
5 
Yang-Mills theories 

5.1 Introduction 

Since the unification of the electromagnetic and weak interactions through 
the Glashow-Salam-Weinberg model [75], Yang-Mills theories [76] have 
been widely accepted as correctly describing elementary particle physics. 
This belief was reinforced when they proved to be renormalizable [77, 
78]. Moreover, the discovery of color symmetry as the underlying gauge 
invariance associated with strong interactions raised the possibility that 
all interactions of nature could possibly be cast as Yang-Mills theories. 
This spawned interest in grand unified models and some partial successes 
were achieved in this direction. 

A crucial ingredient in the description of elementary particle physics 
through gauge theories is the maintenance of the gauge invariance of phys­
ical results and the underlying theory and this is also crucial in order to 
be able to prove renormalizability. 

The success of the electroweak model is yet to be achieved by the quark 
model of strong interactions. The reason is that perturbative techniques, 
which were adequate for the electroweak model, are only appropriate in 
the high energy regime of strong interactions. This motivated the inter­
est in non-perturbative techniques, especially to prove the existence of a 
confining phase. A great effort took place in the late 1970s and suggestive 
arguments were put forward but a rigorous proof of quark confinement is 
still lacking. 

In several of these attempts the use of loops played an important role. 
Loops were used in a variety of contexts and approaches including the one 
we are focusing on in this book, the loop representation. In this chapter 
we will also briefly highlight some of the aspects of other approaches which 
seem of most interest for gravitational physicists. We are forced to omit, 
for reasons of space, many other valuable constructions. 
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114 5 Yang-Mills theories 

The first gauge invariant, path dependent formulation of a gauge theory 
was Mandelstam's reformulation of QED [8]. Mandelstam later extended 
his formulation to the Yang-Mills case and applied it to the development 
of Feynman diagrammatic rules [9]. This was the first time the Feynman 
rules for non-Abelian gauge theories had been found through canonical 
quantization. They had been established in the S-matrix approach by 
Feynman [79] and DeWitt [80] and in the functional approach by Fadeev 
and Popov [81]. The main feature of the Mandelstam approach was to 
avoid using gauge dependent quantities, introducing instead path depen­
dent field variables Pab(P) for the field where P is a path going from a 
basepoint to the point of interest: translating to the language introduced 
in chapter 1 

(5.1) 

These quantities satisfy the identities induced by those of the loop 
derivative that we introduced in chapter 1 and the Yang-Mills equation 
of motion, Dapab(p) = 0, where Da is the Mandelstam covariant deriva­
tive. Notice that the aim of this approach was to develop a perturbative 
formulation and in that respect it was successful. 

Another approach was that of Polyakov [83, 82]. This was based on 
the hope that holonomies for Yang-Mills theories could satisfy equations 
similar to those of non-linear a models, which, in turn, are integrable. 
This is based on what happens in 2 + 1 dimensions. The basic variable is 
a derivative of the holonomy 

8H'Y[A] -1 
PIL(S, ')') = 8')'IL(s) HI' [A] (5.2) 

and the formalism assumes a parametrization has been picked for the loop 
and extra equations are added to impose invariance under reparametriza­
tions. The equations of motion are 

(5.3) 

(5.4) 

(5.5) 

The first equation is the usual vanishing of a curvature that appears 
in non-linear a models. The second equation is related with the invari­
ance under reparametrizations of the holonomy and the last equation is 
a consequence of the Yang-Mills dynamical equation. 

This approach had several difficulties. Even in the three-dimensional 
case, the equations presented are not exactly the same as those of a tra-
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5.2 Equations for the loop average in QeD 115 

ditional non-linear (J model. In a traditional non-linear (J model, the first 
equation would involve a partial derivative with respect to a coordinate. 
In the present case, this means that one is really dealing with an infi­
nite number of components, one per each point in parameter space, as 
is expected in loop space. The third equation, which in the usual case 
is a divergence, should be summed over all components (integrated over 
s), but then, it is not true that the Yang-Mills equations follow. This 
difficulty was recognized by Polyakov [84]. Moreover the situation be­
comes more complicated if one considers the four-dimensional case, since 
in that case it is not even clear how to reformulate the fields as (J models. 
Other technical difficulties appear, mainly related to the parametrization 
dependence [85]. In particular it was shown that when the equations 
are rewritten in a parametrization independent way (using the techniques 
discussed in chapter 1) extra terms appear, which break the resemblance 
with the (J model. 

The plan of this chapter is as follows. We will discuss in some detail in 
the next section an alternative approach, due to Polyakov and Migdal. We 
then devote a section to the loop representation of Yang-Mills theories, 
discussing the SU(2) and SU(N) cases. We end with a section on some 
ideas relating loops to confinement. 

5.2 Equations for the loop average in QeD 

The approach we are about to discuss originated in an idea of Polyakov 
[82] and was later developed by Makeenko and Migdal [12, 86]. We only 
present a sketch of the main ideas here, in part because we will use similar 
techniques in the context of Chern-Simons theory in chapter 10. We refer 
the reader to the review article by Migdal [11]. 

