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Hyperbolic Group C
∗-Algebras and

Free-Product C
∗-Algebras as Compact

Quantum Metric Spaces

Narutaka Ozawa and Marc A. Rieffel

Abstract. Let ℓ be a length function on a group G, and let Mℓ denote the operator of pointwise multi-

plication by ℓ on ℓ2(G). Following Connes, Mℓ can be used as a “Dirac” operator for C∗

r
(G). It defines

a Lipschitz seminorm on C∗

r
(G), which defines a metric on the state space of C∗

r
(G). We show that if

G is a hyperbolic group and if ℓ is a word-length function on G, then the topology from this metric

coincides with the weak-∗ topology (our definition of a “compact quantum metric space”). We show

that a convenient framework is that of filtered C∗-algebras which satisfy a suitable “Haagerup-type”

condition. We also use this framework to prove an analogous fact for certain reduced free products of

C∗-algebras.

Introduction

The group C∗-algebras of discrete groups provide a much-studied class of “compact

non-commutative spaces” (that is, unital C∗-algebras). In [4] Connes showed that
the “Dirac” operator of a spectral triple (i.e., of an unbounded Fredholm module)
over a unital C∗-algebra provides in a natural way a metric on the state space of
the algebra. The class of examples most discussed in [4] consists of the group C∗-

algebras of discrete groups, with the Dirac operator coming in a simple way from a
word-length function on the group. In [12, 13] the second author pointed out that,
motivated by what happens for ordinary compact metric spaces, it is natural to desire
that for a spectral triple the topology from the metric on the state space coincides

with the weak-∗ topology (for which the state space is compact). This property was
verified in [12] for certain examples. In [14] this property was taken as the defining
property for a “compact quantum metric space”.

In [15] the second author studied this property for Connes’ original example of

discrete groups with Dirac operators coming from word-length functions, but was
able to verify this property only for the case when the group is Z

n. This already took
a long and interesting argument. We refer the reader to the introduction of [15] for
a more extensive discussion of this whole matter.

In the present paper we verify the property for the case of hyperbolic discrete
groups. In the course of studying this case we discovered that a natural setting was
that of filtered C∗-algebras with faithful trace. Voiculescu had shown earlier [17] how
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to define an appropriate Dirac operator in that setting. In Section 1 we formulate
in that setting a “Haagerup-type condition”, which in Sections 2 and 3 we show is

sufficient to imply that the metric from the Dirac operator gives the state space the
weak-∗ topology. Then in Section 4 we show that this Haagerup-type condition is
satisfied in the case of hyperbolic groups. We mention that quite recently Antonescu
and Christensen [1] showed that for non-Abelian free groups the metric on the state

space gives the state space finite diameter. Their techniques are close to ours, but
make explicit the relationship with Schur multipliers.

In Section 5 we show that the Haagerup-type condition fails for the groups Z
n

for n ≥ 2 with their standard length functions, and for groups which contain an

amenable group of growth ≥ 4 for the length function in use. Since the approach
used in the present paper is entirely different from that used in [15] to successfully
treat Z

n, this raises the interesting question of finding a unified approach which cov-
ers both cases. And there remains wide open the question of what happens for other

classes of groups, such as the discrete Heisenberg group and other nilpotent discrete
groups.

Finally, in Section 6 we show that the Haagerup-type condition is satisfied by the
reduced free product of any two filtered C∗-algebras which satisfy the Haagerup-type

condition. (Their filtrations give in a natural way a filtration on the free product.)
This provides yet more examples of compact quantum metric spaces.

1 Filtered C
∗-Algebras

We let A be a unital ∗-algebra over C which has a ∗-filtration {An} by finite-dimen-
sional subspaces. Just as in [17] this means that Am ⊂ An if m < n, A =

⋃∞
n=0 An,

A∗
n = An and AmAn ⊆ Am+n, and A0 = C1A. We assume further that we are given a

faithful state, σ, on A, that is, a linear functional such that σ(a∗a) > 0 for all a ∈ A

unless a = 0, and σ(1A) = 1. Let H = L2(A, σ) denote the corresponding GNS
Hilbert space. We assume that the left regular representation of A on H is by bounded
operators, and we identify A with the corresponding algebra of operators on H. We

let ‖ · ‖ denote the operator norm of A. Our notation will not distinguish between a

as an operator on H and a as a vector in H, so the context must be examined to see
which is intended. We let ‖a‖2 denote the norm of a as a vector in H.

We can view each An as a finite-dimensional, thus closed, subspace of H. We let

Qn denote the orthogonal projection of H onto An. We then set Pn = Qn − Qn−1

for n ≥ 1, and P0 = Q0. The Pn’s are mutually orthogonal, and
∑

Pn = IH for the
strong operator topology. For each a ∈ A and each n we set an = Pn(a), where here
a is viewed as a vector. Then an ∈ An, but an /∈ An−1 unless an = 0. Furthermore

a =

∑

an, with at most p non-zero terms in the sum if a ∈ Ap.
For the above situation we define, as in [17], an unbounded operator, D, on H by

D =

∑∞
n=1 nPn. Notice that A is contained in the domain of D. The following lemma

is part of Proposition 5.1d of [17]. We include the proof here since we will need a

similar argument in Section 3.

Lemma 1.1 For any a ∈ A the operator [D, a] has dense domain and is a bounded

operator.
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Proof Clearly A is contained in the domain of [D, a], and A is dense. Suppose that
a ∈ Ap. Then for any given m, n ≥ 0, if PmaPn 6= 0 then there is a ξ ∈ An such that

aξ ∈ Am. Since ApAn ⊆ Ap+n, it follows that p + n ≥ m. On taking the adjoint, we
see that Pma∗Pn 6= 0, so that p + m ≥ n. Thus |m − n| ≤ p. Consequently,

a =

∑

|m−n|≤p

PmaPn,

converging in the strong operator topology. For each j with | j| ≤ p set

T j =

∑

PmaPm− j .

Because the range of the terms PmaPm− j are orthogonal for fixed j, as are the “do-

mains”, we have
‖T j‖ = sup

m
‖PmaPm− j‖ ≤ ‖a‖.

But for any m, n ≥ 0 we have

[D, PmaPn] = (m − n)PmaPn.

In particular, [D, PmaPm− j] = jPmaPn. Thus [D, T j] = jT j . Since a =

∑

T j , we
obtain

[D, a] =

∑

| j|≤p

jT j .

Thus (A, H, D) is a spectral triple (or unbounded Fredholm module) as defined

by Connes [4, 5]. We can then define a seminorm, L, on A by

L(a) = ‖[D, a]‖.

From the proof of Lemma 1.1 we can see that L will be a Lipschitz seminorm on A in

the sense [13] that L(a) = 0 exactly if a ∈ C1A = A0.
As pointed out by Connes, for any spectral triple (A, H, D), with L defined as

above, we can define a metric, ρL, on the state space S(A) of A by

ρL(µ, ν) = sup{|µ(a) − ν(a)| : L(a) ≤ 1},

(which may be +∞). As discussed in [12, 13, 14] it is natural to ask whether the
topology on S(A) determined by ρL agrees with the weak-∗ topology, as happens for
ordinary compact metric spaces (X, ρ) and the usual Lipschitz seminorm on C(X). If

so, then [13] we call L a “Lip-norm”. We consider a unital (pre-) C∗-algebra equipped
with a Lip-norm to be a compact quantum metric space.

Main Theorem 1.2 Let A, σ and the ∗-filtration {An} be as above, and let D and L

be defined as above. If furthermore there is a constant, C, such that

‖PmakPn‖ ≤ C‖ak‖2

for all a ∈ A and integers m, n, k, then L is a Lip-norm.

https://doi.org/10.4153/CJM-2005-040-0 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2005-040-0


Hyperbolic Group C∗-Algebras 1059

As we will see at the end of Section 3, the key condition involving C stated just
above is closely related to the Haagerup inequality. We will call a condition of this

kind a “Haagerup-type condition”.
Necessary and sufficient conditions for a Lipschitz seminorm on a pre-C∗-algebra

to be a Lip-norm are given in [12] (in a more general context). For our present
purposes it is convenient to reformulate these conditions slightly.

