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conserved. This is not surprising since quarks can emit or absorb gluons,
which carry color. Only if we add the color charge of the gluon field,
represented by the second term on the right-hand side of Eq. (13.84), is a
conserved color current obtained.
In view of the similarity in form of LQCD to LQED, many of the well-

known other formal properties carry over. We refrain from systematically
developing this here, even though we will call upon these similarities as
needed in further developments.

14 Perturbative QCD

14.1 Feynman rules

The nonabelian gauge theory of quarks and gluons, proposed in sec-
tion 13.5 and called QCD, has widely been accepted as the fundamental
theory of strong interactions, with both quarks and gluons being the car-
riers of the strong-interaction charge [123]. The evidence for the validity
of QCD as a dynamic theory governing hadronic reactions is overwhelm-
ing, and this is not the place where this matter should be argued. Rather,
we will show how QGP-related practical results can be derived from the
complex theoretical framework. There are many books dealing with more
applications of QCD and the interested reader should consult these for
further developments [110, 194, 280].
Akin to QED, QCD is a ‘good’ renormalizable theory. QCD is known

to be also an asymptotically free theory, viz., the running coupling con-
stant αs, see Eq. (14.12), is a diminishing function as the energy scale
increases. Therefore, the high-energy, or, equivalently, the short-distance
behavior is amenable to a perturbative expansion. On the other hand,
perturbative QCD has ‘fatal’ defects at large distances, which are signaled
by the growth and the ultimate divergence of αs as the scale of energy
diminishes (infrared ‘slavery’). Consequently, at any reasonable physical
distance of relevance to the ‘macroscopic’ QGP, we have to deal with an
intrinsically strongly coupled, nonperturbative physical system. A per-
turbative treatment ignores this, and, in principle, must be unreliable in
problems in which the confinement scale becomes relevant. The question
of when exactly this occurs will be one of the important issues we will
aim to resolve, using as criterion αs ≤ 1.
The perturbative approach, which applies to short-distance phenomena,

has been tested extensively in high-energy processes. When the ‘short dis-
tance’ grows and approaches 0.5 fm, the perturbative expansion of QCD
may still apply insofar as its results are restricted to the physics occur-
ring in the deconfined, viz., QGP, phase. The rules of perturbative QCD
follow the well-known Feynman rules of QED, allowing for the glue–glue
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interactions. However, unlike QED, in which the expansion parameter
is α/π = O(10−3), we must deal in case of QCD with ‘strong’ coupling,
which is nearly 30–100 times greater than that in QED. Therefore, even
when a perturbative description is suitable, some effort to reach the re-
quired precision is often necessary, involving the inclusion of higher-order
Feynman diagrams.
The quadratic terms ‘ψ2’ and ‘A2’ in the Lagrangian LQCD define free

quark and gluon fields which are described by propagators of the same
form as those for electrons and photons in QED. The terms of third
and fourth order in LQCD give rise to interaction vertices among the
free propagators of quarks and gluons. There is a quark–gluon vertex,
and three-gluon and four-gluon vertices. Propagators and vertices can be
combined to generate Feynman diagrams in all possible ways.
One technical difference arises between QED and QCD, which is asso-

ciated with the difficulties of gauge theories with regard to gauge fixing.
To ensure gauge invariance of QCD, it is convenient to introduce into the
perturbative expansion fictitious (virtual) particles called Fadeev–Popov
(FP) ghosts, which never appear in physical states, but are to be in-
cluded in all virtual processes. FP fields carry color, and satisfy Fermi
statistics even though they propagate like spin-zero particles – hence the
name ‘ghost’. The complete Lagrangian in a Lorentz-covariant gauge
reads

LQCD=−1
4
(Fµνa F aµν)

