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1. Classical ly , there has been, for obvious r ea sons , an 
intimate relat ion between the concepts " r ings of quotients11 and 
"divisible modules" . Recently, however, thei r general izat ions 
have appeared to diverge. 

For example, Hattori ([9]) and Levy ([15]) have general ized 
the concept of "divisibil i ty" as follows: Hattori ( respect ively 
Levy) defines a left R-module M over a r ing R to be divisible 
if and only if Ext (R/I , M) = 0 for every pr incipal left ideal 

R 
I C R (respectively, every principal left ideal I C R which is 
generated by a regular element of R). 

On the other hand, a se r i es of resu l t s by Johnson ([12]), 
Utumi ([16]), and Gabriel ([2]), which culminate in the beautiful 
paper of Lambek ([14]), have generalized the concept of "r ing 
of quotients" in t e r m s of the infective envelope, as developed 
by Eckman and Schopf ([5]), and suitable inverse l imi t s . 

This paper may be considered to be a p re l iminary step 
toward the unification of these ideas . 

2. Let 2 be a set of left ideals in a ring R. We 
define : 

(i) A left R-module M is 2-divis ible if and only if 

Ext* (R/I , M) = 0 , for each l€ 2 ; 

We shall assume a l l r ings have a multiplicative identity. 
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(ii) If M i s a submodule of a left R-module N, then M 
is a Z - e s s e n t i a l submodu le of N (N i s a Z - e s s e n t i a l ex t en 
sion of M) if and only if for e v e r y 0 t x € N, the left idea l 
I (x) = {r € R l r x c M} c S and I (x)x # 0 ; 
M M 

(iii) If M is a submodu le of a left R - m o d u l e N, then M 
is a Z - p u r e submodu le of N (N i s a Z - p u r e e x t e n s i o n of M) 
if and only if w h e n e v e r I * Z and f is a h o m o m o r p h i s m f r o m 
I into M, if f i s ex tendab le to a h o m o m o r p h i s m f r o m R into 
N, it i s ex t endab le to a h o m o m o r p h i s m f r o m R into M, 
( K e r t e s z [13] and B u t l e r and H o r r o c k s [3 ] , page 210-211) . 

One m a y e a s i l y ve r i fy tha t t h e s e def in i t ions g e n e r a l i z e 
the c u s t o m a r y def in i t ions for a b e l i a n g r o u p s . In v i ew of the 

1 
p r o p e r t i e s of Ext , one m a y a l s o ve r i fy tha t m a n y c l a s s i c a l 

R 
r e s u l t s , a s we l l a s t h o s e of H a t t o r i , a r e e a s i l y g e n e r a l i z e d in 
t h i s con tex t . H o w e v e r , we sha l l c o n c e n t r a t e on a p p l i c a t i o n s 
of t h e s e i d e a s to g e n e r a l i z e d r i n g s of q u o t i e n t s . 

Note tha t Ext ( R / I , M) =0 if and only if e v e r y h o m o -
R 

morph i sm. f r o m I to M m a y be ex tended to a h o m o m o r p h i s m 
f rom R to M, ( C a r t a n - E i l e n b e r g [4]). T h u s , by B a e r ' s 
t h e o r e m ( [ ! ] ) , the t e r m n Z - i n j e c t i v i t y M m igh t have been s u b s t i 
tu ted for n Z - d i v i s i b i l i t y " . 

We only r e m a r k t h a t the above i s d u a i i z a b l e : If S is a 
set of r i gh t i d e a l s in R, a left R - m o d u l e M is Z - t o r s i o n f r ee 

if T o r ( R / I , M) = 0 for a i l I € Z. T h i s h a s b e e n noted for 
1 

p r i n c i p a l r i gh t i d e a l s by H a t t o r i ([9]). A l s o , some global 
d i m e n s i o n t h e o r e t i c po t en t i a l e x i s t s in t h e s e c o n c e p t s and wi l l 
be s tudied in a l a t e r p a p e r (cf. B u t l e r and H o r r o c k s [3]). 