Proposition 1.3 Let L be a Lipschitz seminorm on a unital pre-C∗-algebra A, and let

σ be a state of A. Then L is a Lip-norm if and only if

{a ∈ A : L(a) ≤ 1 and σ(a) = 0}
is a norm-totally-bounded subset of A.

Proof We apply Theorem 1.8 of [12]. Let E = {a ∈ A : L(a) ≤ 1 and σ(a) = 0}.
Suppose first that E is totally bounded. As in theorem 1.8 of [12] let L1 = {a ∈ A :
L(a) ≤ 1}, and let Ã = A/C1A with the quotient norm. Let L̃1 denote the image
of L1 in Ã. For any a ∈ L1 the element a − σ(a)1A is in E. Thus the image of E in

Ã coincides with L̃1. Thus if E is totally bounded then so is L̃1. But this is exactly
the condition in Theorem 1.8 of [12] for L to be a Lip-norm. Conversely, if L is a
Lip-norm so that L̃1 is totally bounded, then a simple 2ε-argument shows that E is
totally bounded.

2 The Action of the One-Parameter Group

In this section we consider a Hilbert space L with a sequence {Pn} of mutually or-

thogonal projections whose sum is IH, much as above. We set D =

∑

nPn, and for
each t ∈ R we let Ut = eitD

=

∑

eitnPn. We let αt denote the inner automorphism
of B(H) defined by αt (T) = Ut TU ∗

t . Because the spectrum of D consists of integers,
we can view α as an action of the circle group T = R/(2πZ). In general the function

t 7→ αt (T) will not be norm-continuous. But it is always strong-operator continu-
ous. Thus for any finite measure µ on T and any T ∈ B(H) we can define αµ(T)
by

(αµ(T))ξ =

∫

T

αt (T)ξ dµ(t)

for each ξ ∈ H. Then ‖αµ(T)‖ ≤ ‖T‖‖µ‖1, where ‖µ‖1 is the total-variation norm.
Notice then that for any m, n ≥ 0 we have

Pmαµ(T)Pn =

∫

eimt PmTPne−int dµ(t)

= µ̂(n − m)PmTPn,

where µ̂ is the Fourier transform of µ. In particular, if [D, T] is a bounded operator,

then

Pmαµ([D, T])Pn = µ̂(n − m)Pm[D, T]Pn

= (m − n)µ̂(n − m)PmTPn.
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For any integer N ≥ 0 let ϕN ∈ ℓ
2(Z) be defined by ϕN (k) = −1/k if |k| > N

and 0 otherwise. Then the inverse Fourier transform, ϕ̌N , of ϕN is in L2(T), and

so in L1(T). Thus as the measure µ above we can use ϕ̌N(t)dt . With some abuse
of notation, we denote the corresponding operator by αϕN

. For any T ∈ B(H) for
which [D, T] is bounded we set

T(N)
= αϕN

([D, T]).

Then for any m, n ≥ 0 we have, as above,

PmT(N)Pn = (m − n)ϕN(n − m)PmTPn

=

{

0 if |m − n| ≤ N

PmTPn if |m − n| > N .

Thus

T(N)
=

∑

|m−n|>N

PmTPn.

Furthermore,

‖T(N)‖ ≤ 2π‖ϕN‖2‖[D, T]‖,

since ‖ϕ̌N‖1 ≤
√

2π‖ϕ̌N‖2 = 2π‖ϕN‖2. Notice that ‖ϕN‖2 → 0 as N → +∞.

3 The Proof of the Main Theorem

We resume the notation of Section 1. According to Proposition 1.3 we must show
that, under the hypotheses of the Main Theorem, the set

E = {a ∈ A : ‖[D, a]‖ ≤ 1 and σ(a) = 0}

is totally bounded in A for the operator norm. Given a ∈ A, we set an = Pn(a) as in
Section 1, so that a =

∑

an. The condition that σ(a) = 0 is then just the condition
that a0 = 0.

Let ε > 0 be given. We now show that E can be covered by a finite number of
3ε-balls. For ϕN ’s as in the previous section, choose N large enough that 2π‖ϕN‖2 <
ε. For a ∈ E define a(N) as in the previous section by a(N)

= αϕN
([D, a]). Then from

the discussion there we have ‖a(N)‖ < ε. Set aN
= a − a(N), so that ‖a − aN‖ < ε.

Since as above

a(N)
=

∑

|m−n|>N

PmaPn,

we have

aN
=

∑

|m−n|≤N

PmaPn,

which converges in the strong operator topology. Note that in general aN /∈ A.
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Let 1A be viewed as a vector in L2(A, σ), so that ‖1A‖2 = 1 and D(1A) = 0. Then
for any a ∈ A we have

[D, a](1A) = D(a) =

∑

nan.

Since the an’s are mutually orthogonal, it follows that for a ∈ E we have

∑

n2‖an‖2
2 ≤ ‖[D, a]‖2 ≤ 1.

Then from the Cauchy–Schwarz inequality we see that for any integer K ≥ 0 we have

∑

n>K

‖an‖2 =

∑

n>K

(n−1)(n‖an‖2)

≤
(

∑

n>K

n−2
) 1/2(∑

n2‖an‖2
2

) 1/2

≤
(

∑

n>K

n−2
) 1/2

.

We now choose K large enough that

(

∑

n>K

n−2
) 1/2

< ε(C(2N + 1))−1.

For each a ∈ A set âK =

∑

k≤K ak and ãK =

∑

k>K ak, so that a = âK + ãK . Then

a = aN + a(N)
= âN

K + ãN
K + a(N),

where âN
K = (âK)N and similarly for ãN

K . For a ∈ E we have chosen N so that
‖a(N)‖ < ε. We show next that {âN

K : a ∈ E} is totally bounded. Then we will
show that because of our choice of K we have ‖ãN

K ‖ < ε for any a ∈ E. It will follow

immediately that E can be covered by a finite number of 3ε-balls, as desired.

For any a ∈ E we have

‖âK‖2 ≤
∑

k≤K

‖ak‖2 ≤
(

∞
∑

k=1

n−2
) 1/2

.

Thus {âK : a ∈ E} is a bounded subset of the finite dimensional vector space AK .

The map a 7→ âN is linear, and so when restricted to AK it must carry {âK : a ∈ E}
to a bounded subset of a finite-dimensional subspace of B(H). Thus {âN

K : a ∈ E}
is totally bounded, as needed. (This is the only place in this proof where we use the
assumption that the An’s are finite dimensional. Without that assumption this proof

only shows that the metric on S(A) gives S(A) finite diameter.)

We now show that ‖ãN
K ‖ < ε for a ∈ E. It is convenient to first show the following

slightly more general fact:
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Lemma 3.1 With notation as above, for any a ∈ A we have

‖aN‖ ≤ (2N + 1)C

∞
∑

k=0

‖ak‖2.

Proof For each integer j with | j| ≤ N set,

T j =

∑

m

PmaPm− j .

As in the proof of Lemma 1.1 we have

‖T j‖ = sup
m

‖PmaPm− j‖.

For each integer m we have, by hypothesis,

‖PmaPm− j‖ ≤
∑

k

‖PmakPm− j‖ ≤ C
∑

‖ak‖2,

so that ‖T j‖ ≤ C
∑ ‖ak‖2. Since aN

=

∑

|m−n|≤N PmaPn =

∑

| j|≤N T j , we obtain

the asserted fact.

Now for any a ∈ E, because ãK =

∑

k>K ak, the above proposition gives

‖ãN
K ‖ ≤ (2N + 1)C

∑

k>K

‖ak‖2

≤ (2N + 1)C
(

∑

k>K

(k−2)
) 1/2

< ε

by our choice of K, as needed. This concludes the proof of Main Theorem 1.2.

We show next that from our Haagerup-type condition we can obtain a Haagerup

inequality in its more usual form. Let a ∈ A, and let the ak’s be its components as
above. For any k and for | j| ≤ k set T j =

∑

PmakPm− j , much as above. Then, as
above,

‖T j‖ = sup
m

‖PmakPm− j‖ ≤ C‖ak‖2.