2 + ξ(∂µAaµ)
2 + φ̄(∂µδab + gfasbAsµ)∂

µφb

+
∑
f

Ψf
[
γµ(∂µ + gAsµ)−mf

]
Ψf , (14.1)

where the summation over color indices is implied and the second term
in Eq. (14.1) is the gauge-fixing term and the third term formed with
the scalar fields φ introduces the Fadeev–Popov ghosts. We note that
it is possible to work in a non-Lorentz-covariant gauge and to obtain
results without introducing ghosts, instead using longitudinal and trans-
verse gluons as identifiable degrees of freedom, with longitudinal gluons
not present in any asymptotic physical states. For further discussion, we
refer to relevant textbooks [110, 194, 280].
We skip the technical details regarding the development of the pertur-

bative QCD, and only collect for the convenience of the reader and further
reference the building blocks of the perturbative expansion required for
evaluation of Feynman diagrams, i.e., propagators and vertices of QCD,
presented in a self-explanatory notation. Latin indices refer to color de-
grees of freedom, Greek indices to space, q to quarks, g to gluons, and
FP to the ghost field.
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We have
the quark propagator,

(Sαβ(p))ab =
(

δab
γp−m+ iε

)
αβ

, (14.2)

the gluon propagator,

i(Dµν(k))ab =
δabgµν
k2 + iε

, (14.3)

the quark–antiquark–gluon vertex,

(Γµ,cqqg)
ab
αβ = g(tc)ab(γµ)αβ , (14.4)

the three-gluon vertex,

(Γµνσ
g3
)abc = gfabc[gµν(k − p)σ + cyclic permutations], (14.5)

the four-gluon vertex,

(Γµσντ
g4

)abcd = g2fiabficd[(gµσgντ − gµτgνσ) + cyclic permutations],

(14.6)

the ghost propagator,

(GFP(k))ab =
δab

k2 + iε
, (14.7)

and the gluon–ghost–ghost vertex,

(ΓµgFP)abc = −gfabcpµ. (14.8)
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For any given process, for which a Feynman diagram is drawn using
the lines and vertices as illustrated above, the above list allows one to
compose the mathematical expression for the amplitude of the process.
Very few additional rules need to be remembered, such as integration over
the ‘spare’ momentum variables in the diagram, an overall coefficient (−1)
for each fermion and ghost loop, and the absence of ghost propagators that
do not begin and end in a vertex.
While the forms of the above-stated propagators and vertices change

in a finite-temperature environment, which is mainly being addressed in
this book, the structure of the perturbative expansion generated by these
quantities remains the same. The construction of a matrix element and
cross section requires wave-function-normalization factors, and flux fac-
tors that are all quite standard in this context, and available in numerous
introductory textbooks. In these aspects, there is no difference between
QCD and any other theoretical framework, such as QED. However, we re-
call that, in order to obtain a cross section, we average over initial states,
and sum over final states, which now will include, in particular, the color
degree of freedom.

14.2 The running coupling constant

The free-gluon propagator, which, like in QED, is proportional to 1/q2,
implies that the ‘free’ color force falls off like 1/r. The gluon propagator
is, even in the perturbative vacuum, modified by scattering from virtual
quark–gluon fluctuations. This ‘dressing’ of the propagator leads to the
running, q2-dependent coupling constant, and the dressed physical gluon
propagator is expected to significantly differ from the free one. In order to
see how this comes about, we consider the loop diagrams corresponding
to the virtual and momentary creation of a pair of colored particles in the
vacuum. For the contribution of fermions to the polarization loop, this
process is very similar to the case of QED.
There are two more elementary processes that contribute to the covari-

ant form of perturbative QCD, namely the gluon loop and the ghost loop,
The vacuum-polarization loop Π(q2) comprises these three terms:

It is customary to sum the chain of higher-order diagrams, containing
series of all different loops,

D(q2) = D0 + D0ΠD0 + D0ΠD0ΠD0 + · · ·
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D(q2) =
D0(q2)

1−Π(q2)D0(q2)
, (14.9)

such that the gluon is dressed by the consecutive interactions with the vac-
uum polarization. The effect of the quark, glue, and ghost loops combines
in the coefficient b0, Eq. (14.14), of the vacuum-polarization function. In-
troducing a high momentum (ultraviolet) cutoff to secure the convergence,
for massless quarks and gluons, Π(q2) takes the form

