THE TWO-ARC-TRANSITIVE GRAPHS OF SQUARE-FREE ORDER ADMITTING ALTERNATING OR SYMMETRIC GROUPS

GAI XIA WANG™ and ZAI PING LU

(Received 26 March 2014; accepted 4 November 2016; first published online 29 March 2017)

Communicated by B. Alspach

Abstract

Let G be a finite group with $soc(G) = A_c$ for $c \ge 5$. A characterization of the subgroups with square-free index in G is given. Also, it is shown that a (G, 2)-arc-transitive graph of square-free order is isomorphic to a complete graph, a complete bipartite graph with a matching deleted or one of 11 other graphs.

2010 Mathematics subject classification: primary 20B15; secondary 20B30.

Keywords and phrases: symmetric graph, two-arc-transitive graph, automorphism group.

1. Introduction

Let Γ be a graph with vertex set $V\Gamma$ and edge set $E\Gamma$. We use Aut Γ to denote the automorphism group of Γ . For a positive integer s, an s-arc of Γ is an (s+1)-tuple (v_0, v_1, \ldots, v_s) of vertices such that $\{v_{i-1}, v_i\} \in E\Gamma$ for $1 \le i \le s$ and $v_{i-1} \ne v_{i+1}$ for $1 \le i \le s-1$.

Let $G \le \operatorname{Aut}\Gamma$. The graph Γ is said to be (G, s)-arc-transitive if it has at least one s-arc and G is transitive on both the vertices and the s-arcs of Γ , and Γ is (G, s)-transitive if it is (G, s)-arc-transitive but not (G, s + 1)-arc-transitive. For the case when $G = \operatorname{Aut}\Gamma$, a (G, s)-arc-transitive graph or a (G, s)-transitive graph is simply called s-arc-transitive or s-transitive, respectively.

Praeger [24] gave a reduction for finite nonbipartite two-arc-transitive graphs into four types, say, HA, AS, PA and TW. For the bipartite case, Praeger [25] gave a reduction into five types. Praeger's reductions indicate that a two-arc-transitive graph involved in the nine types either has a complete bipartite quotient graph or admits a group acting faithfully and quasiprimitively (of type HA, AS, PA or TW) on the vertex set or on each of its two orbits. Since then, characterizing or classifying finite two-arc-transitive graphs have been an active topic in algebraic graphtheory, which

This work is supported by National Natural Science Foundation of China (11371204) and NNSFC (11601005).

^{© 2017} Australian Mathematical Publishing Association Inc. 1446-7887/2017 \$16.00

is highly attractive from the group-theoretic and combinatorial viewpoint and has received considerable attention (see [1, 7, 8, 11, 13, 15, 16, 25] for more references).

Another main motivation stems from the recently increasing interest in the study of permutation groups of square-free degree and their application to graphs. The class of graphs of square-free order has been studied in some special cases. In 1967, Turner [31] gave the classification of symmetric graphs with order a prime number p. The classification of symmetric graphs with order 2p was not completed until 1987 by Cheng and Oxley [3]. The classification of symmetric graphs with order 3p in [32] and some other graphs with order a product of two distinct primes were classified in [22, 27, 28]. The graphs of order a product of three distinct primes are determined by a series of articles [10, 12, 23, 30]. Further, see [17, 19–21] for the case of order four or more distinct primes.

In particular, the cases of two-arc-transitive graphs admitting a Suzuki simple group and a Ree simple group are classified in [7, 8], and the case of two-arc-transitive graphs admitting a two-dimensional projective linear group is studied in [11].

The object of this paper is to describe the subgroups of square-free index in G and classify the (G, 2)-arc-transitive graphs of square-free order, where G is an almost simple group with the alternating socle.