Since, as above, ak =

∑

| j|≤k T j , we obtain the following analog of the third line of

the proof of Lemma 1.4 of [9], which we record for later use:

Lemma 3.2 With notation as above, we have

‖ak‖ ≤ C(2k + 1)‖ak‖2.
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Then from the Cauchy–Schwarz inequality we obtain

‖a‖ ≤
∑

k

‖ak‖ ≤
∑

k

C(2k + 1)‖ak‖2

= C
∑

k

(1/(k + 1))(k + 1)(2k + 1)‖ak‖2

≤ C
(

∑

p≥1

1/p2
) 1/2 (

∑

(2k2 + 3k + 1)2‖ak‖2
2

)1/2

.

If we note that 2k2 + 3k + 1 ≤ 2(k + 1)2 for k ≥ 0, and set C ′
= 2C

(
∑

p≥1 1/p2
) 1/2

,
we obtain the following inequality, which is similar to the usual form [5] for the

Haagerup inequality for groups:

Proposition 3.3 For any a ∈ A we have

‖a‖ ≤ C ′
(

∑

(1 + k)4‖ak‖2
2

) 1/2

.

We now obtain a related inequality which we will need shortly.

Proposition 3.4 There is a constant, C ′ ′, such that for any integer p and any a ∈ Ap

we have

‖a‖ ≤ C ′ ′(p + 1)3/2‖a‖2.

Proof We use Lemma 3.2 to calculate that

‖a‖ ≤
p

∑

0

‖ak‖ ≤ C
(

p
∑

0

(2k + 1)‖ak‖2

)

≤ C
(

p
∑

0

(2k + 1)2
) 1/2(

p
∑

0

‖ak‖2
2

) 1/2

≤ 2C
(

p
∑

0

(k + 1)2
) 1/2

‖a‖2.

But
p

∑

0

(k + 1)2 ≤
∫ p+1

0

(t + 1)2 dt = (1/3)((p + 2)3 − 1).

Absorbing several factors into the constant, we obtain the desired inequality.
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4 Hyperbolic Groups

In this section we show that our Main Theorem applies to word-hyperbolic groups.
There are several equivalent definitions of what it means for a metric space to be
hyperbolic [8]. We will find the following version well-suited to our purposes.

Definition 4.1 A metric space (X, ρ) is hyperbolic if there is a constant δ ≥ 0 such
that for any four points x, y, z, w ∈ X we have

ρ(x, y) + ρ(z, w) ≤ max{ρ(x, z) + ρ(y, w), ρ(x, w) + ρ(y, z)} + δ.

If it is important to specify δ, we say that X is δ-hyperbolic.

Let G be a finitely generated discrete group, and let S be a finite generating subset
for G, with S = S−1. Let ℓ be the word-length function on G determined by S, and
let ρ be the corresponding left-invariant metric on G defined by ρ(x, y) = ℓ(x−1 y).

Then G is said to be hyperbolic if the metric space (G, ρ) is hyperbolic. It is not
difficult to show [8] that this is independent of the choice of the finite generating
set S.

For any discrete group G and any integer-valued length function ℓ on G we ob-
tain a ∗-filtration {An} of the convolution algebra A = Cc(G) of complex-valued

functions of finite support on G by setting

An = { f ∈ A : f (x) = 0 if ℓ(x) > n}.

The involution on A is defined, as usual, by f ∗(x) = ( f (x−1))−. We define a faithful

trace, σ, on A by σ( f ) = f (e), where e denotes the identity element of G. The
resulting GNS Hilbert space is ℓ

2(G), and the left regular representation of A on ℓ
2(G)

is by bounded operators. The C∗-algebra generated by the left regular representation
is the reduced C∗-algebra of G, C∗

r (G). Thus we are in the setting of Section 1. (With a

bit of care with the bookkeeping, all the above applies also to the convolution algebra
of G twisted by a 2-cocycle, in the way that was explicitly carried out in [15]. Our
results below also work for this case too.)

The Dirac operator corresponding to the filtration is just the operator Mℓ of point-
wise multiplication by ℓ on ℓ

2(G). We can then define the seminorm L on A by

L( f ) = ‖[D, f ]‖, where f on the right is viewed as the convolution operator on
ℓ

2(G). We can then ask whether L is a Lip-norm. Our Main Theorem provides a
possible tool for giving an affirmative answer to this question.

Definition 4.2 Let ℓ be an integer-valued length function on a group G. We say

that (G, ℓ) satisfies a Haagerup-type condition if, for the filtration of Cc(G) ⊆ C∗
r (G)

defined above, with its canonical trace, the main condition of Theorem 1.2 is satisfied.

Proposition 4.3 Let G be a word-hyperbolic group, and let ℓ be the word-length func-

tion for a finite generating subset of G. Then (G, ℓ) satisfies a Haagerup-type condition.
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Proof A proof is essentially contained within Connes’ proof of the Haagerup in-
equality for hyperbolic groups given in [5, p. 241]. But since some significant details

are not included there, we give a complete proof here. The special case of this propo-
sition for the free group on finitely many generators with its standard word-length
function relative to the given generators is explicitly given by Haagerup as Lemma
1.3 in [9], with C = 1. (See also Lemma 1.1 of [7], where it is remarked right after

the proof of Theorem 1.3 that it also works for the free group with countably many
generators. But with an infinite number of generators the subspaces An of the filtra-
tion are infinite dimensional, and so the proof of our Main Theorem 1.2 only shows
that the state space has finite diameter.)

For any integer j ≥ 0 let E j = {x ∈ G : ℓ(x) = j}. We must find a constant,
C , such that for any integers k, m, n, and any f supported on Ek we have ‖Pm f Pn‖ ≤
C‖ f ‖2. This means that for any ξ supported on En we must have

(

∑

x∈Em

|( f ∗ ξ)(x)|2
) 1/2

≤ C‖ f ‖2‖ξ‖2.

We examine ( f ∗ ξ)(x). Let δ be a constant for which G, equipped with the metric
from ℓ, is δ-hyperbolic as in Definition 4.1. Now

( f ∗ ξ)(x) =

∑

yz=x

f (y)ξ(z).

If ( f ∗ ξ)(x) 6= 0 there must be some y, z ∈ G such that x = yz with ℓ(y) = k,

ℓ(z) = n, and so if x ∈ Em we must have m ≤ k + n. But also z = y−1x, so we must
have n ≤ k + m, and so |m − n| ≤ k. In the same way we obtain |n − k| ≤ m. Let
p = k + n − m. If p is even set q = p/2, while if p is odd set q = (p − 1)/2. In either
case set q̃ = p − q, and notice that q ≤ q̃ ≤ q + 1. Then m = (k − q) + (n − q̃), and

from |m − n| ≤ k it is easy to check that k − q ≥ 0, while from |n − k| ≤ m it is easy
to check that n − q̃ ≥ 0. Consequently, for each x ∈ Em we can choose x̄, x̃ ∈ G such
that x = x̄x̃ and ℓ(x̄) = k − q, while ℓ(x̃) = n − q̃. This choice is usually not unique,
but we fix it for the rest of the proof.

Suppose now that x ∈ Em and x = yz for some y ∈ Ek and z ∈ En. We apply
Definition 4.1 to the four points (e, x, x̄, y) to obtain

ρ(e, x) + ρ(y, x̄) ≤ max{ρ(e, x̄) + ρ(y, x), ρ(e, y) + ρ(x, x̄)} + δ.

But ρ(e, x̄) +ρ(y, x) = (k−q) + n, while ρ(e, y) +ρ(x, x̄) = k + (n− q̃). Consequently

ρ(y, x̄) ≤ k − q + n − m + δ = q̃ + δ.

Thus y = x̄u for some u with ℓ(u) ≤ q̃ + δ. Then z = y−1x = u−1x̄−1x = u−1x̃.