Π(q2) =
g2b0
8π

(−q2) ln
(
−q2
µ2

)
, (14.10)

where µ is a reference momentum absorbing the cutoff, and defined by
the renormalization condition: Π(q2 = −µ2) = 0.
The value of µ2 introduces, in general, a dependence on renormaliza-

tion. In this order, this dependence can be absorbed into the choice of
the value of the coupling constant at a given transfer of momentum; see
Eq. (14.13) below. The overall sign of Π, Eq. (14.10), is related to the
sign of b0, and is opposite to that of the polarization function of fermions
alone (QED) as long as the flavor number nf < (11/2)nc. The sign of the
polarization function is quite important, as we shall see.
With the help of Eq. (14.10), we obtain

g2iD(q2) =
1
q2

g2

1 +
g2b0
8π

ln
(
−q2
µ2

) . (14.11)

The last factor acts as a momentum-dependent modification of the strong
coupling constant g2. It is therefore convenient to introduce the ‘running’
coupling constant αs(q2),

αs(q2) =
2

b0 ln(−q2/Λ2)
, (14.12)

with

Λ2 = µ2 exp
(
− 8π
b0g2

)
, αs =

g2

4π
. (14.13)

The above expression applies for positive b0, and, in this case, we see that,
for an increasing q2, the physical coupling constant αs(q2) decreases; QCD
is asymptotically free.
In the case of QED, the sign of b0 is opposite, and the effective coupling

constant is finite at large distances, i.e., at small q2, and increases with
q2. The reference scale µ2 in Eq. (14.11) can be chosen to be at zero
momentum (infinite distance) and this corresponds to the usual definition
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of the electron charge. This choice is not possible in case of QCD, since
the interaction strength becomes infinite for µ2 → 0.
Λ is the dimensional parameter which emerges in perturbative QCD.

The original dimensionless coupling constant g2 has been absorbed in
the scale Λ governing the change of the running coupling constant αs, in
the process of transition from Eq. (14.11) to Eq. (14.12). This so-called
‘transmutation’ of the dimensionless scale of strength into a dimensioned
strength parameter of the interaction also absorbs the scale dependence
introduced by the choice of µ2.
In the limit that all quark masses vanish, mi → 0, Λ is the only dimen-

sional parameter of the theory of strong interactions. It is believed that
the world of hadrons (except the pion) is not decisively dependent on the
scale of the quark mass. Thus, it seems that Λ alone controls the mass and
the size of the massive hadrons (nucleons and heavy non-strange mesons).
To understand this, we would need to express the vacuum structure in
terms of Λ, a problem which has not been resolved.
The measurable dimensioned parameter Λ2 determines the strength of

the interaction at a given momentum scale. This approach applies quite
accurately for energy–momentum scales above the mass of the b quark, as
we shall see later in Fig. 14.1, where the value of Λ � 90±15 MeV applies.
At small q2, i.e., at ‘large’ distances, the coupling constant Eq. (14.12)
diverges within the perturbative approach. The magnitude of the strong
charge must be defined at some finite momentum scale, which has in recent
years, been chosen to be the mass of the Z0 boson, µ ≡ MZ0 � 91.19 GeV.
Since we have more than one quark, the important coefficient b0 is

composed of a term proportional to the number of ‘active’ flavors nf , i.e.,
those with |q2| > 4m2

f . The number of colors nc = 3 enters the glue
loop: in the gluon loop diagram, each external leg requires the triple-
glue vertex, Eq. (14.5), which invokes relation Eq. (13.63) or equivalently
Eq. (13.60) for two external gluon legs. b0 for SUc(3) assumes the form

b0 =
1
2π

(
11
3
nc −

2
3
nf

)
. (14.14)

The spin s of particles contributing to the vacuum polarization is found
to be the key ingredient controlling the sign of b0 [149],

bs0 =
(−)2s
2π

(
(2s)2 − 1

3

)
, (14.15)

which leads to Eq. (14.14), introducing s = 1 for gluons and s = 1
2 for

quarks. Equation (14.15) shows why for s = 0, 12 the same (negative) sign
appears, whereas for gluons with s = 1 there is a change of sign. Photons
do not interact with photons and hence this issue did not arise in QED.
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14.3 The renormalization group