3. Let us now l i s t t h r e e p r o p e r t i e s which Z m a y sa t i s fy : 

( P ) If I € Z and J i s a left i d e a l which c o n t a i n s I, 
1 

then J € Z ; 

- 1 
( P ) If I * Z and r € R, then I r = {x € R | x r e 1} e Z ; 
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(P ) If I is a left ideal in R, J c 2 , and Ij" € 2 , 

for each j « J , then I c 2 . 

We note that if E is an essent ia l extension of the module 
M and 2 = {l (x)jx« E } , then 2 satisfies P , since 

M 2 

THEOREM 1. Assume 2 satisfies property P . 

A left R-moduLe M is 2-divisible if and only if 
1 

Ext (R/I , M) = 0, for every large left ideal I € 2 . (I is large 
R 

if it is an essent ia l sub-module of R. ) 
R 

COROLLARY. M is injective if and only if 

Ext (R/I , M) = 0, for every large left ideal I in R. 
R 

This resul t was , in essence , noted by Johnson ([12]). 

Proof. (Only if) This is c lear . 

(If) Suppose that I € 2 , and f is a homomorphism 
from I to M. Let S be the set { (J, g) | J is a left ideal in 
R which contains I and g is a homomorphism from J into 
M which extends f. ]. By a simple use of Zorn1 s lemma we 
determine that S has a maximal element, say (J, g). If J is 
not la rge , then there is a left ideal O j ^ K C R such that 
Kfl J = { 0} . Define g from J + K to M by g(j + K) = g(j). 
g c lear ly extends g, and hence f, and we contradict the 
maximality of (J, g). Thus J is large and the resu l t follows. 

4. LEMMA 1. If 2 satisfies property P , if P is a 

2 -e s sen t i a l extension of N, and N is a 2 -essen t i a l extension 
of M, then P is a 2 -essen t i a l extension of M. 

As has been indicated in a private communication, K. L. Chew 
has proved that Gabriel ' s fourth property ([2]; see also [14]). 
"If I, J € 2 , then I 0 J € 2 " , is a consequence of the other 
th ree . 
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Proof. If xe p , then L (x) € Z and I (x)x i 0. If 
j \ N 

i € I (x), then ix € N and thus I (ix) = I (x)i c Z. Since 
N M M 

this is t rue for all i c i (x), I (x) c Z. By the definition of 
N M 

I (x), if I (x)x = 0 then I (x)(rx) = 0 for all r € R. But 
M M M 

there is an i ^ I (x) and a j U (ix) such that ij € I (x) and 
N M M 

ijx 4 0 and we have a contradiction. 
THEOREM 2. Suppose Z satisfies proper t ies P , P , 

1 2 
and P , and let M be an a rb i t r a ry left R-module. Then 

3 y 

there is a unique, up to i somorphism, extension E to M 
which satisfies the following equivalent conditions: 

(i) E is a maximal Z-essen t ia l extension of M ; 

(ii) E is a minimal Z-divisible extension of M ; 

(iii) E is a Z-essen t ia l , Z-divisible extension of M. 

This general izes Eckmann and SchopP s injective envelope. 
Also, Maranda ([18], page 121) has proved a s imi lar , although 
less explicit, resul t . 

Proof. Clearly every module has both Z-essent ia l and 
Z-divisible extensions, since it is a Z-essen t ia l extension of 
itself and every injective module is Z-divis ible . 