Since this is true for all such x, y, we see that

( f ∗ ξ)(x) =

∑

{ f (x̄u)ξ(u−1x̃) : ℓ(u) ≤ q̃ + δ}.
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We can apply the Cauchy–Schwarz inequality to this to get

|( f ∗ ξ)(x)|2 ≤
(

∑

{| f (x̄u)|2 : ℓ(u) ≤ q̃ + δ}
)(

∑

{|ξ(vx̄)|2 : ℓ(v) ≤ q̃ + δ
)

.

For any y ∈ Ek let us consider how many decompositions there are of the form
y = su such that ℓ(s) = k − q = ℓ(x̄) and ℓ(u) ≤ q̃ + δ. Let y = tw be another such
decomposition. We apply Definition 4.1 to the four points e, y, s, t to obtain

ρ(e, y) + ρ(s, t) ≤ max{ρ(e, s) + ρ(t, y), ρ(e, t) + ρ(s, y)} + δ.

But ρ(e, s) + ρ(y, t) = k − q + q̃ + δ = ρ(e, t) + ρ(s, y). It follows that k + ρ(s, t) ≤
q̃ − q + k + 2δ, so that ρ(s, t) ≤ 1 + 2δ. In the same way we find that for any two
factorizations z = vs = wt with ℓ(s) = ℓ(t) = ℓ(x̃) = n − q̃ and ℓ(v), ℓ(w) ≤ q̃ + δ
we have ρ(v, w) ≤ 2δ.

Let C be the number of elements of G in a ball of radius 1 + 2δ. Then the number

of different s’s which can enter as above into the factorization of y is no larger than
C , and thus the number of u’s is also no larger than C . Similarly, the number of v’s
which can enter as above into the factorization of z is no larger than C .

We now claim that ‖ f ∗ξ‖2 ≤ C‖ f ‖2‖ξ‖2. From our earlier calculations we know

that

‖ f ∗ ξ‖2
2 =

∑

x

|( f ∗ ξ)(x)|2

≤
∑

x

(

∑

ℓ(u)≤q̃+δ

| f (x̄u)|2
)(

∑

ℓ(v)≤q̃+δ

|ξ(vx̃)|2
)

,

while of course

(‖ f ‖2‖ξ‖2)2
=

∑

ℓ(y)=k
ℓ(z)=n

| f (y)|2|ξ(z)|2.

Thus to obtain our desired inequality it suffices to show that for any pair (y, z) with
ℓ(y) = k and ℓ(z) = n, the number of x’s for which there are a u and v with ℓ(u) ≤
q̃ + δ and ℓ(v) ≤ q̃ + δ such that y = x̄u and z = vx̃ is no greater than C2. But
suppose we have such x, u, v. Then x = x̄x̃ = yu−1v−1z. Given our earlier bound on

the number of such u’s and v’s, it is now clear that the number of such x’s is indeed
bounded by C2.

Corollary 4.4 Let G be a word-hyperbolic group, and let ℓ be the word-length function

for a finite generating subset of G. Then the metric on S(C∗
r (G)) coming from using ℓ as

a Dirac operator gives S(C∗
r (G)) the weak-∗ topology.

5 Failure of the Haagerup-Type Condition

In this section we show that the Haagerup-type condition often fails for groups which
contain a copy of Z

d for d ≥ 2, or other amenable groups with suitable growth. We
begin with the following observation.
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Proposition 5.1 Let ℓ be a length function on a group G, and let ℓH denote the re-

striction of ℓ to a subgroup H. If (G, ℓ) satisfies a Haagerup-type condition, then so does

(H, ℓH).

Proof Since G is the disjoint union of right cosets of H, the restriction to H of the
left regular representation of G is a direct sum of copies of the left regular represen-
tation of H. Thus C∗

r (H) is isometrically embedded in C∗
r (G). The restriction to

C∗
r (H) of the canonical trace on C∗

r (G) is the canonical trace on C∗
r (H). The filtra-

tion of C∗
r (H) for ℓH is just the intersection of C∗

r (H) with the filtration of C∗
r (G)

for ℓ. The desired conclusion follows easily.

Proposition 5.2 The group Z
2 with the word-length function for its standard basis

does not satisfy a Haagerup-type condition. Thus neither does Z
d for d > 2 with its

standard word-length function.

Proof For Z
2 and the standard word-length function ℓ, given by ℓ((p, q)) = |p|+|q|,

we need to show that there is no constant C such that ‖Pm f Pn‖ ≤ C‖ f ‖2 for all

m, k, n, where f is supported on Ek. Let k > 0 be fixed, choose n > k, and set
m = n + k. Let f be the function which has value (1/k) on the points (p, k− p) of Ek

for which 1 ≤ p ≤ k, and value 0 elsewhere. In the evident way we will consider f to
be a function just of p when convenient. Notice that ‖ f ‖1 = 1, so that ‖Pm f Pn‖ ≤ 1,

while ‖ f ‖2 = 1/
√

k. Similarly, let ξ be the function which has value 1/
√

n on the
points (q, n−q) of En for which 1 ≤ q ≤ n, and value 0 elsewhere. We can consider ξ
as a function just of q. Note that ‖ξ‖2 = 1. We estimate ‖Pm f Pnξ‖. We will evaluate
only on the points (r, m − r) of Em for which k ≤ r ≤ n. Then with this restriction,

(Pm f Pnξ)(r, m − r) =

∑

1≤p≤k

f (p)ξ(r − p)

= k(1/k)(1/
√

n) = 1/
√

n.

Thus ‖Pm f Pnξ‖2
2 ≥ (n − k)/n, so that ‖Pm f Pn‖ ≥ ((n − k)/n)1/2. Notice that

this approaches 1 as n → +∞. But we could have chosen k as large as desired, so
that ‖ f ‖2 = 1/

√
k is as small as desired. Thus there is no constant C such that

‖Pn f Pm‖ ≤ C‖ f ‖2 for all m, k, n, where f is supported on Ek.

This, of course, raises the question of whether there is a way to give a unified proof
of both the Corollary 4.4 for hyperbolic groups and the corresponding result in [15]

for Z
d, as well as the question of what happens for other groups. Perhaps the “bolic”

groups of Kasparov and Skandalis [3, 11] provide a good class of groups for which
one might hope to find a unified proof.

Suppose now that G is an amenable group, so that C∗
r (G) = C∗(G). Then the

trivial representation of G gives a representation of C∗
r (G). By using the trivial rep-

resentation we see that if f ∈ Cc(G) and if f ≥ 0 as a function, then ‖ f ‖ = ‖ f ‖1.
For each integer p let Bp = {x ∈ G : ℓ(x) ≤ p}, and let χp denote the characteristic
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function of Bp. Suppose that G satisfies a Haagerup-type condition. Then according
to Proposition 3.4 there is a constant, C ′, such that

‖χp‖1 = ‖χp‖ ≤ C ′(p + 1)3/2‖χp‖2.

Let |Bp| denote the number of elements in Bp. Then it follows that |Bp| ≤
C ′(p + 1)3/2|Bp|1/2. From this we obtain:

Proposition 5.3 Let G be an amenable group, and let ℓ be an integer-valued length-

function on G. If (G, ℓ) satisfies a Haagerup-type condition, then there is a constant, C ′,

such that for every p we have

|Bp| ≤ C ′(p + 1)3.

We now recall some well-known definitions and facts. (See [8, p. 12].) For an
integer-valued length-function on G we say that its rate of growth is polynomial if
there is an integer n and a constant C such that |Bp| ≤ C pn for all large enough p.
We call the smallest such n the “growth rate” of G for ℓ. If |Bp| grows at a faster than

polynomial rate, then we say that the growth rate of G for ℓ is ∞.
The idea of comparing the 2-norm with the 1-norm came from [10], where Jolis-

saint showed that an amenable group with the property (RD) is of polynomial

growth.
Let S be a finite generating set for G, and let ℓS be the corresponding word-length

function. For any length function ℓ on G set M = max{ℓ(s) : s ∈ S}. Then it is easily
seen that ℓ ≤ MℓS. Consequently the growth rate of G for ℓ is no smaller than that

for ℓS. In particular, the growth rates of G for any two word-length functions coin-
cide. This common growth rate is called the growth rate of a given finitely generated
group. From the above observations and Proposition 5.3 we obtain:

Corollary 5.4 If G is a finitely generated amenable group, and if G satisfies a

Haagerup-type condition for some length function, then the growth rate of G is no greater

than 3.