THEOREM 1.1. Let G be a finite group with $soc(G) = A_c$ for $c \ge 5$. If H is a square-free index subgroup of G, then H is described in Lemmas 3.6 and 3.7. If Γ is a connected (G,2)-arc-transitive graph of square-free order, then Γ is isomorphic to one of the graphs given in Section 2.2: K_c with square-free c; $K_{c,c} - cK_2$ with odd square-free c; K_6 with c = 5; K_{10} with c = 6; Tutte's 8-cage with c = 6; a symmetric coset graph with c = 7; the point-hyperplane incidence graph of PG(3,2) and its complement graph in $C_{15,15}$ with $C_{15,15}$ with $C_{15,15}$ and $C_{15,15}$ with $C_{15,15}$ and $C_{15,15}$ with $C_{$

In the following sections, bold-face \mathbf{c} always means the set $\{1, 2, \dots, c\}$; for $\Delta \subseteq \mathbf{c}$, we denote by $\mathrm{Alt}(\Delta)$ or $\mathrm{Sym}(\Delta)$, or sometimes just $\mathrm{A}_{|\Delta|}$ or $\mathrm{S}_{|\Delta|}$, the alternating group or symmetric group on Δ , respectively.

2. Coset graphs, examples and stabilizers

2.1. Coset graphs and examples. We sometimes represent a graph as a coset graph introduced by Sabidussi [29]. Let G be a finite group and let H be a core-free subgroup of G, that is, $\bigcap_{x \in G} H^x = 1$. Let $g \in G \setminus H$ be of order a power of two with $g^2 \in H$. Then the *symmetric coset graph* Cos(G, H, HgH) is defined to be the graph with vertex set $[G:H] = \{Hx \mid x \in G\}$ such that Hx and Hy are adjacent while $yx^{-1} \in HgH$. Then Cos(G, H, HgH) is a well-defined G-arc-transitive graph, where G is viewed as a subgroup of $Aut\Gamma$ acting on [G:H] by right multiplication. The follow lemma is formulated from several well-known facts on coset graphs (see [18] for example).

Lemma 2.1. Let Γ be a connected graph and $G \leq \text{Aut}\Gamma$. Let $\{\alpha, \beta\} \in E\Gamma$, $H = G_{\alpha}$ and $K = G_{\alpha\beta}$. Assume that G acts transitively on both the vertices and the arcs of Γ. Then $\Gamma \cong \text{Cos}(G, H, HxH)$ for some $x \in N_G(K) \setminus H$ of two-power order such that $x^2 \in K$ and $G = \langle x, H \rangle$.

2.2. Examples. We collect several examples of two-arc-transitive graphs with square-free order and admitting the alternating group A_c .

Example 2.2. K_n , the complete graph of order n for a square-free $n \ge 5$. Assume that $G \le \text{Aut}K_n$ acts transitively on the two-arcs of K_n . Then G is a three-transitive subgroup of S_n . Thus $\text{Soc}(G) = A_c$ implies (c, n) = (c, c), (5, 6) or (6, 10).

EXAMPLE 2.3. $K_{c,c} - cK_2$, the complete bipartite graph with a matching deleted. $Cos(S_c, A_c, A_c(12)A_c) \cong K_{c,c} - cK_2$ with square-free order if c is odd square-free.

Example 2.4. Point-hyperplane incidence graph of the projective geometry PG(3,2). This graph and its complement graph in $K_{15,15}$ admit $S_8 \cong GL(4,2) \cdot 2$ acting transitively on both their two-arcs.

Example 2.5. Tutte's 8-cage. Let U consist of the two-subsets of $\mathbf{6}$ and let V consist of the partitions of $\mathbf{6}$ into three parts with size 2. Then Tutte's 8-cage may be defined as the bipartite graph with vertex set $U \cup V$ such that $\alpha \in U$ and $\beta \in V$ are joined by an edge if α is a part of β . This graph is a cubic five-transitive graph with automorphism group $\operatorname{Aut}(A_6) = \operatorname{P}\Gamma L(2, 9)$.

EXAMPLE 2.6. O_k , odd graph for $k \in \{3, 4, 6, 9, 10, 12, 36\}$. Let c = 2k - 1 for $k \ge 3$ and let V consist of (k - 1)-subsets of \mathbf{c} . Then O_k is defined with vertex set V such that $\alpha, \beta \in V$ are adjacent if and only if $\alpha \cap \beta = \emptyset$ (see [2, 8f], for example). Further, $\mathsf{Aut}O_k = \mathsf{S}_c$ and O_k is two-arc-transitive, and further, by Corollary 3.2, |V| = c!/[k!(k-1)!] is square-free if and only if $k \in \{3, 4, 6, 9, 10, 12, 36\}$.