Eet N be a S-essen t ia l extension of the R-module M 
and let P be a Z-divisible module. Suppose that g is an 
R-homomorphism from M to P. Define S = { (N, g) JN is a 
sub-module of N which contains M, and g extends g from 
N into P . } . Let (N,g) be a maximal element in S, which 
exists by Zorn' s lemma, assume N ^ N, and let x€ N - N. 
Since N is a Z-essen t i a l extension of M, I (x) € Z, and 

M 
since I (x)CZI-(x), we have I - (x)€ Z. Define f from 

M N N 
I-(x) to P by f(y) = g(yx) for y € I - (x) . Clearly f is a 
N N 

homomorphism, and since P is Z-divis ible , f is extendable 
to f from R into P. Define h from N + Rx to P by 
h(n + rs) = g(n) + f(r). h is an extension of g and we contra-
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diet maximaLity unless N = N. 

Note that if the kernel of g is { 0} , then, since N is 
an essent ia l extension of M, necessar i ly the kernel of g 
must be { 0} . In par t icular , every 2 -essen t i a i extension of 
M is embeddable in every 2-divisible extension of M. 

Now let T be the set of all 2 -essen t ia l extensions ôf M 
which a re contained in the injective envelope* E of M, L e. , 
by Zorn' s lemma again, we find a maximal 2 -e s sen t i a l 
extension in E, say N. 

Now suppose I € S, and f is a non-zero homomorphism 
from I to N. f may be extended to a homomorphism f from 
R to E. Let y = f ( l ) . Since I C I (y), we have I (y) r" 1 € 2 

for each r € R. Fur ther , if x € N and r € R, then 
-1 

I^Cx + ry) = IN(y)r * 2 . If I ^ x + ry)(x + ry) = 0, then 

R{x + ry) 0 N = { 0} and x + ry = 0, since Ry + N C P and is 
thus an essent ia l extension of M. Hence N + Ry is a 
2 -essen t i a l extension of N. But this contradicts the maxi
ma lity of N unless y € N. But then N is a 2 -pure submodule 
of the 2-divisible module and thus must be 2-divis ib le . The 
equivalence of the three propert ies and the uniqueness of this 
maximum 2 -e s sen t i a l extension now follow easily from the f i rs t 
part of the proof. 

Perhaps it i s appropriate to call this extension the 
2-divisible envelope of M, - in symbols E (M). 

5. Now let 2 be a set of left ideals in R, E = E (R), 

H = H o m ( E , E ) , and Q = Q = Horn (E, E). We embed R in 

Q in the customary way. Q may be called the r ing of 
2J 

quotients with respec t to 2-

In view of the injective envelope-like proper t ies of E, 

It is unfortunate that we must use the injective envelope. 
However, the author sees no way to remove this difficulty 
at the present t ime . 
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w'e m a y eas i ly veri fy many of Lambek1 s r e s u l t * p a r t i c u l a r i y 
t : . 3 e of s e c t i o n s 2 , 6, 7, and 8 of [ 14 ] , in t h i s : . ' ^ : : i , . ! ^ e 
r-j tably ger.e* * ; - the definition, of dense sud m _«. . d - „^-

. ^>: N ci ». s H-den St .r a m o d a l e M , : * <r . „ ,, 
J r ^ 

^ , ^ » r - ^ 

- _ : ; ^ :- i 

. f . X • 

-• dec re a be _-

V-V i /)' 
- • -cal to 

J s the 
: -; e . 

Fol lowing 1 ., ' -1 [^ ' ' ^ « p ^ . c t S i : mu-... p*.:,-. n v e l \ 
c l c sed subse t o: t . r . n £ F - r - d-jrit II(S, - \ - a l eu J r d m 
R S 'n I i s r.CT.-c::.Jt;,j . \r <_ 4 u \ r it to the r t . u c : to j e ' ^ r m i n e 
Lhj: Z(S) L e s l i e . P , P.. , or.~ / '^ if the . : ^ . ; i c n : : O r . : * 
satisfied.» * In fac t , O r e ? s condi t ion is equ iva len t m th i s c a s e 

l U JT 
2 

Let us s u p r . u sub se <:_/„•_ r.t ' ::: t S i s the se t of r e g u l a r 
e l e m e n t s in R an., that O r e ' s . . . . ; . : ï . : n is va l id for S. As m 
L a m b e ^ ' r, append;;-; i k ' [ l4j), we se^- tha t e v e r y r e g u l a r e l e m e n t 
in R has an j i v e ^ e m C . 