Corollary 5.5 Let G be any discrete group. If G contains a finitely generated amenable

group whose growth rate is ≥ 4, then there does not exist a length function ℓ on G such

that (G, ℓ) satisfies a Haagerup-type condition.

Corollary 5.6 If a group G contains either Z
4 or the discrete Heisenberg group, then

there does not exist a length function ℓ on G such that (G, ℓ) satisfies a Haagerup-type

condition.

Proof Both Z
4 and the discrete Heisenberg group have a growth of 4. (See [8, Ch. 1,

§18] for the proof of this for the Heisenberg group.)

Question 5.7 Suppose that a group G admits a finite generating set for whose word-
length function ℓ the pair (G, ℓ) satisfies a Haagerup-type condition. Must the group
then be hyperbolic?
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6 Free-Product C
∗-Algebras

In this section we show that Main Theorem 1.2 applies to certain reduced free-prod-

uct C∗-algebras. Jolissaint [10] showed that the property (RD) is preserved under
forming free products, but his proof apparently does not work in our situation. Thus,
we need a finer classification of types of words, which unfortunately complicates the
notation.

Let A1 and A2 be unital pre-C∗-algebras with filtrations {A1
m} and {A2

m} respec-
tively. Let A = A1 ∗ A2 be the algebraic free product, with its evident involution. We
define a filtration (respecting the involution) on A by setting An to be the linear span

of all products Ai1
n1
· · ·Aiα

nα
with each i j = 1, 2, with i j 6= i j+1 for 1 ≤ j ≤ α − 1, and

with
∑

n j ≤ n.

Let σ1 and σ2 be faithful tracial states on A1 and A2. We let σ = σ1 ∗ σ2 be
the corresponding faithful tracial state on A which is used to define [2, 16, 18] the
reduced free-product C∗-algebra structure on A. Its defining properties are that its
restrictions to A1 and A2 coincide with σ1 and σ2, and that σ(ai1

1 · · · aiα
α ) = 0 if

σi j (a
i j

j ) = 0 for all j = 1, . . . , α and i j 6= i j+1 for j = 1, . . . , α − 1. The reduced
C∗-norm on A (for σ1 and σ2) is then the operator norm for the GNS representation

for σ on L2(A, σ).

Theorem 6.1 If (A1, σ1) and (A2, σ2) both satisfy a Haagerup-type condition with

constant C, then (A1 ∗ A2, σ1 ∗ σ2) satisfies a Haagerup-type condition with constant√
5C.

We remark that there are many examples to which this theorem applies. In ad-
dition to the reduced group C∗-algebras of hyperbolic groups studied in the earlier

sections of this paper, one can take any finite-dimensional C∗-algebras with any fil-
trations.

This theorem is related to Lemma 3.3 of [6], but in [6] the algebras A1 and A2 are

not assumed to be filtered, and so our situation is substantially different from that
considered there.

We now establish some notation which will be used in the proof. As in Section 1,
we let {Pi

n} be the family of mutually orthogonal projections corresponding to the
filtration {Ai

n}, for i = 1, 2, and we let {Pn} be the corresponding family on A for
{An}. We let Ei

n denote the range of Pi
n, and similarly for En. Thus E0 is the span

of 1, while if n ≥ 1 then En is the orthogonal sum of the spans of products Ei1
n1
· · · Eiα

nα

such that n j ≥ 1 for all j and i j 6= i j+1 for j = 1, . . . , α − 1 while
∑

n j = n. In
order to reduce notational clutter we will often omit the superscripts when they can
be inferred from the context. In particular, we will let P⊥

0 denote the projection onto

the orthogonal complement of 1 for all three algebras.

Much as in section 2 of [6] we choose for i = 1, 2 an orthonormal basis Bi
n for

each Ei
n, with {1} as the basis for Ei

0. But for convenience we also require that each

basis element be self-adjoint. We can do this because σi is tracial. We let B
i
=

⋃

n B
i
n,

so that Bi is a basis for Ai . We define ℓ on each Bi by ℓ(x) = n if x ∈ Bi
n. For

x ∈ (B1 ∪ B2) we define µ by µ(x) = i if x ∈ Bi , and we define ν by ν(x) = i

if x /∈ Bi . As in [6] we obtain from B1 and B2 an orthonormal basis B for A. An
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element of B will be either 1, or a product xxx = x1 · · · xα with xi ∈ (B1 ∪ B2) \ {1}
for each i while µ(xi) 6= µ(xi+1) for i = 1, . . . , α − 1. We extend the definitions

of µ and ν to B \ {1} by setting µ(xxx) = µ(x1) and ν(xxx) = ν(x1) for any xxx 6= 1.
Although µ(1) is undefined (because A is really the free product amalgamated over
C1), we will make the unusual convention that both µ(xxx) = µ(yyy) and µ(xxx) 6= µ(yyy)
are simultaneously true if yyy = 1. We set ℓ(xxx) =

∑

ℓ(x j), with ℓ(1) = 0. We then set

Bn = {xxx : ℓ(xxx) = n}, and note that Bn is an orthonormal basis for En. (But we note
also that the elements of Bn need not be self-adjoint, though the involution carries
Bn into itself.) We will often write an element a of En as a =

∑

xxx∈Bn
a(xxx)xxx.

Our objective is to show that for any a ∈ Ek and any m, n we have ‖PmaPn‖2 ≤√
5C‖a‖2, where on the left side a is viewed as an operator on L2(A, σ). Thus we

must show that if ξ ∈ En then

‖Pm(aξ)‖2 ≤
√

5C‖a‖2‖ξ‖2.

So we now fix m, k, and n for the rest of the proof. We can assume that m, k and
n are all ≥ 1, since the desired inequality is very easily verified if any one of them
is 0. Somewhat as in Section 4, we set q = (k + n − m)/2, but now q need not be

an integer. Some of the objects considered below will depend on m, k and n, but to
avoid notational clutter we often will not indicate that dependence explicitly.

For any a ∈ Ek we have a =

∑

yyy∈Bk
a(yyy)yyy. In the same way, for ξ ∈ En we have

ξ =

∑

zzz∈Bn
ξ(zzz)zzz. We find it notationally convenient to work with a∗ξ instead of aξ.

Then

a∗ξ =

∑

yyy,zzz

ā(yyy)ξ(zzz)yyy∗zzz.

Thus we need information about Pm(yyy∗zzz). So we need to see how yyy∗zzz can be ex-

pressed in terms of “reduced words”. Let yyy = y1 · · · yβ and zzz = z1 · · · zγ . If µ(yyy) 6=
µ(zzz), then yyy∗zzz is already a reduced word, and yyy∗zzz ∈ Bk+n. Otherwise, if µ(yyy) = µ(zzz)
then there is some integer δ ≥ 1 such that yi = zi for i < δ while yδ 6= zδ (with the
latter including the possibility that yδ or zδ is not present, i.e., β < δ or γ < δ). If

δ = 1 then y1 6= z1 so that P0(y1z1) = 0, and

yyy∗zzz = yβ · · · y2P⊥
0 (y1z1)z2 · · · zγ ,

which is a reduced word. If δ > 1 then P0(yizi) = 1 for i < δ, and so

yyy∗zzz = yβ · · · y2P0(y1z1)z2 · · · zγ + yβ · · · y2P⊥
0 (y1z1)z2 · · · zγ

= yβ · · · y2z2 · · · zγ + yβ · · · y2P⊥
0 (y1z1)z2 · · · zγ .