EXAMPLE 2.7. $Cos(A_7, PSL(2, 5), PSL(2, 5)(1452)(67)PSL(2, 5))$, a two-arc-transitive graph of valency six and order 42. We identify H = PSL(2, 5) with a transitive subgroup of A_6 containing $K = \langle \sigma, \tau \rangle$, where $\sigma = (12345)$ and $\tau = (15)(24)$. Then $N_{A_7}(K) = \langle \sigma, \pi \rangle$, $\langle \pi, H \rangle = A_7$ and $\pi^2 \in K$, where $\pi = (1452)(67)$. Thus $Cos(A_7, H, H\pi H)$ is a connected two-arc-transitive graph.

2.3. Stabilizers. Let Γ be a graph, $G \leq \operatorname{Aut}\Gamma$ and $\{\alpha,\beta\} \in E\Gamma$. Then the stabilizer G_{α} induces an action on the neighborhood $\Gamma(\alpha)$ of α in Γ . Let $G_{\alpha}^{\Gamma(\alpha)}$ denote the permutation group on $\Gamma(\alpha)$ induced by G_{α} , let $G_{\alpha}^{[1]}$ be the kernel of this action and set $G_{\alpha\beta}^{[1]} = G_{\alpha}^{[1]} \cap G_{\beta}^{[1]}$. Then

$$(G_{\alpha}^{[1]})^{\Gamma(\beta)} \leq G_{\alpha\beta}^{\Gamma(\beta)} \cong G_{\alpha\beta}^{\Gamma(\alpha)}, \quad G_{\alpha} = G_{\alpha}^{[1]} \cdot G_{\alpha}^{\Gamma(\alpha)} = (G_{\alpha\beta}^{[1]} \cdot (G_{\alpha}^{[1]})^{\Gamma(\beta)}) \cdot G_{\alpha}^{\Gamma(\alpha)}, \tag{2.1}$$

where $X \cdot Y$ means a group extension of X by Y.

Lemma 2.8. If G is transitive on V Γ , then Γ is (G, 2)-arc-transitive if and only if $G_{\alpha}^{\Gamma(\alpha)}$ is a two-transitive permutation group.

Lemma 2.9 [9, 34]. Let Γ be a (G, s)-transitive graph for s = 2 or 3. Then, for an edge $\{\alpha, \beta\}$ of Γ, either $G_{\alpha\beta}^{[1]} = 1$ or $G_{\alpha\beta}^{[1]}$ is a nontrivial p-group for some prime p, $PSL(n,q) \le G_{\alpha}^{\Gamma(\alpha)} \le P\Gamma L(n,q)$ and $|\Gamma(\alpha)| = q^n - 1/q - 1$ for some $n \ge 2$ and a power q of p.

k	S	G_{lpha}	$G_{lphaeta}$
q+1	4	$[q^2] \rtimes Z_{(q-1)/(3,q-1)} \cdot PGL(2,q) \cdot Z_e$	$[q^3] \rtimes (Z_{q-1} \times Z_{(q-1)/(3,q-1)}) \cdot Z_e$
$2^f + 1$	5	$[q^3] \times \mathrm{GL}(2,q) \cdot Z_e$	$[q^4] imes Z_{g-1}^2 \cdot Z_e$
$3^f + 1$	7	$[q^5] \rtimes \operatorname{GL}(2,q) \cdot Z_e$	$[q^6] \rtimes Z_{q-1}^2 \cdot Z_e$

Table 1. Stabilizers of s-transitive graph of valency k.

All finite two-transitive permutation groups are precisely known; the reader is referred to [14] for a complete list. Then, by Equation (2.1) and Lemmas 2.8 and 2.9, we have shown the following result.

Corollary 2.10. If Γ is a (G,2)-arc-transitive graph, then the stabilizer G_{α} has at most two insoluble composition factors. Further, if there are two insoluble factors, then either they are not isomorphic when $G_{\alpha}^{\Gamma(\alpha)}$ is almost simple or they are isomorphic when $G_{\alpha}^{\Gamma(\alpha)}$ is an affine group.