The basic idea is as follows. The expectation value of the Wilson loop 
functional in (Euclidean) four dimensions (i.e, the loop exists in a four­
dimensional space) operates as a generating functional of the Green func­
tions of the theory, as c!ln be simply seen by considering its successive 
loop derivatives at different points, 

.0.J.l1I/1 (7r~1 ) ... .0.J.lnVn (7r~n) < Wb) >')'=~ =< Tr[FJ.l1Vl (xt) ... FJ.lnVn (x n )] > . 
(5.6) 

Notice that to write the right-hand side as point dependent a prescription 
for the paths 7r has been chosen (as we discussed at the end of chapter 1). 

The right-hand side of expression (5.6) is the n-point function of the 
theory. This was the insight of Polyakov. Now consider the action of the 
field equations on the expectation value of the Wilson loop functional, 

DJ.I.0.J.lvb~) < Wb) > = J DA exp(-SYM)DJ.I.0.J.lvWAb) 
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116 5 Yang-Mills theories 

= J DA exp(-SYM)Tr[DJtF~II(x)XiUA(-y~)] 

= - J DA O!i exp(-SYM)Tr[XiUA(-y~)] 
II 

J O· 
= DA exp(-SYM) OAi Tr[X'UA(-y~)] 

II 

= J DA exp(-SYM) £ dyJt04(x - y) 

xTr[XiUA(-y~)XiUA(-y:)] (5.7) 

where Sy M is the Yang-Mills action ! J d4xTr[F JtIlFJtIl] and Xi are the 
generators of the group. 

Let us now particularize the gauge group to SU (N). This allows us to 
use the identity 

iiI XABXCD = (OADOBC - NOABOCD) 

and to reexpress the above result as 

DJtD.JtIl(-y;) <W(-y) > = 

(5.8) 

£ dy Jt04(x - y)( < W(-y~)W(-y:) > - ~ < W(-y) ». (5.9) 

Notice that this equation couples the expectation value of the Wil­
son loop functional with the expectation value of products of Wilson 
loops. In general one would therefore need to consider similar equations 
for < W(-Yd ... W(-yn) >. However, in the particular case of SU(2) or 
limN-+oo SU(N) it is enough to consider only the expectation value of 
one Wilson loop functional. In the SU(2) case this is justified since one 
can reexpress any product of Wilson loop functionals in terms of a single 
Wilson loop. In the N -t 00 case it can be shown [12] that, 

< W(-Yd ... W(-yn) >=< W('Y!) > ... < W(-yn) > +O(N-2 ), (5.10) 

due to the fact that the leading Born terms correspond to the sum of all 
planar diagrams [87]. The Makeenko-Migdal equation can be rewritten 
for this particular case as 

(5.11) 

where 

¢(-y) =< W(-y) > . (5.12) 

This equation is reminiscent of that of a >..¢3 scalar field theory. Notice 
that the equation is only non-trivial if one considers intersecting loops. 
For smooth loops the right-hand side of the equation becomes ¢( 'Y) and the 
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solution to the equation can be found and coincides with the vacuum state 
of Maxwell theory in terms of loops that we introduced in the previous 
chapter. That is, the non-Abelian character of the theory is lost if one 
does not consider intersecting loops, a fact we will also see reflected in 
the Hamiltonian case. 

It can be shown [88] that the Makeenko-Migdal equations generate 
all planar diagrams in perturbation theory in a regularized fashion (if 
one regularizes the equation), although they are not renormalized and no 
concrete proposal has been found for an equation that could take care of 
the renormalization. 

This approach offered the promise of reformulating QeD entirely in 
terms of free color fields, which raised the hope that confinement could 
be understood. Moreover, it makes it possible to express the expectation 
values of the observables through integrals in loop space. The diagrams 
are automatically free of infrared catastrophes since one works only with 
gauge invariant quantities. Finally, Migdal [12] gave a heuristic argument 
that showed that the behavior of the Wilson loop is consistent with the 
asymptotic area law typical of confinement. 

Several obstacles hampered further development of this approach. To 
begin with, the expectation values considered are divergent and need to be 
renormalized, as can be seen from their perturbative study [88]. The equa­
tion was initially written [12] in terms of a functional derivative, which 
led to some technical problems, though a later more geometric reformu­
lation was accomplished [89]. Historically, for a long time the structure 
and completeness of Mandelstam identities were not understood for the 
different gauge groups. Although the conceptual simplicity introduced by 
expressing observables as integrals in loop space was appealing, it is also 
the case that one does not know how to compute such integrals. 

But the main obstacle in this approach is the fact that not a single 
solution of the Makeenko-Migdal equation has ever been found in four 
dimensions. Progress has been made in the two-dimensional case [91, 90, 
93] and also with variational techniques [92]. It would be interesting to 
test whether the ideas of the extended representation we present in this 
book can be used to tackle this problem. Another interesting aspect is 
that relations have been found between the Makeenko-Migdal equation 
in the large N limit and equations for string theory [94]. 

