Hostname: page-component-8448b6f56d-t5pn6 Total loading time: 0 Render date: 2024-04-23T06:26:30.363Z Has data issue: false hasContentIssue false

Synthesis and Characterization of Structure Controlled Nano-cobalt Particles

Published online by Cambridge University Press:  11 February 2011

Shiqiang Hui
Affiliation:
Inframat Corporation, Farmington, CT 06032
Mingzhong Wu
Affiliation:
Inframat Corporation, Farmington, CT 06032
Shihui Ge
Affiliation:
Inframat Corporation, Farmington, CT 06032
Dajing Yan
Affiliation:
Inframat Corporation, Farmington, CT 06032
Y.D. Zhang*
Affiliation:
Inframat Corporation, Farmington, CT 06032
T.D. Xiao
Affiliation:
Inframat Corporation, Farmington, CT 06032
M. J. Yacaman
Affiliation:
Department of Chemical Engineering, University of Texas, Austin, TX 78712
M. Miki-Yoshida
Affiliation:
Texas Materials Institute, University of Texas at Austin, Austin, TX 78712–2201
W. A. Hines
Affiliation:
Physics Department and IMS, University of Connecticut, Storrs, CT 06269
J. I. Budnick
Affiliation:
Physics Department and IMS, University of Connecticut, Storrs, CT 06269
*
Author to whom correspondence should be addressed; email: yzhang@inframat.com, Tel: 860–487–3838, Fax: 860–429–5911, Inframat Corp., Willington, CT 06279
Get access

Abstract

Nanostructured cobalt particles with and without a ceramic coating have been synthesized using a wet chemical method. The structure and magnetic properties of synthesized powder were characterized using x-ray diffraction (“XRD”), high-resolution transmission electron microscopy (“HRTEM”), and a Quantum Design (SQUID) magnetometer. The cobalt nanoparticles are of either face-centered cubic (“fcc”) and/or hexagonally close-packed (“hcp”) crystalline structures. The average grain size is ∼14 nm for cobalt (either fcc or hcp) with an amorphous silica coating, and the average grain size is ∼9 nm for hcp cobalt and 26 nm for fcc cobalt without a silica coating. The effect of annealing temperature on grain size and magnetic properties are addressed.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Hull, A.W., Phys. Rev. 17, 571 (1921).Google Scholar
Dinega, D.P. and Bawendi, M.G., Angew. Chem. Int. Ed. Engl. 38, 1788 (1999).Google Scholar
Sun, S., Murray, C.B., and Doyle, H., in Advanced Hard and Soft Magnetic Materials, eds. Coey, M., Lewis, L.H., Ma, B.M., Schrefl, T., Schultz, L., Fidler, J., Harris, V.G., Gasegawa, R., Inoue, A., and McHenry, M., Met. Res. Soc. Symp. Proc. 577, Warrendale, PA, p. 385 (1999).Google Scholar
4. Sun, S. and Murray, C.B., J. Appl. Phys. 85, 4325 (1999).Google Scholar
5. Liu, A. Y. and Singh, D. J., Bcc cobalt: metastable phase or forced structure? J. Appl. Phys. 73, 6189 (1993).Google Scholar
6. Kitakami, O., Satao, H., Shimada, Y., Sato, F. and Tanaka, M., Phys. Rev. B 56, 13849 (1997).Google Scholar
7. Yang, M.H. and Flynn, C.P., Phys. Rev. Lett. 62, 1476 (1989).Google Scholar
8. Loffler, J.F., Braun, H.B., Wagner, W., Kostorz, G., and Wiedenmann, A., Materials Science and Engineering A 304, 1050 (2001).Google Scholar
9. Gangopadhyay, S., Hadjipanayis, G.C., Sorensen, C.M., and Klabunde, K.J., IEEE Transactions on Mangnetics 28, 3174 (1992).Google Scholar
10. Kitakami, O., Sato, H., and Shimada, Y., Physical Review B 56, 13849 (1997).Google Scholar
11. Choi, C.J., Dong, X.L., and Kim, B.K., Scripta Materialia 44, 2225 (2001).Google Scholar
12. Jamet, M., Dupuis, V., Thirion, C., Wernsdorfer, W., Melinon, P., and Perez, A., Scripta Materialia 44, 1371 (2001).Google Scholar
13. Ram, S., Materials Science and Engineering A 304, 923 (2001).Google Scholar
14. MacDonald, A.H. and Canali, C.M., Solid State Communications 119, 253 (2001).Google Scholar
15. Carpenter, E.E., Seip, C.T., and O'Connor, C.J., J. Applied Physics 85, 5184 (1999).Google Scholar
16. Wernsdorfer, W., Bonet Orozco, E., Hasselbach, K., Benoit, A., Barbara, B., Demoncy, N., Loiseau, A., Pascard, H., and Mailly, D., Physical Review Letters 78, 1791 (1997).Google Scholar
17. Zhang, Y.D., Budnick, J.I., Hines, W.A., Majetich, S.A., and Kirkpatrick, E.M., Applied Physics Letters 76, 94 (2000).Google Scholar
18. O'Grady, K. and Laidler, H., J. Magnetism and Magnetic Materials 200, 616 (1999).Google Scholar
19. Zhang, Y.D., Wang, S.H., Xiao, D.T., Budnick, J.I., and Hines, W.A., IEEE Transactions on Magnetics 37, 2275 (2001).Google Scholar
20. Wu, M., Zhang, Y. D., Hui, S., Ge, S., Hines, W.A., and Budnick, J.I., J. Applied Physics 92, 491 (2002).Google Scholar
21. Wu, M., Zhang, Y. D., Hui, S., Ge, S., Hines, W.A., and Budnick, J.I., Applied Physics Letter 20, 4404 (2002).Google Scholar
22. Puntes, V.F., Krishnan, K.M., Alivisatos, A.P., Science 291, 2115 (2001).Google Scholar
23. Zhang, Y.D., Wang, S.H., and Xiao, D.T., Co-based magnetic nanocomposite materials and the synthesis method, U.S. Patent Appl. No. 60/243,649 (October 26, 2000).Google Scholar
24. Lipson, H. and Steeple, H., Interpretation of X-Ray Powder Diffraction Patterns (St Martin's Press, New York, 1970), p. 256.Google Scholar
25. O'Handley, R.C., Modern Magnetic Materials (John Wiley & Sons, New York, 2000), p. 435.Google Scholar