PROOF. By Lemma 2.9, $G_{\alpha\beta}^{[1]}$ is a p-group. Then, by (2.1), all possible insolvable composition factors are involved in $(G_{\alpha}^{[1]})^{\Gamma(\beta)}$ and $G_{\alpha}^{\Gamma(\alpha)}$. Note that $(G_{\alpha}^{[1]})^{\Gamma(\beta)} \triangleleft G_{\alpha\beta}^{\Gamma(\beta)} \cong G_{\alpha\beta}^{\Gamma(\alpha)} \cong (G_{\alpha}^{\Gamma(\alpha)})_{\beta}$. Then the two-transitive permutation group $G_{\alpha}^{\Gamma(\alpha)}$ and its a stabilizer acting on $\Gamma(\alpha)$ give all possible insolvable composition factors of G_{α} . Thus our result follows from checking the two-transitive permutation groups one by one.

Lemma 2.11 [33, 35]. Suppose that Γ is a connected (G, s)-transitive graph of valency k with $s \ge 4$. Then k = q + 1, s = 4, 5 or 7, and, for an edge $\{\alpha, \beta\}$, the vertex stabilizer G_{α} and arc stabilizer $G_{\alpha\beta}$ are listed in Table 1, where $q = p^f$ is a power of some prime p and e is a divisor of f.

The structure of stabilizers for cubic *s*-transitive graphs is explicitly known due to Tutte's result (see [2, 18f], for example). For the four-valent case, we have the following result, which is a consequence from Lemmas 2.9 and 2.11.

Lemma 2.12. Let Γ be a four-valent (G, s)-transitive graph with s = 2 or S. Let $G \in V\Gamma$. Then either S = 2 and S4 and S5 and S6 and S7 and S8 and S9 and S9.

3. Subgroups with square-free index in S_c or A_c

The purpose of this section is to describe the subgroups of square-free index in G, where $soc(G) = A_c$ for $c \ge 5$. Several results on elementary number theory are necessary. The first lemma is formulated from [21].

Lemma 3.1. Let $a \ge 2$ and $b \ge 2$ be two integers. Then $(ab)!/[(a!)^bb!]$ is not square-free except that either a = 2 and $b \in \{3, 4\}$ or b = 2 and $a \in \{2, 3, 4, 6, 9, 10, 12, 36\}$.

COROLLARY 3.2. If $a \ge 2$, then (2a-1)!/[a!(a-1)!] is not square-free except for $a \in \{2, 3, 4, 6, 9, 10, 12, 36\}$.

Lemma 3.3. Let $p(d,t) = \prod_{i=1}^{t} (d+i)$ be the product of t consecutive positive integers. Then the following statements hold.

- (1) If p(d, 4)/8 is square-free, then $d \equiv 0, 1, 3, 4 \mod 9$.
- (2) If p(d, 5)/20 is square-free, then d = 6m with $m \equiv 0, 3, 12, 15 \mod 8$.
- (3) If p(d, 6)/48 is square-free, then d = 4m with $m \equiv 0, 14, 25 \mod 9$, or d = 4n + 1 with $n \equiv 0, 16, 20 \mod 9$.
- (4) If $d \ge 2$ and p(d, 6)/24 is square-free, then d = 8m with $m \equiv 7, 17, 27 \mod 9$, or d = 8n + 1 with $n \equiv 8, 10, 27 \mod 9$.
- (5) If p(d, 6)/120 is square-free, then d = 8m with $m \equiv 0, 7, 8 \mod 9$, or d = 8n + 1 with $n \equiv 0, 1, 8 \mod 9$.
- (6) If p(d, 6)/72 is square-free, then $d \equiv 0, 1 \mod 8$.
- (7) If p(d,7)/168 is square-free, then d = 72m with $m \ge 3$ and $m \equiv 0, 3, 6 \mod 5$, or d = 72n + 64 with $n \ge 1$ and $n \equiv 1, 3, 4 \mod 5$.
- (8) If p(d,7)/120 is square-free, then d = 8m with $m \equiv 0, 8 \mod 9$.
- (9) If p(d,7)/72 is square-free, then d = 8m with $m \equiv 0, 2, 9 \mod 5$.
- (10) If p(d,7)/48 is square-free, then d = 4m with $m \equiv 0, 25 \mod 9$.
- (11) If $p(d, 8)/(2^6 \cdot 3 \cdot 7)$ is square-free, then d = 45m or d = 45n + 36 for $m, n \ge 0$.
- (12) If $p(d, 8)/(2^6 \cdot 3^2)$ is square-free, then 15n + 6 with $n \equiv 2, 3, 4, 5, 15, 17, 22 \mod 16$, or d = 15m with $m \equiv 0, 9, 10, 12, 14, 15, 27, 29 \mod 16$.
- (13) If $p(d, 8)/(2^7 \cdot 3)$ is square-free, then d = 15m with m = 0 or $m \ge 9$, or 15n + 6 with $n \ge 2, 5, 17$.
- (14) If $p(d, 12)/[(6!)^2 \cdot 2]$ is square-free, then d = 7m with m = 0 or $m \ge 21$, or d = 7n + 1 with n = 0 or $n \ge 23$.
- (15) If $p(d, 24)/[(12!)^2 \cdot 2]$ is square-free, then d = 0 or d > 99.
- (16) If $p(d, 2a)/[(a!)^2 \cdot 2]$ is square-free, then d = 0, 1 or d > 99, where $a \in \{9, 10, 36\}$.