Most of the advantages and disadvantages of Migdal's approach are 
shared by other loop formulations. The appeal of the loop representation, 
which is the main theme of this book, lies elsewhere. On the one hand, 
loop representations based on Hamiltonian approaches deal with three­
dimensional loop equations in a realistic case instead of four-dimensional 
ones as in the Migdal construction. Moreover, they are better suited 
for a canonical description of quantum gravity. In particular one can 

https://doi.org/10.1017/9781009290203.007 Published online by Cambridge University Press

https://doi.org/10.1017/9781009290203.007


118 5 Yang-Mills theories 

solve the diffeomorphism constraint rather easily, as we will see in chapter 
8. We will also see in chapter 10 that by applying exactly the same 
construction that we presented here for the Yang-Mills case to the Chern­
Simons action, one can find the connection between the expectation value 
of a Wilson loop and the Jones polynomial of knot theory. 

5.3 The loop representation 

Constructing a loop representation for a Yang-Mills theory is a straight­
forward matter with the concepts introduced in chapter 3. 

We will first discuss the SU(2) case as an illustration of the quantiza­
tion of a non-canonical algebra. We then discuss the SU(N) case via a 
transform. 

5.3.1 SU(2) Yang-Mills theories 

Let us construct the quantum theory for SU(2) through the quantization 
of a non-canonical algebra of loop dependent operators. A quantization 
could be achieved (formally) using the loop transform, leading to the same 
quantum theory. 

Let us consider a gauge theory with SU(2) gauge group. The connec­
tions are group-valued Aa = A~Xi where the Xs are elements of the su(2) 
algebra. We define the following quantities 

T°(-y) = Tr[U(-y)] = Tr [pexp (i9 i dya Aa)] , 

Ta(-y;) = Tr[U(-y~)Ea(x)U(-y~)], 

(5.13) 

(5.14) 

in the same spirit as those defined in chapter 3, except that we are making 
explicit the dependence on the coupling constant g of the theory. 

Classically, these quantities satisfy an algebra under Poisson brackets, 
which we discussed in chapter 3, 

. 1 

{Ta(-y;), T(.,,)} = ~ L €Xax(.,,)T(-y 0 rt), (5.15) 
I 10=-1 

.I 
! i 1 

{Ta(,,;), Tb(.,,~)} = -2 L €Xax(.,,)Tb(.,,; 0 (-y;)E 0 .,,~), 
10=-1 

. 1 

+~ L €XbY(-y)Ta(-y~ 0 (.,,~)E 0,,;), (5.16) 
10=-1 

where .,,10 represents either." or .,,-1. 
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The best picture of these relations can be obtained by considering the 
Ta(r;) to be represented by a loop with a "hand" at the point x. Then 
the commutators are only non-zero when the hand on one of the loops 
grabs the other loop (which implies the loops must intersect). The ef­
fect of "grabbing" one loop with the hand of the other is to insert the 
accompanying loop at the point of intersection. 

This algebra is closed, as seen above, but it is insufficient in the sense 
that one cannot express all observables of interest in Yang-Mills theories 
in terms of it, in particular, the Hamiltonian. Therefore one cannot base 
a quantum theory simply on finding a representation of this algebra. One 
should consider a larger algebra including the objects with n insertions 
defined by formula (3.102) that were discussed in chapter 3. The algebra 
of TO and T a has for this reason been called the "small algebra" [38]. A 
generic Poisson bracket between higher order Ts is given by 

. 1 

{Tbl ... bn ('YX2 'YXI) Tal ... am (nY2 nYI )} = ~ "­
lXI' .•• , IXn , ·'YI' ... , ·'Ym 2 L...J 

E=-l 

{ _ ~ "Xbk Xk(n)Tbl ... Jlk ... bm,al ... an (nY2 nXk o(,Xk)EonYk nYI) 
L...J "., ·'YI' ... , ·'Yk-l Xk ·'Xk' ... , ·'Ym 
k=l 

+ ~ "Xak Yk (n)Tal ... P.k ... an ,bl ... bm ('YX2 'YYk 0 (nYk)E o'YXk ,XI )} L...J ,-., lXI' ... , IXk_1 ·'Yk 'Yk ' ... , Xm , 
k=l 

(5.17) 

where Ilk means that the index is not present. 
The Hamiltonian for a Yang-Mills theory was introduced in chapter 3, 

and is given by 

The two terms in this expression have different properties. 
term can actually be written in terms of a TO ('Y) as 

Tr(:8a (x ):8b(x) )"'ab = -! lim ",ac",bd ~ab( 7T;)~cd( 7T;)TO (r), 
71-+ t 

(5.18) 

(5.19) 

i.e., by taking a double loop derivative and then shrinking the loop de­
pendence to a point. The right-hand side of this formula does not depend 
on the path choice, as can be seen explicitly by considering 