The question of what happens as we carry out the same procedures in
higher orders in perturbation theory now arises. A considerable amount
of effort went into designing a scheme for computing the observable ef-
fects in QED, and this experience has been generalized to the more com-
plex case of QCD. We will restrict ourselves to a few elements of the
renormalization-group approach relevant to our presentation, sidestep-
ping many interesting and intricate questions, which are addressed in,
e.g., [110, 194, 280].
The renormalization-group approach allows us to understand the vari-

ation of the physical observables in terms of the momentum dependence
of the coupling constant αs. A functional dependence is found demanding
that the result of a physical measurement (say a cross section σ) be in-
variant with respect to the process of renormalization, and, in particular,
the observable (cross section) can not depend explicitly on the choice of
the ‘(re)normalization’ point µ2,

µ
d

dµ
σ(pi;αs,m;µ) = 0. (14.16)

Accounting for both a direct and an indirect dependence on µ in
Eq. (14.16),(

µ
∂

∂µ
+ µ

∂αs
∂µ

∂

∂αs
+ µ

∂m

∂µ

∂

∂m
+ · · ·

)
σ = 0. (14.17)

It is convenient to define

µ
∂α

∂µ
≡ β(αs) (14.18)

and

− µ

m

∂m

∂µ
≡ γ(αs), (14.19)

and thus:(
µ

∂

∂µ
+ β(αs)

∂

∂αs
− γ(α)m

∂

∂m
+ · · ·

)
σ = 0. (14.20)

Equation (14.20) allows us to understand the behavior of the observable
σ, and it establishes the behavior of σ under simultaneous changes of
reference scale µ, coupling constant, and mass.
Equations (14.18) and (14.19) establish how the parameters of QCD

vary once they are known at some given scale. Therefore, precise knowl-
edge of the renormalization functions β and γ is, to a large degree, equiv-
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alent to finding a practical ‘solution’ of QCD. For this reason, these quan-
tities have attracted a lot of attention. We will look at the perturbative
results only, in terms of a power expansion in αs [255]:

βpert =−α2s
[
b0 + b1αs + b2α

2
s + · · ·

]
, (14.21)

γpertm = αs
[
w0 + w1αs + w2α

2
s + · · ·

]
. (14.22)

For the SU(3) gauge theory with nf fermions only, the first two terms
(two ‘loop’ orders) are renormalization-scheme-independent. When a de-
pendence on the renormalization scheme arises, this means that compen-
sating terms, which remove scheme dependence, are obtained on evaluat-
ing in the same scheme the physical process considered. For what follows
in this book, this so-called two-loop level of perturbative expansion for
βpert and γpertm is sufficient.
We have

b0=
1
2π

(
11− 2

3
nf

)
, b1 =

1
4π2

(
51− 19

3
nf

)
, (14.23)

w0=
2
π
, w1 =

1
12π2

(
101− 10

3
nf

)
. (14.24)

The number nf of ‘active’ fermions depends on the scale µ. Assuming
that the two lightest quarks are effectively massless,

nf(µ) = 2 +
∑

i=s,c,b,t

√
1− 4m2

i

µ2

(
1 +

2m2
i

µ

)
Θ(µ− 2mi), (14.25)

with values of mi evaluated, in principle, for the energy scale being con-
sidered. There is a very minimal impact of the values of quark-mass
thresholds in Eq. (14.25), on the running behaviors of the coupling con-
stant and quark masses.

14.4 Running parameters of QCD

For the purpose of QGP studies, we are interested in understanding how
the strength of the QCD interaction and the quark mass change with
the energy scale. The simplest way to obtain this result is to integrate
the first-order differential equation, Eqs. (14.18) and (14.19), given ini-
tial values of αs(M) and mi(M), using the perturbative definition of the
functions β and γ, Eqs. (14.21) and (14.22), in terms of the perturbative
expansion Eqs. (14.23) and (14.24).
For the determination of the coupling constant, it has become common

to refer to the value of αs(MZ = 91.19GeV). We use, in Fig. 14.1, the
value [136] αs(MZ) = 0.1182 ± 0.002 (thick solid lines). The thin solid
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Fig. 14.1. αs(µ) (top section), the equivalent parameter Λ0 (middle section),
and mr(µ) = m(µ)/m(MZ) (bottom section) as functions of the energy scale µ.
The initial values are αs(MZ) = 0.118 (thick solid lines) and αs(MZ) = 0.115
(thin solid lines). In the bottom section, the dots indicate the strangeness-pair-
production thresholds for ms(MZ) = 90MeV, while crosses indicate charm-pair-
production thresholds for mc(MZ) = 700MeV.

