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The book will also be welcomed by revisionists. This brings me to a perceived aspect of
this otherwise quite impressive work that I did not like: I have the distinct impression that the
underlying theme pursued by the authors is that the Chinese generally did it first and where this
is not the case they still did it better. Certainly credit should go where it is due and if research
shows that results have been wrongly attributed we must be prepared to revise our views on
the historical development of our subject. However, I think that revisionists must present their
claims with a degree of caution, otherwise they are in danger of finding themselves guilty of those
very offences of which they accuse others. For example, I wonder if the authors can really justify
absolute statements such as the following: ‘In doing this Jia Xian was the first author to record
the triangle of binomial coefficients ... ’ (p. 178); ‘However, no other advance in solving linear
equations can be found in the work of the Indians from Aryabhata, Bramagupta and Mahavira
up to Bhaskara’ (p. 387). Inevitably, the Greeks come in for some adverse criticism. I find several
of the attempts to appropriate some of their credit rather petty; on a number of occasions we
are presented with a proof by a Chinese mathematician writing several centuries later and are
told of the elegance, simplicity, clarity or superiority of the Chinese proof as compared to the
Greek version (see, for example, pp. 195, 234, 240, 277, 419, 464, 470). So what?

Here is a list of some of the topics which the authors appear to claim as Chinese discoveries
or as ideas to which the Chinese made superior contributions: the Euclidean algorithm (p. 3);
the rules of arithmetic (including the use of negative numbers) (pp. 36, 388); the rule of three
(p. 136); the rules of proportion (including compound ratios) (p. 173); the method of exhaus-
tion (p. 103); Romberg extrapolation (p. 117); the numerical solution of polynomial equations
(p- 176); Pascal’s triangle (pp. 178, 226); Horner’s method (p. 184); Cavalieri’s principle (pp. 234,
240); Legendre’s formula for the volume of a pentahedron (pp. 254, 287); limits (p. 277); the rule
of double false position (p. 354); Gaussian elimination (p. 388); Pythagoras’s theorem (pp. 439,
458). These claims certainly have to be given serious consideration.

I. TWEDDLE

SWATERS, G. E. Introduction to Hamiltonian fluid dynamics and stability theory (Monographs
and Surveys in Pure and Applied Mathematics, Chapman & Hall/CRC, 2000), 274 pp.,
1 584 88023 6, £54.95.

Classical mechanics can be firmly grounded on a Hamiltonian and/or Lagrangian formula-
tion. While both approaches are essentially equivalent, Hamiltonian dynamics and the notion of
symplecticness have perhaps become the prevalent foundation of mechanics. The extension of
the Hamiltonian approach to infinite-dimensional systems, such as wave and fluid dynamics, has
become an active area of research over the last twenty to thirty years. Even today the question
of which formulation, Hamiltonian or Lagrangian, is to be preferred is largely open. However,
it is without doubt that Hamiltonian dynamics has had an important impact on ideal fluid and
wave dynamics. This is in particular true for geophysical fluid dynamics, as can be seen from
the work of Holm, MclIntyre, Morrison, Salmon, Shepherd and others.

The book under review summarizes some of the recent work on Hamiltonian fluid dynamics. In
particular, it provides a rather non-technical and entertaining introduction to the Hamiltonian
formulation of ideal two-dimensional fluids and stability results for steady flows and travelling
waves.

Let me highlight a few of the topics covered in the book. Chapter 2 gives a very compact
introduction to the basic concepts in Hamiltonian classical mechanics. The material is self-
contained and is kept to the basics. Chapter 3 is concerned with the Hamiltonian structure of two-
dimensional ideal incompressible fluids. In a first step the non-canonical Hamiltonian structure
of the vorticity formulation is stated and the various properties of the associated Euler—Poisson
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bracket are verified. Next this bracket is derived via explicit reduction from a Lagrangian particle
formulation of fluid dynamics. The Euler—Poisson bracket leads naturally to the conservation
of vorticity in terms of Casimir functionals. The chapter ends with an application of Noether’s
Theorem. Unfortunately, the author decided not to mention the concept of particle relabelling,
which is at the very heart of the Lagrangian to Euler reduction process. The next chapter
provides an extensive discussion of stability results for steady Euler flows. The stability theory
of steady flows is complicated by the fact that stationary flows do not, in general, satisfy the first
order necessary conditions for an energy minimum. Thus the classical stability methods break
down. V. I. Arnold suggested the construction of an invariant pseudo-energy functional. For
parallel shear flows Arnold’s linear stability theorems reduce to Fjortoft’s results. Furthermore,
Arnold established sufficient conditions which would establish nonlinear stability. The author
presents Arnold’s stability results as well as important recent developments, such as Andrew’s
Theorem, from a general variational point of view and its associated Hamiltonian formulation.

An interesting generalization of the two-dimensional vorticity equation is provided by the
Charney—Hasegawa—Mima (CHM) equation, which arises from the shallow-water equations for
rotating fluids in the limit of small Rossby numbers. The CHM equation has dispersive linear
wave solutions, called Rossby waves, and has also nonlinear steadily travelling dipole vortex
solutions. These solutions play an important role in large scale evolution of the planetary atmo-
sphere. The Hamiltonian structure of the CHM equations and its derivation are discussed in
Chapter 5. A large portion of that chapter is then devoted to the stability of steady solutions.
An important new feature is the existence of steadily travelling waves. The discussion of their
stability leads to important modifications in the previously presented framework; these are also
discussed in Chapter 5. The final chapter is concerned with the Hamiltonian structure and the
associated stability theory for the celebrated Korteweg—de Vries (KdV) equations.

The book is presented in a refreshingly non-technical style with plenty of details and exercises
provided. The reader should be familiar with basic fluid dynamics, classical mechanics, varia-
tional calculus, and stability theory. The text can be recommended for advanced undergraduate
students and graduate students in applied mathematics and physical sciences. All in all, this is
a well-written introduction to Hamiltonian fluid dynamics and basic stability results.

S. REICH

BALSER, W. Formal power series and linear systems of meromorphic ordinary differential equa-
tions (Universitext, Springer, 2000), xviii+299 pp., 0 387 98690 1 (hardcover), £32.50.

Divergent series occur in a variety of situations. A typical example (considered in the Intro-
duction of the book under review) is of the (meromorphic) ODE,

e =f—t (1)

which admits the formal asymptotic expansion,

[e']

f) ~ > it

n=0
which of course has zero radius of convergence. Attempts to sum divergent series go back at least
to Euler. Some such attempts are completely formal and resemble typical student standards of
rigour. For example, consider the series,
1-24+4-8+16—---, (2)

the partial sums S,, of which satisfy S, = (1 —(—2)")/3. If we want to associate a ‘sum’ S with
this series, we see that it has to satisfy 25 = 1 — S, i.e. S = 1/3, which should be inspected
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