~ab (7T~)~cd( 7T;)TO (r) = Tr[U (7T~)Fab(Y) U (7T~) U (7T; )Fab (x) U (7T~) U (r)] 
(5.20) 

and taking the limit in which x ~ y and the limit of'Y shrinking to a 
point giving, 

~ab(7T;)~cd(7T;)T°(r) h-+t= Tr[Fab(X)Fcd(X)], (5.21) 
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120 5 Yang-Mills theories 

which is independent of the path prescription. 
The term involving two electric fields cannot be written in terms of TO 

or T a, one needs a Tab. Classically this can be seen from 

(5.22) 

and in the limit 'Y -t /, the points x and y coincide. 
We now proceed to propose a quantization of the classical non-canonical 

algebra. We consider a space of wavefunctions ofloops W ('Y) as discussed 
in section 3.5.3 and define the action of the operators as 

i'°(1J)W("() == w( 'Y 0 1J) + w("( 0 1J-1), 

1 

Ta(1J~)W("() == -~ L € i dya8(x - y)w("( 0 1JE). 
E=-l 'Y 

The action of the T2 is defined as [39] 

Tab (1J~, 1J;)W("() = ! X ax (,,()X by ("()[w("(~ 0 r;;, 'Y; 0 r;~) 

(5.23) 

(5.24) 

+'T'( Y x x y) + ,T,( y -x -y X) + ,T,( x -y -x y)] 
'J.' 'Yx 0 1Jy , 'Yy 01Jx 'J.' 'Yx 0 1Jy 0 'Yx 01Jy 'J.' 'Yy 01Jx 0 'Yy 0 1Jx . 

(5.25) 

This last expression could be rearranged in terms of wavefunctions of a 
single loop using the Mandelstam identity (3.119). 

This representation for the T operators yields a quantum commutator 
algebra that reproduces, to first order in Ii, the classical Poisson algebra 
of the T operators that we introduced in chapter 3*. 

We are now in a position to give a quantum representation of the Hamil­
tonian ofthe theory. We have written the Hamiltonian ofthe theory (5.18) 
and it is the sum of two terms, one electric and one magnetic. The electric 
portion was given as a limit of a T2, so we can now find the corresponding 
quantum representation, by taking the limit in equation (5.25) in which 
we shrink the loop 1J to a point. We will study the action of this operator 
at a point in the loop 'Y where there is an intersection (of arbitrary order). 
The action on a regular point of'Y can be obtained as a limit (or by direct 
calculation). The result is 

~~ Tab(1J~01J;)W( 'Y) = 2Xax ('Y)Xby ('Y) (! w( 'Y~ 0'Y;) +~ w( 'Y~ot~)). (5.26) 

In the case of an intersection, the points x and y lie on any "petal" 
of the loop and therefore the portions 'Y~ and t~ refer to the various 
combinations of petals contained between x and y. For the case of a 

* We are taking Ii = 1. The orders of Ii can be restored by noting that momenta are first 
order in Ii, for instance, Tl = O(Ii), T2 = O(li2), etc. 
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regular point of the loop, one simply takes the loop and shrinks the points 
x to y and therefore 7~ ~ 7 and 7: ~ t. The result then is 

(5.27) 

We also see that smooth loops are eigenstates of the electric part of the 
Yang-Mills Hamiltonian. This allows us to think of Wilson loops as lines 
of electric flux. 

The complete Hamiltonian for an SU(2) Yang-Mills theory in the loop 
representation is given by 

ilw(-y) = [-i f d3x",ac",bd~ab(X)~cd(X) 
+ i £ dya £ dy'b"'ab03 (y - yl)] w(-y) 

+! £ dya £ dy'b"'ab03 (y - y')) w (-yt 0 it, ). (5.28) 

The path dependence of the loop derivatives has been dropped since we 
showed above that they are prescription independent. Notice that if the 
loop 7 does not have intersections, the last term is equal to the second 
one and the equation is identical (up to constants) to the one obtained 
for Maxwell theory (4.72). Therefore it is clear that wavefunctions must 
have support on intersecting loops if the theory is to capture the full 
non-Abelian nature of the fields. 

As in the case of Maxwell theory, the Hamiltonian is singular and needs 
to be regularized and renormalized. As we pointed out in the case of 
Maxwell theory, in principle all terms in the Hamiltonian require a reg­
ularization. In the case of Maxwell theory we knew how to compute the 
vacuum and this suggested a suitable regularization of wavefunctions and 
operators. In the non-Abelian case, unfortunately, we do not know a 
single solution of the Hamiltonian eigenvalue equation and the issue of 
regularization and renormalization is largely unexplored. The eigenvalue 
equation has been extensively studied in the lattice in different approxima­
tions, leading to results for the energy density, gluon mass spectrum and 
other observables which coincide with those obtained with more standard 
methods. We will return to the lattice treatment in the next chapter. 