Continuing in this way, we obtain, even for δ = 1 or µ(yyy) 6= µ(zzz):

Lemma 6.2 Let yyy, zzz ∈ B with yyy = y1 · · · yβ and zzz = z1 · · · zγ , and let δ ≥ 1 be the

integer such that yi = zi for all i < δ while yδ 6= zδ (including the case β = δ − 1 or

γ = δ − 1). Then

yyy∗zzz =

δ
∑

i=1

yβ · · · yi+1P⊥
0 (yizi)zi+1 · · · zγ ,
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where

(1) One should replace P⊥
0 (yizi) by 1 if µ(y) 6= µ(z) so that yyy∗zzz ∈ B.

(2) One should replace the summand for i = δ by 1 if yδ and zδ are both not present,

i.e., if yyy = zzz.

(3) If β = δ − 1 then no y j ’s should appear on the left of the term for i = δ, and

similarly if γ = δ − 1.

Suppose now that for some i ≤ δ we have

Pm(yβ · · · yi+1P⊥
0 (yizi)zi+1 · · · zγ) 6= 0.

Then there must be an r ∈ B
µ(yi ), r 6= 1, such that σ(ryizi) 6= 0 and

ℓ(yβ · · · yi+1) + ℓ(r) + ℓ(zi+1 · · · zγ) = m.

But because σ(ryizi) 6= 0 we also have, by the properties of filtrations,

ℓ(yi) + ℓ(zi) ≥ ℓ(r) ≥ |ℓ(yi) − ℓ(zi)|.
Thus

ℓ(yβ · · · yi) + ℓ(zi · · · zγ) ≥ ℓ(yβ · · · yi+1) + |ℓ(yi) − ℓ(zi)| + ℓ(zi+1 · · · zγ).

Let www = y1 · · · yi−1 = z1 · · · zi−1. It follows from above that

min{ℓ(y1 · · · yi), ℓ(z1 · · · zi)} ≥ (ℓ(yyy) + ℓ(zzz) − m)/2 ≥ ℓ(www).

Recall that q = (k + n − m)/2. Since ℓ(yyy) = k and ℓ(zzz) = n, we see that ℓ(www) =

ℓ(y1 · · · yi−1) ≤ q, while ℓ(y1 · · · yi) ≥ q so that

ℓ(yβ · · · yi+1) ≤ k − q.

Similarly
ℓ(zi+1 · · · zγ) ≤ n − q.

Notice that

(k − q) + (n − q) = m,

so that we cannot have simultaneously ℓ(yβ · · · yi+1) = k − q and ℓ(zi+1 · · · zγ) =

n − q. We summarize the above observations by:

Lemma 6.3 Suppose that yyy and zzz are such that µ(yyy) = µ(zzz). let δ be as defined

above. If for some i ≤ δ we have

Pm(yβ · · · yi+1P⊥
0 (yizi)zi+1 · · · zγ) 6= 0,

then yyy and zzz are of the form yyy = www∗uŝss and zzz = www∗vt̂tt where ℓ(www) ≤ q, ℓ(ŝss) ≤ k − q,

ℓ(t̂tt) ≤ n−q, and u, v ∈ B1 ∪B2 with µ(www) 6= µ(u) 6= µ(ŝss) and µ(www) 6= µ(v) 6= µ(t̂tt).

At least one of u, v is not 1, and if u = 1 then also ŝss = 1, and similarly for v. Specifically,

www = yi−1 · · · y1 = zi−1 · · · z1 and u = yi and v = zi , while ŝss = yi+1 · · · yβ and

t̂tt = zi+1 · · · zγ . If β ≤ i then ŝss = 1, and similarly for γ ≤ 1. Then

Pm(yβ · · · yi+1P⊥
0 (yizi)zi+1 · · · zγ) = Pm(ŝss∗P⊥

0 (uv)t̂tt).

Either ℓ(ŝss) < k − q or ℓ(t̂tt) < n − q (or both).
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In order to be in a position to apply our assumption that (A1, σ1) and (A2, σ2)
satisfy a Haagerup-type condition, we need to consider collectively all the xxx’s which

may occur in the support of a fixed term yβ · · · yi+1P⊥
0 (yizi)zi+1 · · · zγ . For this pur-

pose it is convenient to assume now that both k − q 6= 0 and n − q 6= 0. At
the end of the proof we will give separately the argument for the remaining cases.
We also need to divide the situation into two cases, depending on the structure of

the xxx’s. Let xxx = x1 · · · xα. For the first case we assume that there is a j such that
ℓ(x1 · · · x j) < k − q while ℓ(x1 · · · x j+1) > k − q. (This will always happen if q is not
an integer.) Thus we can express xxx as xxx = sss∗rttt where µ(sss) = µ(ttt) and µ(r) 6= µ(sss),
with ℓ(sss) < k − q and ℓ(ttt) < n − q. The second case will be that in which there is a j

such that ℓ(x1 · · · x j) = k − q.

Notation 6.4 Assume that k − q 6= 0 and n − q 6= 0. For any pair (sss, ttt) of elements
of B such that ℓ(sss) < k − q and ℓ(ttt) < n − q we set:

(a) If µ(sss) = µ(ttt) (with sss = 1 and/or ttt = 1 permitted — recall our convention

about µ(1)), then

Bsss,ttt = {xxx ∈ Bm : xxx = sss∗rttt, r ∈ B
1 ∪ B

2 \ {1}, and µ(sss) 6= µ(r) 6= µ(ttt)}.

We let Esss,ttt denote the linear span of Bsss,ttt , and we let Psss,ttt denote the projection

onto Esss,ttt .
(b) If q is an integer and µ(sss) 6= µ(ttt) (with sss = 1 and/or ttt = 1 permitted), then

Csss,ttt =

{

xxx ∈ Bm : xxx = sss∗r1r2ttt, r1 ∈ B
ν(r2)

k−q−ℓ(sss), r2 ∈ B
ν(r1)
n−q−ℓ(ttt),

µ(r1) 6= µ(sss), µ(r2) 6= µ(ttt)
}

.

(Note that ℓ(ri) ≥ 1 for i = 1, 2 since ℓ(sss) < k − q and ℓ(ttt) < n − q.) We let Fsss,ttt

denote the linear span of Csss,ttt and we let Qsss,ttt denote the projection onto Fsss,ttt .

Lemma 6.5 Bm is the disjoint union of all the Bsss,ttt ’s and Csss,ttt ’s.

Proof It is evident that the Bsss,ttt ’s are disjoint among themselves, as are the Csss,ttt ’s. If
xxx ∈ Bsss,ttt for some (sss, ttt) then xxx is not of the form uuuvvv where uuu ∈ Bk−q and vvv ∈ Bn−q,

whereas all elements of any Csss,ttt are of this form. Thus the Bsss,ttt ’s are disjoint from the
Csss,ttt ’s.

Let xxx ∈ Bm with xxx = x1 · · · xα. Recall our assumption that m ≥ 1. If xxx satisfies
the conditions for the first case discussed just before Notation 6.4, then xxx ∈ Bsss,ttt for

the choice of sss, ttt given there. Suppose instead that xxx does not satisfy the conditions of
the first case. Then there is a j such that ℓ(x1 · · · x j) = k − q. (Thus q is an integer.)
Since k 6= q, ℓ(x j) ≥ 1. Thus we can write x1 · · · x j = sss∗r1 with r1 = x j , so ℓ(r1) ≥ 1
and ℓ(sss) + ℓ(r1) = k − q, and r1 ∈ Bν(sss) unless sss = 1. Since (k − q) + (n − q) = m,

we will also have ℓ(x j+1 · · · xα) = n − q 6= 0, so that x j+1 · · · xα = r2ttt with ℓ(r2) ≥ 1,
ℓ(r2) + ℓ(ttt) = n − q and r2 ∈ Bν(r1), and r2 ∈ Bν(ttt) unless ttt = 1. Thus xxx ∈ Csss,ttt for
this choice of (sss, ttt).
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Corollary 6.6 Assume that k 6= q and n 6= q. Then

Pm =

(

⊕

µ(sss)=µ(ttt)

Psss,ttt

)

⊕
(

⊕

µ(sss)6=µ(ttt)

Qsss,ttt

)

,

where sss = 1 and ttt = 1 are permitted.

As this corollary suggests, we will now examine Psss,ttt (a∗ξ) and Qsss,ttt (a∗ξ) in order to

obtain the estimate we need for Pm(a∗ξ).