lines are for αs(MZ) = 0.115 arising from analysis of decays of heavy
quarkonium (bb̄), and addressing an energy scale closer to our direct
interest in this book.
As can be seen in the top portion of Fig. 14.1, the variation of α(2)s < 1

(the upper index indicates the level of perturbative expansion used; see
Eq. (14.21)) with the energy scale is substantial. We note the rapid change
in αs(µ) at, and below, µ = 1 GeV. This is not an unexpected result.
However, the fact that a solution with αs ≤ 1 governs the energy scale
1 GeV is important, since the formation of the strange quark flavor occurs
in a hot QGP phase formed in experiments at 160–200A GeV (SPS–
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CERN) at around 1 GeV. We can thus use the methods of perturbative
QCD to study this process.
Among the parameters in Eq. (14.25), only the mass of the bottom

quark plays a (hardly) noticeable role; the results shown were obtained
for ms = 0.16GeV, mc = 1.5GeV, and mb = 4.8GeV [225]. When mb is
changed by 10%, the error on a low energy scale is barely visible. Other
quark masses have less significance since the error has less opportunity
to ‘accumulate’ in the solution of the differential equation as the energy
scale decreases in the integration of Eq. (14.18).
As expected and seen in the top portion of Fig. 14.1, in the soft QGP

domain 0.8 GeV < µ < 3 GeV, it is impossible to use a constant value of
αs. More surprisingly, the frequently used approximate inverse-logarithm
form Eq. (14.12) for αs is nearly equally inappropriate. To see this, we
define a quantity Λ0(µ),

αs(µ) ≡
2b−10 (nf)
lnµ2/Λ20(µ)

, Λ0(µ) = µ exp
(
− 1
b0αs(µ)

)
, (14.26)

where αs(µ) is obtained in two-loop or higher-order perturbation expan-
sion of the β-function using Eq. (14.18). The form of Eq. (14.26) is chosen
to be identical to the one-loop form, compare with Eq. (14.13). Using the
result for αs shown in the top portion of Fig. 14.1, we obtain Λ0(µ) seen
in the middle section of the figure.
If the one-loop form Eq. (14.12) with a constant Λ0 were a good approx-

imation to αs, we should see a sequence of step functions, dropping at each
heavy-quark threshold. In fact, above the bottom threshold, for µ > 2mb,
this is nearly the case. However, below the charm threshold, for µ < 2.5
GeV, where practically all QGP action is occurring, we see a rather rapid
change in Λ0(µ), which drops from a value near Λ0(1GeV) � 300 MeV
toward Λ0(3GeV) � 200 MeV.
It is common to refer to the number of active quarks by using an upper

index on Λ0(µ), thus Λ
(3)
0 refers to the range 1 GeV < µ < 2mc, and Λ

(5)
0

refers to µ > 2mb, and below the top threshold. We also see, in Fig. 14.1,
that Λ(5)0 � 90 ± 15 MeV. This value of Λ(5)0 derived from a comparison
with the one-loop solution should not be mixed up with Λ(5) = 205± 25
MeV, which is the value required to describe αs in the analytical two-loop
solution, Eq. (14.28) [136].
To understand how quark masses depend on the energy scale, given αs,

we integrate Eq. (14.19). Substituting m(µ) = mr(µ)m(MZ), we recog-
nize that mr(µ) is a multiplicative factor applicable to all quark masses.
mr(µ) is shown in the bottom portion of Fig. 14.1. All quark masses
‘run’ according to this result. A quark mass given at the scale µ = MZ