5.3.2 SU(N) Yang-Mills theories 

The loop representation for SU(N) Yang-Mills theories can be built along 
similar lines to the ones we followed in the previous section for the SU(2) 
case. We will see that the main difference consists in the fact that one 
needs to consider wavefunctions of multiloops. The classical "small" al-
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122 5 Yang-Mills theories 

gebra of TO and T1 can be readily generalized to the SU(N) case, 

{T°(-Y), TO(T])} = 0, (5.29) 

{T°(-y) , Ta(T];)} = ig i dya8(y - x) 

x (T°(-yg 0 T]; 0,;) - 1TO (-y)To (T]) ), (5.30) 

{Ta(-y;) , Tb(T]t)} = -ig i dza8(z - x) 

x (Tb(T]; 0,; 0 T]~) - 1TO(,)Tb(T]t)) 

+ig i dzb8(z - y) 

x (Ta(-y; 0 T]t 0,:) - 1TO (T])Ta (-Y;) ). (5.31) 

Up to now, representations of the large algebra have not been studied 
for SU(N) with N > 2. The approach we will take will be to consider 
the representation of the elements of the small algebra with the addition 
of a Tab, which is sufficient to write the Hamiltonian. This is clearly not 
enough: the Poisson bracket of a Tab with a Ted gives rise to Tabes. A 
quantization of the full algebra can always be performed such that this 
Poisson bracket is represented by a correct commutation relation. A direct 
constructive procedure to obtain such an algebra would be to perform a 
usual canonical quantization in terms of Es and As and to consider the 
Ts as derived quantities. The resulting quantum algebra will coincide 
with Poisson bracket algebra up to factor ordering differences. We should 
remind the reader that in the quantization process Poisson brackets are 
replaced by i times 1i and the factor ordering ambiguities are of order 
1i2 or higher. Since the T algebra for SU(N) has not been explicitly 
computed up to now, we will proceed with the constructive technique 
we just outlined. It would be interesting to check explicitly that this 
technique yields the same result as consideration of the full T algebra. 

We will choose the following ordering prescription for the T1 operator 
in terms of the canonical operators, 

(5.32) 

The operator algebra of 1'1 and T° reproduces the same classical Pois­
son algebra described above, where the brackets are replaced by 1i times 
the commutators. 

We now represent this algebra in terms of loop-based operators and 
wavefunctions, giving rise to the loop representation. As we mentioned in 

https://doi.org/10.1017/9781009290203.007 Published online by Cambridge University Press

https://doi.org/10.1017/9781009290203.007


5.3 The loop representation 123 

section 3, we need to consider functions of multiloops, via the transform 

(5.33) 

It turns out to be convenient to consider a certain combination of prod­
ucts of Wilson loops in the transform which is slightly different than the 
one presented in equation (5.33). We will consider the following trans­
form: 

(5.34) 

where the functionals MN{'Yl, ... , 'Yn) were introduced in section 3.4.1. 
This does not imply any loss of generality since the product of N Wilson 
loops can be reconstructed from the Ms. 

We now define the action of the TO operator, which is given by, 

r°(r)'l1{1]I, ... , 1]N) = 'l1{1' 0 1]1, ... , 1]n) + 'l1{1]I, l' 0 1]2, ... , 1]N) 

+'l1{1]I, ... ,1'01]N). (5.35) 

Notice that this expression only involves wavefunctions of N entries, 
since due to the Mandelstam identities (3.39) MN+1 = 0 and consequently 
'l1{1]I, ... ,1]N+d vanishes identically. The fact that we are dealing with a 
special group (determinant equal 1) implies that 

'l1{1] 0 1]1,1] 0 1]2, ... ,1] 0 1]N) = 'l1{1]I, ... ,1]N) (5.36) 

and therefore by considering 1] = 'iii one immediately concludes that the 
wavefunctions are really only functions of N - 1 loops. We will continue 
using wavefunctions with N entries for convenience. 

We complete the small T algebra by representing the Tl operator, 

N 

r a(r:)'l1{1]I, . .. , 1]N) = L i dya63{x - y) 
k=1 11k 

X ['l1{1]I, ... , (1]k)~ 0 'Y: 0 (1]k)~' ... ' 1]N) - J.,T°(r)'l1{1]I, ... , 1]N)]. 
(5.37) 

To represent the Hamiltonian, we first recall that the magnetic part is 
given by equation (5.20). Using the formula for T°(r), (5.35), one can 
immediately realize the action of the magnetic part of the Hamiltonian, 

f 3 zazb 
d X1]ab'Ir{B B )'l1{1]I, ... , 1]n) = 

N 
1 '" f d3 ac bd A (i) ( ) A (i) ( ) ,T. ( ) - '4 ~ X1] 1] L..l.ab X L..l.cd X '.l" 1]1,···, 1]n , 

i=1 

(5.38) 
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where the loop derivatives ..6.~i~ (x) are path independent and act only on 
the ith entry- of the loop. 

