /2 UM + n — k)/k!
k=0
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(6.3) Au(x) = x[®, ,(x) = n®,, 4 1(x) ]-

It should be noticed that (6.2) doesn’t make sense when v = —1 since
the last term in the finite sum in (6.2) contains I'(v + 1). However A,
does make sense since the I'(v + 1)’s in the two terms cancel each
other.

LEMMA 6.1. Suppose that max(v + 1/2, —(v + 1/2)) < p < v + 5/2,
and 1/2 = p < n + 1/2. Then

) 1 /‘p.+iR sy A
Rh-?;o% u—ir on($)ds = A, ,(s5).

LEMMA 6.2. Suppose that max(v + 1/2, —(v + 1/2)) < p <v + 5/2
and that 1/2 = p < n. Then as a function of t, A, (. + it) € Ly(R).
LEMMA 6.3. Suppose that 1/2 = p < n. Then
(@) if max(v — 172, —(v + 1/2)) < p < v + 7/2, )\, € 4,
for 1 = p < oco; and
(b) if max(v + 172, —(v + 1/2)) < p < v + 5/2, then for
Res = p,
N, )(s) = ¥, . (5).
Proof. The proof is essentially that of Lemma 4.3, but for the first part
note that
Apa(x) = O(x ") as x — oo,
where p = min(n, v + 7/2), since the terms of highest order arising from

the finite sums in ®,, and ®,, | cancel each other.

LEMMA 6.4. If x > 0, max(v + 1/2, —(v + 1/2)) < p < v + 5/2 and
1/2 = p < n, then

DA, () = (2/T(n))x V72732522 — 2yl 0 <1 < x,
=0, t = x.
THEOREM 6.1. Suppose that [ € %, , where 1| = p < oo,
max(v + 172, —(v + 172)) < p < v + 5/2and y(p) = p < n.
Then for almost all x > 0,
l_inxu+2n+3/2

=) —v—5/2
J(x) X S

X f ZO (xt)V (@, (xt) — n®,, ,(xt) L)1 )dt.

We note that even for n = 1 this result is an improvement over [6,
Theorem 6.3], which had the hypothesis p < v + 3/2, whereas Theorem
6.1 replaces this with p << v + 5/2, and the implicit hypothesis of [6,
Theorem 6.3] that v > —1 assures that
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—+ 1/2) <12 = .

However, if p < v + 3/2, one can obtain a rather simpler version of the
theorem in which only one @, , appears. One can also choose n so large
that the inversion given by Theorem 6.1 is valid for all u for which 5% is
bounded, but as in the case of H,, this will often be unnecessarily large.
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