Lemma 6.7 Let (sss, ttt) be such that µ(sss) = µ(ttt), with sss = 1 and ttt = 1 permitted. Let

yyy ∈ Bk and zzz ∈ Bn be given. If Psss,ttt (yyy∗zzz) 6= 0, then yyy and zzz are of the form yyy = www∗usss

and zzz = www∗vttt where

u, v ∈ B1 ∪ B2 \ {1} and µ(u) = µ(v),

µ(sss) 6= µ(u) 6= µ(www) and µ(v) 6= µ(ttt),

ℓ(www) ≤ q, with www = 1 permitted.

(Consequently ℓ(u) = k − ℓ(sss) − ℓ(www) and ℓ(v) = n − ℓ(ttt) − ℓ(www).) Then

Psss,ttt (yyy∗zzz) = sss∗Pm(sss,ttt)(uv)ttt,

where m(sss, ttt) = m − ℓ(sss) − ℓ(ttt).

Proof This follows from Lemma 6.3 when we set sss = ŝss and ttt = t̂tt there.

Lemma 6.8 Let (sss, ttt) be such that µ(sss) 6= µ(ttt), with sss = 1 and ttt = 1 permitted. Let

yyy ∈ Bk and zzz ∈ Bn be given. If Qsss,ttt (yyy∗zzz) 6= 0, then yyy and zzz are in one and only one of

the forms:

(a) yyy = www∗usss and zzz = www∗vr2ttt where

u, v ∈ B1 ∪ B2 \ {1} and µ(u) = µ(v),

µ(sss) 6= µ(u) 6= µ(www), and µ(v) 6= µ(r2) 6= µ(ttt),

ℓ(r2ttt) = n − q while ℓ(www) ≤ q.

Then

Qsss,ttt (yyy∗zzz) = sss∗Pm(sss,r2ttt)(uv)r2ttt,

where m(sss, r2ttt) = m − ℓ(sss) − ℓ(r2ttt).

(b) yyy = www∗ur1sss and zzz = www∗vttt with similar restrictions as above, and ℓ(r1sss) = k − q

while ℓ(www) ≤ q. Then

Qsss,ttt (yyy∗zzz) = sss∗r1Pm(sss∗r1,ttt)(uv)ttt .

Proof In the notation of Lemma 6.3 this is the case in which either ℓ(ŝss) = k − q

or ℓ(t̂tt) = n − q (but not both). If ℓ(t̂tt) = n − q with t̂tt = zi+1 · · · zγ , then we must

have r2 = zi+1 and ttt = zi+2 · · · zγ . We also have sss = ŝss. This gives case (a). If, instead,
ℓ(ŝss) = n − q, then we must have r1 = yi+1 and sss = yi+2 · · · zγ , while ttt = t̂tt . This gives
case (b).
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Proof of Theorem 6.1 Suppose now that a ∈ Ek and ξ ∈ En, with a =

∑

a(yyy)yyy

and ξ =

∑

ξ(zzz)zzz. Let (sss, ttt) be such that Psss,ttt is defined. For any sss ′ and www ∈ B set

k(sss ′,www) = k − ℓ(sss ′) − ℓ(www) and n(sss ′,www) = n − ℓ(sss ′) − ℓ(www). Then from Lemma 6.7
we have

Psss,ttt (a∗ξ) =

∑

www,u,v

ā(www∗usss)ξ(www∗vttt)sss∗Pm(sss,ttt)(uv)ttt

where in the above sum

u, v ∈ B1 ∪ B2 \ {1} and µ(u) = µ(v),
µ(sss) 6= µ(u) 6= µ(www) and µ(v) 6= µ(ttt),

ℓ(www) ≤ q, ℓ(u) = k(sss,www), and ℓ(v) = n(ttt,www).

This sum can be rewritten as

sss∗
(

∑

ℓ(www)≤q
µ(www)=µ(sss)

Pm(sss,ttt)(ãsss,wwwξ̃ttt,www)
)

ttt,

where we have set

ãsss,www =

∑

u∈B
ν(sss)
k(sss,www)

ā(www∗usss)u

ξ̃ttt,www =

∑

v∈B
ν(ttt)

n(ttt ,www)

ξ(www∗vttt)v.

Note that for any xxx ∈ B and b ∈ Aν(xxx) we have ‖bxxx‖2 = ‖b‖2 = ‖xxx∗b‖2. Conse-
quently

‖Psss,ttt (a∗ξ)‖2
2 ≤

(

∑

www

‖Pν(sss)
m(sss,ttt)

(ãsss,www ξ̃ttt,www))‖2

) 2

≤
(

∑

www

C‖ãsss,www‖2‖ξ̃ttt,www‖2

) 2

≤ C2
(

∑

www

‖ãsss,www‖2
2

)(

∑

www ′

‖ξ̃ttt,www ′‖2
2

)

= C2
(

∑

www

∑

u

|a(www∗usss)|2
)(

∑

www ′

∑

v

|ξ(www ′∗vttt|2
)

.

The second inequality is the crucial place where we use the assumption that A1

and A2 satisfy a Haagerup-type condition with constant C . The third inequality

comes from the Cauchy–Schwarz inequality.

We have seen that the Psss,ttt ’s form an orthogonal family of projections. Conse-
quently, with the understanding that ℓ(sss) < k − q , ℓ(ttt) < n − q, and µ(sss) = µ(ttt),
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with sss = 1 and ttt = 1 permitted, we obtain

∥

∥

∥

∑

sss,ttt

Psss,ttt (a∗ξ)
∥

∥

∥

2

2
=

∑

sss,ttt

‖Psss,ttt (a∗ξ)‖2
2

≤ C2
∑

sss,ttt

(

∑

www

∑

u

|a(www∗usss)|2
)(

∑

www ′

∑

v

|ξ(www ′∗vttt|2
)

.

Now any given yyy ∈ Bk has a unique expression as yyy = wwwusss for some www with ℓ(www) ≤ q

and some sss with ℓ(sss) < k − q, and similarly for zzz ∈ Bn as zzz = wwwvttt . It is easily seen
from this that we obtain

∥

∥

∥

∑

sss,ttt

Psss,ttt (a∗ξ)
∥

∥

∥

2

2
≤ C2‖a‖2

2‖ξ‖2
2.

Notice that if q is not an integer, so that Pm =

∑

Psss,ttt , then this already gives the
desired inequality, and the proof of the theorem is complete.

Suppose instead that q is an integer and that µ(sss) 6= µ(ttt), so that Qsss,ttt is defined.

Then from Lemma 6.8 we have

Qsss,ttt (a∗ξ) =

∑

www,u,v,r2

ā(www∗usss)ξ(www∗vr2ttt)sss∗Pm(sss,r2ttt)(uv)r2ttt

+
∑

www,u,v,r1

ā(www∗ur1sss)ξ(www∗vttt)sss∗r1Pm(r1sss,ttt)(uv)ttt ,

where in both sums www ∈ B with ℓ(www) ≤ q and u, v, r1, r2 ∈ B
1 ∪ B

2 \ {1} with
µ(u) = µ(v), while in the first sum

µ(sss) 6= µ(u) 6= µ(www) and µ(v) 6= µ(r2) 6= µ(ttt),

ℓ(u) = k(sss,www), ℓ(v) = n(r2ttt,www), and ℓ(r2ttt) = n − q,

whereas in the second sum

µ(sss) 6= µ(r1) 6= µ(u) and µ(www) 6= µ(v) 6= µ(ttt),

ℓ(u) = k(r1sss,www), ℓ(v) = n(ttt,www) and ℓ(r1sss) = k − q.