For the electric part, we need to study the action of the operator 

[= / d3xTrCEtEb)fJab (5.39) 

on the functionals MN in the connection representation. To perform this 
calculation it is useful to consider the following identity, 

N-l 

[i'°(fJl) x ... x i'°(fJN) = L {i'°(fJl) x ... [[,i'°(fJi)]'" x i'°(fJN) 
i=l 

+ i'°(fJd x ... x i'0 (fJN_d[i'° (fJN ) } 

(5.40) 

and recalling that the commutator of the electric part of the Hamiltonian 
with i'0 is 

[/ d3xTr(EaEb)fJab,i'°(T)] = - i dyai'b(T~)fJab 
+~ i dya i dy,bfJab03(y - y')[i'°(Tt)i'°(Ttl ) - 1i'°(T)](5.41) 

and 

[i'0(T) = ~ i dya i dy,bfJab03(y - y')[i'0 (Tt)i'o (Ttl) - 1i'°(T)]· (5.42) 

one can construct explicitly the action of the Hamiltonian constraint in 
the SU(N) case. Very little is known about this operator in the continuum 
though some progress has been made in the SU(3) case in the lattice [95] 
and in the SU(N) case in 1 + 1 dimensions [96]. 

Representations in terms of multiloops also appear in the context of 
general relativity coupled to gauge fields [97]. 

5.4 Wilson loops and some ideas about confinement 

In his pioneering work, which stimulated most of the interest in the use 
of loop variables in the treatment of non-Abelian gauge theories, Wilson 
[48] introduced the idea that the trace of the holonomy could act as an 
order variable for the theory and could therefore be used to study phase 
transitions. 

The intuitive picture behind this is the following. Consider a Yang­
Mills theory coupled to fermions (quarks) and consider the creation and 
subsequent annihilation of a quark-antiquark pair. Assuming the usual 
interaction term in the Hamiltonian of the type j . X, and neglecting 
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q q 

Fig. 5.1. Creation of quark-antiquark pairs viewed as Wilson loops. Creation 
of a free pair is suppressed if the expectation value of the Wilson loop is a 
decreasing function of the area of the loop 

vacuum polarization effects, one expects such a process to have a weight 
proportional to the holonomy of the connection Aa along the closed path 
formed by the quark-antiquark creation and annihilation process. There 
are other weight factors independent of the connection and also a weight 
factor given by the free action of the field. 

In order that quarks exist as separate final-state particles it must be 
possible to consider quark-antiquark processes in which the quark and 
antiquark lines are well separated, at least when the points of creation 
and annihilation are far apart. The behavior of the expectation value of 
the Wilson loop under the separation of the quark-antiquark lines will 
therefore determine if it is possible for quarks to exist as final states. 

For instance, if the expectation value of the Wilson loop turns out to 
go as exp( -l), where l is the length of the loop (perturbative and lattice 
calculations suggest this result for non-confining theories) one sees that 
one could separate the quark and antiquark lines at will without increasing 
the length of the loop. This implies that creating well separated quark­
antiquark pairs is as likely as creating pairs close together. Therefore the 
theory is not confining. For instance, for QED an explicit calculation can 
be performed and < W >= exp[- f'Y dy/L f dzll D/LII(Y - z)] where the loop 
, is four-dimensional and D /L II is the free propagator of the theory. If one 
regularizes the calculation one can see that this is proportional to exp( -l) 
with l the length of the loop (for details of the regularization see reference 
[62]). 

On the other hand, if < W >"-' exp( -a), where a is the area of the 
loop, a process with the quark-antiquark lines shown in figure 5.1 far 
away from each other is suppressed with respect to one in which the lines 
are close together and therefore the theory exhibits confinement. 
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These qualitative considerations have been extensively verified in the 
lattice. It is immediate to confirm them in strong coupling expansions [48, 
74, 98], in Monte Carlo simulations [98] and in perturbative calculations. 

We therefore see that quark confinement can be thought of as the ap­
pearance of confinement of Wilson loops. Since we have extensively ar­
gued that Wilson loops can be thought of as lines of electric flux, this gives 
an image of quark confinement in which lines of electric flux are confined. 
This is reminiscent of what happens in superconductivity, except that in 
that case, the confinement refers to lines of magnetic flux. It seems there­
fore that a system can have two possible confining regimes, one electric 
and the other magnetic. Each confining regime will be characterized by 
an order parameter. We argued above that the Wilson loop acted as an 
order parameter for electric confinement. What could such a parameter 
be for magnetic confinement? We will now discuss a proposal by t'Hooft 
for such a parameter and its implications for the loop representation. 

t'Hooft [99] introduced a quantity that can be viewed as an order (ac­
tually he refers to it as a disorder) parameter for a Yang-Mills theory. 
The idea can be illustrated by means of the following example in (2 + 1) 
dimensions. 