PROOF. As examples, we prove (7) and (12) only; the others can be proved by similar arguments and (or) checking by GAP.

Assume that p(d,7)/168 is square-free. If 8 divides some d+i, then 2^5 divides p(d,7) by noting that at least three of seven consecutive integers are even, and so 4 divides p(d,7)/168, which contradicts the hypothesis. It follows that d=8k for some k. If 9 divides some d+i, then d=9l or d=9l or

Assume that $p(d, 8)/(2^6 \cdot 3^2)$ is square-free. Then none of d+1, d+2 and d+3 is divisible by 5, and hence d=5l or 5l+1. If 3 divides one of d+1 and d+2, then three of these eight consecutive integers are divisible by 3. This yields that 3^4 divides p(d, 8), which contradicts the hypothesis. Thus d=3k. Then d=15m or 15n+6. If 2^4 divides some d+i, then 2^8 divides p(d, 8), which contradicts the hypothesis.

It yields $m \equiv 0, 9, 10, 11, 12, 13, 14, 15 \mod 16$ and $n \equiv 1, 2, 3, 4, 5, 6, 15 \mod 16$. Noting that both 5^2 and 7^2 do not divide p(d, 8), (12) follows.

Let c be a positive integer and P a partition of c into positive parts. We define $f(c; P) = (\sum_{d \in P} d)! / \prod_{d \in P} d!$. Then the following result holds.

Lemma 3.4. Let $k \ge 2$ and $c \ge 5$ be integers. Let $c = \sum_{i=1}^k c_i$ and $c_i = \sum_{j=1}^{l_i} d_{ij}$ for $1 \le i \le k$ and positive integers d_{ij} . Then $f(c; d_{11}, \ldots, d_{kt_k}) = f(c; c_1, \ldots, c_k)$ $\prod_{i=1}^k f(c_i; d_{i1}, \ldots, d_{it_i})$. Assume, further, that $f(c; d_{11}, \ldots, d_{kt_k})$ is square-free. Then the following statements hold.

- (1) $f(c; c_1, ..., c_k)$ and $f(c_i; d_{i1}, ..., d_{it_i})$, $1 \le i \le k$, are pairwise coprime square-free numbers; so at most one of them is even.
- (2) If $d_{i_1j_1} = d_{i_2j_2}$ for $(i_1, j_1) \neq (i_2, j_2)$, then $d_{i_1j_1} = d_{i_2j_2} = 4$, 2 or 1.
- (3) If l_r if the number of d_{ij} with value r, then $l_4 \le 2$, $l_3 \le 1$, $l_2 \le 2$, $l_1 \le 3$, $\sum_{r=1}^4 l_r \le 4$ and $\sum_{r=1}^4 r l_r \le 8$.

PROOF. Note that $S_c \ge S_{c_1} \times \cdots \times S_{c_k}$ and $S_{c_j} \ge S_{d_{i_1}} \times \cdots \times S_{d_{i_i}}$. Then the first part of this lemma holds by checking that $|S_c: (S_{d_{11}} \times \cdots \times S_{d_{k_i}})|$. And then (1) follows. Assume that $d_{i_1j_1} = d_{i_2j_2} := a$ for some $(i_1, j_1) \ne (i_2, j_2)$. Then f(2a; a, a) is square-free by (1). Of course, f(2a; a, a)/2 is odd square-free. By Lemma 3.1, a is known. It yields a = 4 or 2 if $a \ne 1$, and (2) follows. Let c' be one of $\sum_{d_{i,j}=r} d_{ij}$ and $\sum_{d_{i,j}\le 4} d_{ij}$. Then (3) follows from (1).