Now a s s u m e q € Q. Then q i s c o m p l e t e l y d e t e r m i n e d 
by q ( l ) , and q ( l ) # 0 if q 4 0. q ( l ) € E and thus 
I (c( l ) ) € S, Now t h e r e is a b e S H I (q ( l ) ) , and we have 
R ~ R 

b q ( l ) * R. F u r t h e r » s ince b has an i n v e r s e in Q, bq ( l ) f 0. 
Let b q { i S = a i . e . , q ( l ) = b " 1 a . C l e a r l y H ( 1 ) = E , s o i f 
e * E , t h e r e i s an h € H such tha t h ( l ) = e. We have 

q(e) ^q (h ( l ) } =h(q( l ) ) = h ( b " 1 a ) = b " 1 a h ( l ) = b _ 1 a e for a l l e € E 
-1 

and q = b a. We state our resu l t in 

THEOREM 3. Let the se t of regular e l e m e n t s in R 
satisfy Ore' s condition. If S is the set of left i d e a l s in R 
which contain regular e l e m e n t s , then Z sa t i s f i e s p r o p e r t i e s 
P , P and P . In this c a s e Q i s i somorphic to the c l a s s i -

1 2 3 
cal ring of quotients of R ( [ l l ] ) . (Note th is i s the left c l a s s i c a l 
ring of quotients . ) 

Condition of Ore: If a, b € R, b € S, t h e r e ex i s t a, b € R, 
with b € S, such that ba = a b . ( J a c o b s o n [14] , page 118. ) 
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COROLL*ARY. If every Large left ideal in R contains 
a regular element and if the regular elements in R satisfy 
Ore1 s condition, then Uturni' s ring of quotients {[14]) c o r r e s 
ponds to the c lass ica l ring of quotients. 

Proof. By theorem 1, the injective envelope and the 
Z-divisible envelope determined by the set of left ideals S 
which intersect the set of regular elements cor respond, and 
thus so must the r ings of quotients. 

By a theorem of Goldie' s {[7], theorem 4. 8), every semi -
pr ime ring with maximum condition on left ideals sat isfies the 
above cr i te r ion . We thus have an al ternate proof of GoIdief s 
theorem {[8]) which s tates that the two rings of quotients 
coincide in this case . 

Clearly every commutative integral domain sat isf ies the 
conditions of the corol la ry . However, as an example, let G 
be the free semi-group generated by the symbols x and y, 
and define R to be the semi-group ring of G over the in tegers 
with the identity adjoined. Clearly R is a (non-commutative) 
integral domain and every large left ideal in R contains 
regular e lements . But Rx 0 Ry = { 0} and thus Ore1 s condition 
is not satisfied. Hence, Utumi' s ring of quotients of R is not 
the c lass ica l ring of quotients, since the lat ter doesn* t even 
exist . 

Conjecture: The hypotheses of the corol la ry a r e n e c e s s a r y 
as well as sufficient. 

6. Remark: It would appear that many of these ideas 
could be ca r r i ed over to the case where our r ing does not have 
an identity. Vehicles could be suitable generalizations of e i ther 
Ker tesz ' s algebraical ly closed modules ([13]) or Faith and 
Utumi1 s Baer modules ([6]. The definition of S -essen t i a l 
extension would however necessar i ly have to be revised in the 
more general context, since a module would need not be a 
S-essen t ia l extension of itself (cf. Her stein and Small [10], 
lemma 2). 