Consider an SU(N) Yang-Mills theory in 2 + 1 dimensions coupled to 
an SU(N) Higgs field such that the gauge symmetry is spontaneously 
and completely broken. Both the Yang-Mills connection Aa and the 
Higgs field H(x) are invariant under gauge transformations generated by 
the center of the group SU(N), Z(N). A generic element of Z(N) is 
given by exp(27rin/N) with n an integer. A system like this admits a 
classical solitonic solution of the following kind. Consider a region R in 
two-dimensional space surrounded by a region B. In region B symmetry 
is spontaneously broken, the Higgs field having acquired a "constant" 
non-zero value. Being an element of the group, "constant" means that 
there exists a gauge transformation at each point that relates the value 
of the fields to a certain fixed value, Hn(x) = !l(x)Ho!l(x)-l. Consider 
a closed curve in B that surrounds R. Since B is not simply connected, 
it could happen that by going around the curve, !l becomes multi valued, 
i.e., !l27r = exp(i27rn/N)!lo. We say that the field has a winding number 
n in such a configuration. The presence of this multivaluedness in the 
field implies that the configuration is stable. If it were not, it could be 
radiated away, the final configuration would have n = 0 and this could 
not be achieved from a state with given n in a continuous fashion. 

Let us now consider an operator that, starting from a regular field 
configuration a configuration (such that there exists everywhere a single­
valued gauge transformation that maps the field to a constant), will create 
a configuration like the one we discussed above. To simplify, we will shrink 
the region R to a single point, at which the gauge transformation mapping 
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the field to a constant is singular. Let us call such a point Xo. 
We now define an operator ¢( xo) that materializes a singular gauge 

transformation that changes the winding number of the fields, 

¢(xo)w[A, H] = w[An(xo), Hn(xo)], (5.43) 

where O(xo) the gauge transformation singular at Xo such that for every 
oriented curve c( 0) that surrounds Xo once 

(5.44) 

Let us now consider a state in the physical space of states W ph (A, H). 
Such states are gauge invariant under regular gauge transformations. Un­
der the singular transformations we are considering here 

(5.45) 

This statement is self-evident: the resulting gauge transformation only 
depends on the singularity structure. If one takes a curve surrounding x it 
will detect the multivaluedness induced by ¢(x) and similarly for a curve 
surrounding y. A curve that surrounds both singularities will detect the 
combined winding number. All this is independent of the order in which 
the singularities were added. 

The point of this construction was to introduce the operator ¢(x). We 
will now show that this operator plays the role we wanted: that of a 
"disorder" parameter for the theory. In order to see this, let us study the 
commutation relation of this operator with the Wilson loop. Acting on a 
physical state 

¢(x) W-y [A]w[A, H] = W-y[An(x)]w[An{x), Hn(x)] (5.46) 

and noting that W-y[An(x)] = exp(27rin(r)jN)W-y[A], where n(r) is the 
number oftimes 'Y winds around xo, and w[An(x), Hn(x)] = ¢(x)w[A,H] 
we get 

(5.47) 

Let us now consider a basis I¢ > in which the operator ¢(x) is diagonal. 
In such a basis, the operator W-y[A] introduces a jump of magnitude 
exp(27rin(r)jN) in the operator ¢(x) if the point x is within,. This 
implies that the Wilson loop acts as a creation operator for a domain 
inside of which the operator ¢(x) has a different value. Using the natural 
association of Wilson loops with lines of electric field one can view the 
domain in which ¢(x) jumps in value as delimited by a closed line of 
electric field. 

This argument can be extended to the case of a theory coupled to 
fermions (quarks) and in this case one should consider an operator built 
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with a holonomy along an open path with quarks at the ends. By reason­
ing analogous to that above one can view this open path as a confined line 
of electric field joining the quark-antiquark pair. Trying to separate the 
pair requires that the line of confined electric flux be stretched and since 
the flux is constant, the energy needed to separate the pair is proportional 
to the distance between the particles. This is a signal of confinement in 
the theory. 

Let us now outline how to generalize the above reasoning to 3 + 1 di­
mensions. In this case the point Xo at which the gauge transformation was 
singular becomes a closed line 'fl. Any gauge transformation along a curve 
'Y that is linked with 'fI will be multivalued. The order of multivaluedness 
is related to the linking number of both curves. 

The commutation relation in three dimensions between the Wilson loop 
and the generalization of ¢(xo) to three dimensions (which is usually 
referred to as the t'Hooft operator B('fI) is 

(5.48) 

where GL(-y, 'fI) is the Gauss linking number of the two curves. The Bs 
commute among themselves. 

The physical results that arise from this picture are that either W 
or B can exhibit behavior dependent on the area or the length of the 
loop. According to the possible combinations, four different phases can 
be identified for the theory. A physical discussion of the four phases in 
the context of QeD can be found in reference [99], where it is argued that 
the only relevant phases in the case of pure gauge theories (no fermions) 
are either electric or magnetic confinement. 

The phase in which electric field lines are confined is called the confin­
ing phase. From an energetic point of view, this phase is characterized 
by a degeneracy of the vacuum. This is due to the fact that the Hamilto­
nian commutes with the operator B and therefore it does not cost extra 
energy to add magnetic field lines. Electric field lines carry an energy 
proportional to their length. 

The explicit form of the B operator in the connection representation 
is complicated. t'Hooft [99] was able to find an explicit form for this 
operator in the lattice and Mandelstam [100] discussed its form in the 
continuum case. It is remarkable that in the loop representation these 
operators can be realized in a rather straightforward manner [13]. 