The following facts about primitive permutation groups (see [6, Theorem 3.3.A, Example 3.3.1]) are known.

Lemma 3.5. Let G be a primitive subgroup of S_c . If G contains one of (ij), (ijk) and (ij)(kl), then either $G \ge A_c$ or $c \le 8$.

LEMMA 3.6. Let $c \ge 5$ be an integer. Let G be almost simple with $SOC(G) = A_c$ and let H < G with |G: H| being square-free. If either $G \not \le S_c$ or H is transitive on \mathbf{c} , then one of the following holds.

- (1) G = PGL(2, 9), M_{10} or $P\Gamma L(2, 9)$ and $H = Z_3^2 \rtimes Z_8$, $Z_3^2 \rtimes Q_8$ or $Z_3^2 \rtimes [2^4]$, respectively, where $[2^4]$ is a 2-group of order $[2^4]$.
- (2) Either $soc(G) = soc(H) = A_6$ or (G, H) is one of $(PGL(2, 9), S_4)$, (M_{10}, S_4) , and $(P\Gamma L(2, 9), S_4 \times Z_2)$.
- (3) (G, H) is one of (S_c, A_c) , (A_5, D_{10}) , $(S_5, Z_5 \times Z_4)$, $(A_6, PSL(2, 5))$, $(S_6, PGL(2, 5))$, $(S_7, PSL(3, 2))$ $(A_7, PSL(3, 2))$, $(S_8, Z_2^3 \times PSL(3, 2))$ and $(A_8, Z_2^3 \times PSL(3, 2))$.
- (4) *H* is not primitive on **c**, and either $c \le 8$ and *H* is a $\{2, 3\}$ -group or c = 2a and $H = (S_a \wr S_2) \cap G$ for $a \in \{6, 9, 10, 12, 36\}$.

PROOF. If $G \nleq S_c$, then c = 6, and so (1) and (2) follow from checking the subgroups of G of square-free indices in [5]. Thus, in the following, assume that $A_c \leq G \leq S_c$ and H is transitive on \mathbf{c} .

Assume that H is primitive on \mathbf{c} . Since |G:H| is square-free, H contains a maximal subgroup of a Sylow two-subgroup of A_c . Then H contains a permutation with the

form of (ij)(kl) and (3) follows from Lemma 3.5 and checking the primitive groups of degree no more than eight.

Assume that H is not primitive on \mathbf{c} . Then $A_c \le G \le S_c$. Let \mathcal{B} be a nontrivial H-invariant partition on \mathbf{c} with minimal block size, say, a. Then $H \le (S_a \wr S_b) \cap G := <math>M \le G$, where b = c/a. Since |G:H| is square-free, |G:M| and |M:H| are also square-free. It is easy to see that $|S_c:(S_a \wr S_b)| = |G:M|$. Then $|S_c:(S_a \wr S_b)|$ is square-free and (a,b) is given in Lemma 3.1. Clearly, if both a and b are no more than four, then H is a $\{2,3\}$ -group. Thus assume that b=2 and $a \in \{6,9,10,12,36\}$. In particular, it is easy to know that $|S_c:(S_a \wr S_b)| = |G:M|$ is even square-free.