As JLambek has noted in his case ([14]), the set of 2 -dense 
left ideals , associa ted with a par t icular S which satisfies P , 

511 

https://doi.org/10.4153/CMB-1965-037-4 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-1965-037-4


P and"' P ., is-a suitable system for Gabriel1 s construction 
Cm J> 

procedure ([2])» However, the exact relat ionships between the 
twc rr.r* sir',.?r*.ons still requi re clarification. 

Also, note a possible generalization of Johnson5 s singular 
submodule: Let M be a left R-rnoduie and suppose S is a set 
of left ideals which satisfies P , P and further, if I, J € Z, 

1 Z 
then i H j c Z . The set s (M) = {m c M|Ann (rn) € Z. } i s 

Z R 
then a subrnodule of M, which we might call the Z-s ingular 
submodule of M. Its possible usefulness is indicated by the 
following suggestive example: If R is a commutative integral 
domain and Z is the set of all non-zero ideals in R, then 
S^(M) is the torsion subrnodule of M (cf. Gentile [17] and 
Maranda [i8]). The implications of this dcfinitloa will be d is 
cussed in a subsequent paper. 

REFERENCES 

1. R. Baer , Abulias subgroups which a re direct summands 
of every ee^- l£ ,m& abelian group, Bull. Am. Math. Soc. , 
46 (1940), bou-806. 

2* N. BourbaMj Elements de mathématique, Vol. 27 (Par i s 
1961), 157-165. 

3. M. C. R. Butler and G. Horrocks , Classes of extensions 
and resolut ions, Phil . T r a n s . Royal Soc. London, 254 
(1961), 155-222. 

4. H. Gartan and S. Eilenberg, Homological Algebra, 
(Princeton 1956). 

$/ 
5. B. Eckmann and A. Schopf, Uber injektive moduln, 

Arch. Math. , 4(1965) , 75-78. 

6. C, Faith and Y. Utumi, Baer modules , Arch. Math. , 
15 (1964), 266-270. 

512 

https://doi.org/10.4153/CMB-1965-037-4 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-1965-037-4


7. A . W . Goldie, Rings with max imum condition, Yale Uni
v e r s i t y lecture notes (1962). 

8. A. W. Goldie , S e m i - p r i m e r ings with m a x i m u m condit ion, 
P r o c . London Math. Soc . , 1 0 ( 1 9 6 0 ) , 2 0 1 - 2 2 0 . 

9. A. Hattori , A foundation of tors ion theory for modules 
over genera l r i n g s , Nagoya Math. J. , 17 (1960), 147-158 . 

10. I . N . Hers te in and L. Smal l , Ni l r ings sat isfying certa in 
chain condit ions , Can. J. Math . , 1 6 ( 1 9 6 4 ) , 771 -776 . 

11. N . Jacobson , The theory of r i n g s , (New York, 1943). 

12. R. E . Johnson, The extended centra i i zer of a r ing over a 
module , P r o c . A m e r . Math. S o c , 2 ( 1 9 5 1 ) , 891-895 . 

13. A. K e r t e s z , S y s t e m s of equations over m o d u l e s , Acta Sci . 
Math. Szeged , 18 (1957), 207 -234 . 

14. J. Lambek, On Utumi1 s r ing of quotients , Can. J. Math. , 
15 (1963) , 363-370 . 

15. L. Levy , T o r s i o n - f r e e and div is ible modules over non-
integral domains , Can. J. Math . , 1 5 ( 1 9 6 3 ) , 1 3 2 - 1 5 1 . 

16. Y. Utumi, On quotient r i n g s , Osaka Math. J. , 8 (1956) , 
1-18. 

17. E. R. Genti le , Singular submodule and inject ive hull , 
Indag. Math. , 24 (1962), 4 2 6 - 4 3 3 . 

18. J. M. Maranda, Injective s t ruc tures , T r a n s . A m . Math. 
Soc . , 110 (1964), 9 8 - 1 3 5 . 

Western Washington State Col lege 
Be l l ingham, Washington 

513 

https://doi.org/10.4153/CMB-1965-037-4 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-1965-037-4