Recalling the action of the Wilson loop on a state of an SU(N) Yang­
Mills theory in the loop representation, 

i'°(-y)\{I('fI1,." ,'fiN) = \{I(i' ° 'fI1,··· ,'fin) + \{I('fII,i' ° 'fI2,··· ,'fiN) 
+\{I('fII, ... ,i'0'flN), (5.49) 
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we can define the operator B (-y), 

Bh)",(~" .. ·'~N) ~exp C;i EGLh,~0 "'(% ... ,~N), (5.50) 

where 

1 i at b (x - yy GL(-Y,11k) = -4 dx dy f.abc 1 13 
7r 'Y""1e X - Y 

(5.51) 

is the Gauss linking number of , and 11k. This topological invariant mea­
sures how many times the loop 11k "threads through" the loop, (for more 
details see chapter 10). 

It is straightforward to study the commutation relations of this operator 
with the Yang-Mills Hamiltonian. Because the Gauss linking number is 
a topological invariant, it commutes with the portion of the Hamiltonian 
with two loop derivatives, since adding an infinitesimal loop does not 
change the value of the topological invariant. This point really requires 
a regularization since the Hamiltonian adds an infinitesimal loop at all 
points in the manifold and could introduce divergences. The electric part 
of the Hamiltonian also commutes with the B operator. This can be 
seen by recalling that the effect of the electric part of the Hamiltonian 
on a wavefunction of N loops is to produce a wavefunction with N + 1 
loops produced by fissions of loops at their self-intersections, as shown 
in equations (5.28),(5.42). Computing the linking number before or after 
the fission gives the same result and the operators commute. The reader 
may be interested in what happens if one characterizes the action of the 
Hamiltonian purely in terms of N loops using the Mandelstam identity, as 
we did in the SU(2) case, equation (5.28). In this case some portions ofthe 
loop are rerouted and some of the linking numbers - which depend on the 
orientation - may change sign. However, the result remains unchanged, 
because the operator B takes values on Z(N) and this makes the operator 
compatible with the Mandelstam identities. 

So we see that the operator B commutes with the Hamiltonian. We 
will now study the commutation relation of the Wilson loop with the 
Hamiltonian. In the loop representation the Wilson loop becomes the 
TO (,) operator and let us assume that we are considering loops , that 
are smooth. Consider the commutator of the TO (,) operator with the 
electric part of the Hamiltonian, equation (5.42). Its action on a state in 
the loop representation can be computed using (5.35),(5.37). From (5.42) 
one can see that there are two terms. The first one is proportional to the 
length of the loop (double integral along ,) and the second one, taking 
into account (5.37), involves an integral along, and another integral 
along the loop that appears in the argument of the wavefunction. If one 
considers long loops, the first term (proportional to the length) dominates 
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the other term, which involves intersections of, with the argument of the 
wavefunction. The commutator of fO (,) with the magnetic part of the 
Hamiltonian vanishes, which can immediately be seen from (5.38) since 
the loop derivatives act specifically on the arguments of the wavefunction 
and the loop dependence of the fO is transparent. 

We therefore see that it is simple to prove that the loop representation 
naturally describes the confining phase of Yang-Mills theory. There is 
a natural representation of the disorder operator B and adding an elec­
tric field line has an energetic cost proportional to the length of the line 
being added, which is one of the signs of confinement. It should be re­
marked that these arguments show that there exists a confining phase in 
which it is energetically expensive to create Wilson loops. However, one 
could conceive different phases, where the distribution of loops is dense in 
space and then the dominating term in the expressions considered above, 
instead of being that of the length of the loop could be the one involv­
ing intersections. However, the fact that B always commutes with the 
Hamiltonian suggests that Yang-Mills is always in a confining phase. 

5.5 Conclusions 

We have considered various loop-based approaches to Yang-Mills theo­
ries. We have emphasized the use of Hamiltonian techniques and the loop 
representation, which we constructed explicitly for SU(2) and SU(N) 
Yang-Mills theories. As the reader may have perceived, the treatment of 
Yang-Mills theories in the language of loops in the continuum has only 
a formal character and little progress has actually been made towards 
understanding the non-perturbative physics of QCD. Only qualitative ar­
guments, like the ones we introduced in the previous section, shed some 
light on the various physical processes of non-Abelian gauge theories. On 
the other hand, the gauge invariant description of Yang-Mills theories 
based on holonomies has found application in attempts to set the theory 
in a more mathematically rigorous basis. For instance, it may be possi­
ble to define an infinite-dimensional measure rigorously in the space of 
connections modulo gauge transformations in terms of the loop algebra 
[40]. Progress in this respect has also been made in lower dimensions 
[96, 102, 103]. In this chapter we have concentrated on pure Yang-Mills 
theories. Coupling to fermions and Higgs fields can be introduced in the 
loop representation but again most results are only formal. In the next 
chapter we will return to the issue of matter couplings in Yang-Mills 
theories. 
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