increases by factor 2.2 at scale µ = 1 GeV, as the dotted lines drawn to
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guide the eye show. Near to µ � 1GeV, the quark-mass factor mr(µ)
is driven by the rapid change of αs. For each of the different functional
dependences αs(µ), a different function mr is found, and two results are
presented, corresponding to the two cases considered in the top section
of Fig. 14.1.
Since αs refers to the scale of µ0 =MZ, it is a convenient reference point

also for quark masses. The value ms(MZ) = 90 ± 18MeV corresponds
to strange-quark mass ms(1GeV) � 195 ± 40MeV, i.e., ms(2GeV) �
150±30MeV, at the upper limit of the established range seen in table 1.1
on page 7. Similarly, we consider mc(MZ) = 700 ± 50MeV, for which
value we find the low-energy mass mc(1GeV) � 1550 ± 110MeV, i.e.,
mc(2GeV) � 1200 ± 85MeV, which is also at the upper limit of the
accepted range, table 1.1.
For quark-pair production, the intuitive energy scale to consider is a

range near to twice the (running) quark mass. Since, below
√
s = 1 GeV,

the mass of the strange quark increases rapidly, the pair-production thresh-
old is considerably greater than 2ms(1GeV) � 400 MeV. The dots in the
bottom portion of Fig. 14.1 show where the strangeness threshold is found,
and this is at 2mr(2ms)ms = 611MeV for αs(MZ) = 0.118. The stran-
geness threshold is where αs � 1 and we can expect, considering that the
phase space for pair production opens up at about 3m, that strangeness is
produced predominantly in an energy domain accessible to perturbative
treatment.
For charm, the threshold shift due to running mass occurs in the oppo-

site direction: since the mass of charmed quarks for µ = 1GeV is above
1GeV, the production-threshold mass is smaller than 2mc(1GeV) � 3.1
GeV; the production threshold is found at ∼2mth

c � 2.3 GeV, and the cor-
responding values of mr are indicated by crosses in the bottom portion of
Fig. 14.1. In other words, we expect that, near the threshold, there is a
slight enhancement in production of charm related to a reduction of the
threshold, while the coupling strength is at αs(2mc) � 0.3.
The inclusion of higher-order terms in the perturbative expansion

Eq. (14.21) does not influence the behavior of αs. This is shown in
Fig. 14.2, in which a study of αs is shown. To obtain the solid line,
the full current ‘scheme-dependent’ knowledge about the perturbative β-
function is employed. The four-loop β-function obtained in the modi-
fied minimum-subtraction scheme (MS) was used [136]. On the other
hand, Eq. (14.21) demonstrates that there is a considerable sensitivity to
the initial value αs(MZ). If αs(MZ) were to increase, the evaluation of
the coupling strength in the ‘low’-energy domain µ � 1 GeV of interest
here would become impossible, or at best unreliable, see the dotted lines
in Fig. 14.2 above the solid line. In fact, we do not present many re-
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Fig. 14.2. α
(4)
s (µ) as a function of the energy scale µ for a variety of initial

conditions. Solid line, αs(MZ) = 0.1182 (see the experimental point, which
includes the error bar at µ = MZ); dotted lines, sensitivity to variation of the
initial condition.

sults in this domain since the renormalization-group-evolution equation,
Eq. (14.18), becomes numerically unstable when the four-loop perturba-
tive β-function is used.
Interestingly, a 20% reduction in αs(MZ) leads to a ‘good’ αs(0.1GeV).

The distance scale 1/µ at which QCD becomes unstable is not just 1 fm,
but, as this study shows, an intricate functional of the strength of the
fundamental interaction, which has reliably been established only in re-
cent years. An essential prerequirement for the perturbative theory of the
production of strangeness in QGP, which we will develop in section 17.3,
is the relatively small value αs(MZ) � 0.118.
For studying thermal processes in QGP at temperature T , the proposed

interaction scale is, see Eq. (16.11),

µ ≡ 2πT � 1GeV T/Tc,

for Tc � 160MeV. We can expect considerable sensitivity in this low
range of µ to the exactness of the functional form of αs(µ), and it is
necessary to use the precise function αs(µ). In Fig. 14.3, the solid line
bounded by error lines corresponds to the exactly computed two-loop αs
with physical quark thresholds, Eq. (14.25), and with αs(MZ) = 0.1181±
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Fig. 14.3. αs(2πT ) for Tc = 0.160GeV. Dashed line, αs(MZ) = 0.119; solid line
= 0.1181; chain line = 0.1156. Dotted line, approximate two-loop solution, given
in Eq. (14.28), with the choice Λ = 150 MeV.