For each www with ℓ(www) ≤ q let us define ãsss,www, etc. much as before by

ãsss,www =

∑

u

a(www∗usss)u, ξ̃r2ttt,www =

∑

v

ξ(www∗vr2ttt)v,

ãr1sss,www =

∑

u

a(www∗ur1sss)u, ξ̃ttt,www =

∑

v

ξ(www∗vttt)v,

with the restrictions on u and v as above. Then in terms of this notation we have

Qsss,ttt (a∗ξ) =

∑

www,r2

sss∗Pm(sss,r2ttt)(ãsss,wwwξ̃r2ttt,www)r2ttt +
∑

www,r1

sss∗r1Pm(r1sss,ttt)(ãr1sss,wwwξ̃ttt,www)ttt.
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Since the two summands above may not be orthogonal, but the terms within each
sum over r1 and r2 are orthogonal, we obtain

‖Qsss,ttt (a∗ξ)‖2
2 ≤ 2

(
∥

∥

∥

∑

www,r2

sss∗Pm(sss,r2ttt)(ãsss,wwwξ̃r2ttt,www)r2ttt
∥

∥

∥

2

2

+
∥

∥

∥

∑

www,r1

sss∗r1Pm(r1sss,ttt)(ãr1sss,wwwξ̃ttt,www)ttt
∥

∥

∥

2

2

)

≤ 2
∑

r2

(

∑

www

‖Pm(sss,r2ttt)(ãsss,wwwξ̃r2ttt,www)‖2

) 2

+ 2
∑

r1

(

∑

www

‖Pm(r1sss,ttt)(ãr1sss,wwwξ̃ttt,www)‖2

) 2

≤ 2
∑

r2

(

∑

www

C‖ãsss,www‖2‖ξ̃r2ttt,www‖2

) 2

+ 2
∑

r1

(

∑

www

C‖ãr1sss,www‖2‖ξ̃ttt,www‖2

) 2

≤ 2C2
(

∑

www

‖ãsss,www‖2
2

)(

∑

www ′,r2

‖ξ̃r2ttt,www ′‖2
2

)

+ 2C2
(

∑

www,r1

‖ãr1sss,www‖2
2

)(

∑

www ′

‖ξ̃ttt,www ′‖2
2

)

.

We have seen that the Qsss,ttt ’s form an orthogonal family of projections. Consequently,
with the understanding that ℓ(sss) < k − q, ℓ(ttt) < n − q and µ(sss) 6= µ(ttt), with sss = 1
and/or ttt = 1 permitted, we obtain

∥

∥

∥

∑

sss,ttt

Qsss,ttt (a∗ξ)
∥

∥

∥

2

2
=

∑

sss,ttt

‖Qsss,ttt (a∗ξ)‖2
2

≤ 2C2
∑

sss,ttt

((

∑

www

‖ãsss,www‖2
2

)(

∑

www ′,r2

‖ξ̃r2ttt,www ′‖2
2

)

+
(

∑

www,r1

‖ãr1sss,www‖2
2

)(

∑

www ′

‖ξ̃ttt,www ′‖2
2

))

.

Now again any given yyy ∈ Bk has a unique expression as yyy = wwwusss for some www with
ℓ(www) ≤ q and some sss with ℓ(sss) < k − q; furthermore, if yyy can be expressed as

yyy = wwwur1sss with ℓ(r1) = k − 1 − ℓ(sss) and ℓ(u) + ℓ(www) = q, then this expression too
is unique. A similar statement holds for any zzz ∈ Bn as zzz = wwwvttt or zzz = wwwvr2ttt . In the
same way as for the Psss,ttt ’s it is then easily seen that

∥

∥

∥

∑

sss,ttt

Qsss,ttt (a∗ξ)
∥

∥

∥

2

2
≤ 4C2‖a‖2

2‖ξ‖2
2.
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Since Pm is the orthogonal sum of the Psss,ttt ’s and the Qsss,ttt ’s, it follows that

‖Pm(a∗ξ)‖2 ≤
√

5C‖a‖2‖ξ‖2

as desired.
Finally, we must treat the cases in which k − q = 0 or n − q = 0. If k − q = 0

then m + k = n. We follow the pattern of proof of the previous cases, and so allow

ourselves less detailed notation and discussion. For any ttt ∈ B with ℓ(ttt) < m set

B(ttt) = {xxx ∈ Bm : xxx = rttt with r ∈ B
1 ∪ B

2 \ {1}, µ(r) 6= µ(ttt)}.

We permit ttt = 1. It is easily seen that the B(ttt)’s are disjoint and that their union
is Bm. We let E(ttt) denote the linear span of B(ttt), and we let P(ttt) denote the projection

onto E(ttt).

Lemma 6.9 Let yyy ∈ Bk and zzz ∈ Bn. If P(ttt)(yyy∗zzz) 6= 0 then yyy and zzz are of the form

yyy = www∗u and zzz = www∗vttt where u, v ∈ B
1 ∪ B

2, with ℓ(www) ≤ k and µ(u) 6= µ(www) 6=
µ(v) 6= µ(ttt) and v 6= 1. (But we may have u = 1.) Then P(ttt)(yyy∗zzz) = Pm(ttt)(uv)ttt where

m(ttt) = m − ℓ(ttt).

Proof According to Lemma 6.3 we can express yyy and zzz as yyy = www∗uŝss and zzz = www∗vt̂tt

where among the conditions we have ℓ(ŝss) ≤ k−q = 0. Thus ŝss = 1. So yyy = www∗u with
µ(www) 6= µ(u). We will also have ℓ(www) ≤ q = k and ℓ(t̂tt) ≤ n − q = m. Suppose that
v = 1. Then ℓ(www) + ℓ(t̂tt) = ℓ(zzz) = n = k + m, and so ℓ(www) = k, ℓ(t̂tt) = m and u = 1,

which contradicts Lemma 6.3. Thus v 6= 1. We can set ttt = t̂tt . Then from Lemma 6.3
we have P(ttt)(yyy∗zzz) = Pm(ttt)(uv)ttt .

Suppose now that a ∈ Ek and ξ ∈ En. Then, much as in the previous cases, we
have

P(ttt)(a∗ξ) =

∑

www,u,v

ā(www∗u)ξ(www∗vttt)Pm(ttt)(uv)ttt ,

where the conditions on www, u, v are as above. We set

ãwww =

∑

u

ā(www∗u)u, ξ̃ttt,www =

∑

v

ξ(www∗vttt)vttt.

Thus

‖P(ttt)(a∗ξ)‖2
2 ≤

(

∑

www

‖Pm(ttt)(ãwwwξ̃ttt,www)‖2

) 2

≤
(

∑

www

C‖ãwww‖2‖ξ̃ttt,www‖2

) 2

≤ C2
(

∑

www

‖ãwww‖2
2

)(

∑

www ′

‖ξ̃ttt,www ′‖2
2

)

= C2
(

∑

www,u

|ā(www∗u|2
)(

∑

www ′,v

|ξ(www ′∗vttt|2
)

.
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Consequently

|Pm(a∗ξ)|22 =

∑

ttt

‖P(ttt)(a∗ξ)‖2

≤ C2
∑

ttt

(

∑

www,u

|ā(www∗u|2
)(

∑

www ′,v

|ξ(www ′∗vttt|2
)

.

Now because k + m = n it is easily seen that any given zzz ∈ Bn has a unique
expression as zzz = wwwvttt where ℓ(www) ≤ k, ℓ(ttt) < m, and v ∈ B1 ∪ B2 \ {1}. However
a yyy ∈ Bk will have two expressions as wwwu with ℓ(www) ≤ k and u ∈ B1 ∪ B2 (and

µ(www) 6= µ(u)), one of which will be yyy = www. It follows that

‖Pm(a∗ξ)‖2
2 ≤ 2C2‖a‖2

2‖ξ‖2
2,

which implies the desired inequality.

Finally, we must deal with the case in which n − q = 0. But this case follows from
essentially the mirror image of the above argument, in which now for ℓ(sss) < m the
elements of B(sss) have form xxx = sssr, and later we find that (yyy, zzz) must have the form
yyy = www∗usss and zzz = www∗v.

Question 6.10 What happens for amalgamated free products of C∗-algebras? What
happens if σ1 and σ2 are not tracial?
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[8] É. Ghys and P. de la Harpe, editors, Sur les groupes hyperboliques d’après Mikhael Gromov.

Progress in Mathematics 83, Birkhäuser, Boston, MA, 1990.
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