0.002, evaluated for the thermal scale, and expressed in terms of T/Tc.
The range of experimental uncertainty in αs(T ), due to uncertainty in
αs(MZ), is delimited by dashed and chain lines bordering the solid line
in Fig. 14.3. A good approximation is obtained fitting αs(T ) with a
logarithmic form,

αs(T ) �
αs(Tc)

1 + C ln(T/Tc)
, C = 0.760± 0.002, for T < 5Tc. (14.27)

The value αs(Tc) = 0.50−0.05+0.03 applies in the two-loop description with
µ = 2πT and Tc = 0.16 GeV (see Fig. 14.3).
A popular approximation of αs, which incorporates the next term be-

yond the one-loop logarithmic term Eq. (14.26), is

α(2)s (µ) �
2
b0L̄

(
1− 2b1

b20

ln L̄
L̄

)
, L̄ ≡ ln(µ2/Λ2). (14.28)

α
(2)
s agrees, using the standard value Λ(5) = 205±25 MeV, with the exact
solution shown at the top of Fig. 14.1, but only for µ > 2mb. On the
other hand, when one is studying thermal properties of a QGP at a low
energy scale the use of Eq. (14.28) below µ = 2mb introduces consider-
able error, as can be seen in Fig. 14.3. Equation (14.28) is represented
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by the dotted line, and misses the exact result by a factor of two, for
Tc < T < 1.75Tc, the effective range of observables emerging from SPS
and RHIC experiments. The experimental error in determination of αs is
today considerably smaller. This large difference between exact and ap-
proximate result arises, in part, because the value of Λ(5) used to obtain
the thermal behavior was adjusted to be Λ(4) = 0.95Tc � 0.15 GeV. This
value would be correct if Tc were indeed around 210 MeV, as has been
thought for some time.
The high sensitivity of physical observables to αs, makes it imperative

that we do not rely on this approximation. Yet a fixed value αs = 0.25
(instead of αs = 0.5) derived from this approximation is still often used in
studies of the phase properties of QGP, loss of energy by jets of partons,
thermalization of charmed quarks, thermal production of strange quarks,
etc. Such a treatment of thermal QCD interaction underestimates by
as much as a factor of four the interaction with the QGP phase, and
thus the speed of these processes. In most cases, this mundane factor
matters, and we see that an accurate evaluation of αs at the appropriate
physical scale is required in order to establish the correct magnitude of
these results.

15 Lattice quantum chromodynamics

15.1 The numerical approach

The perturbative approach to QCD lacks the capability to describe the
long-distance behavior, which is essential for understanding the QGP–HG
transformation. We need a more rigorous approach in order to charac-
terize the physical mechanisms at the origin of color confinement, and
the transition to the deconfined state of hadronic matter. A suitable
nonperturbative approach is the numerical study of QCD on a lattice
(L-QCD).
L-QCD is a vast field that is evolving very actively. We will limit

our presentation to a pedestrian guide to the language used in this field,
along with a report on a few key results of greatest importance to us. We
will not be embarking on a thorough introduction to the theoretical and
numerical methods. For a survey of the historical developments until the
early eighties we refer to the monograph by Creutz [97], and for a summary
of recent theoretical advances, and many numerical results addressing hot
QCD, we refer the reader to the recent survey by Karsch [159].
The particular usefulness of the lattice-gauge-theory formulation is that

it allows one to numerically carry out Feynman path integrals which rep-
resent expectation values of quantum-field-theory operators. Specifically,
the expectation value of an operator O, including both glue and quark
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