Set $\mathcal{B} = \{\Delta_1, \Delta_2\}$. Without loss of generality, assume that $\Delta_1 = \mathbf{a}$ and let $S_a \wr S_2 = (\operatorname{Sym}(\Delta_1) \times \operatorname{Sym}(\Delta_2)) \rtimes \langle \pi \rangle$, where $\pi = \prod_{i=1}^a (ia+i)$. In particular, $\pi \in A_c$ if a is even. Let $N = \operatorname{Alt}(\Delta_1) \times \operatorname{Alt}(\Delta_2)$. Then $N \unlhd M$, and so HN is a subgroup of M. Thus $|N:(H\cap N)| = |HN:H|$ is a divisor of |M:H|. Then $|N:(H\cap N)|$ is square-free. It is easily shown that $H\cap N$ contains a maximal subgroup Q of a Sylow two-subgroup P of N. Then $Q \unlhd P$ and |P:Q| = 2. Without loss of generality, assume that P contains $(1 \ 2 \ 3 \ 4)(5 \ 6)$ and (a+1a+2a+3a+4)(a+5a+6). It follows that $(1 \ 2)(3 \ 4)$, $(a+1a+2)(a+3a+4) \in Q$. Thus $(1 \ 2)(3 \ 4) \in H_{\Delta_1}^{\Delta_1}$ and $(a+1a+2)(a+3a+4) \in H_{\Delta_2}^{\Delta_2}$. By the choice of \mathcal{B} , $H_{\Delta_i}^{\Delta_i}$ is a primitive subgroup of $\operatorname{Sym}(\Delta_i)$. Then, similarly as in (2), either $H_{\Delta_i}^{\Delta_i} \geq \operatorname{Alt}(\Delta_i)$ or $\operatorname{PSL}(2,5) \leq H_{\Delta_i}^{\Delta_i} \leq \operatorname{PGL}(2,5)$. But the latter case yields four dividing |G:H|. Thus $H_{\Delta_i}^{\Delta_i} \geq \operatorname{Alt}(\Delta_i)$. Noting that $1 \neq (H\cap N)^{\Delta_i} \subseteq \operatorname{Alt}(\Delta_1) \times \operatorname{Alt}(\Delta_2) = N$. It is easy to check that a Sylow two-subgroup of N has index N = N is properly contained in N = N. Noting that N = N is properly contained in N = N. Noting that N = N is properly contained in N = N. Noting that N = N is properly contained in N = N. Then N = N is even square-free, it follows that N = N is N = N.

LEMMA 3.7. Let $c \ge 5$ be an integer. Let $A_c \le G \le S_c$ and let H < G with |G:H| being square-free. Assume that H has t orbits $\Delta_1, \ldots, \Delta_t$ on \mathbf{c} , where $t \ge 2$. Let $d_j = |\Delta_j|$ for $1 \le j \le t$. Let r be such that $b_{r+1} = \cdots = b_t = 1$ and $b_j > 1$ for $j \le r$. Set $c_1 = \sum_{i=1}^r d_i$.

- (1) If $r \ge 2$ and $c_1 \ge 5$, then, reordering d_j if necessary, either H is one of $(S_{d_1} \times \cdots \times S_{d_{r-1}} \times A_{d_r}) \cap G$ and $(S_{d_1} \times \cdots \times S_{d_r}) \cap G$ or, for each $d_j > 1$, the pair (d_j, H^{Δ_j}) is as described in Tables 2, 3, 4 and 5 for r = t and as in Tables 8, 9, 10 and 11 for r < t.
- (2) If r = 1 or $c_1 \le 5$, then (d_1, H^{Δ_1}) is as described in Tables 6 and 7.

PROOF. Set $M_1 := (H^{\Delta_1} \times \cdots \times H^{\Delta_t}) \cap G$ and $M_2 := (S_{d_1} \times \cdots \times S_{d_t}) \cap G$. Then $H \le M_1$ and $H \le M_2$. Since |G:H| is square-free, $|M_i:H|$, $|M_2:M_1|$ and $|G:M_i|$ are all square-free, where i = 1, 2.

Case 1. Assume that H is fixed-point-free on \mathbf{c} , that is, $d_j \ge 2$ for all $j \le t$. Assume that $H^{\Delta_j} \le \operatorname{Alt}(\Delta_j)$ for all $1 \le j \le t$. Then $H \le A_c$ and $M_1 = H^{\Delta_1} \times \cdots \times H^{\Delta_t}$

as $A_c \le G$. If $G = S_c$, then |G:H| is divisible by 2^t , which contradicts the hypothesis. Thus $G = A_c$. Then $M_2 = (A_{d_1} \times \cdots \times A_{d_t}) \rtimes Z_2^{t-1}$, and hence t = 2 and $|A_{d_j}: H^{\Delta_j}|$ is

c	d_1	d_2	H^{Δ_1}	H^{Δ_2}	Remark
$d_1 + d_2$	≥5	≥3	A_{d_1}	A_{d_2}	$d_1 - d_2 \ge 2$
					$p(d_1, d_2)/d_2!$ odd square-free
$d_1 + 8$	≥36	8	A_{d_1}	$Z_2^3 \times PSL(3,2)$	$p(d_1, 8)/(2^6 \cdot 3 \cdot 7)$ square-free
$d_1 + 8$	≥36	8	A_{d_1}	$Z_2^3 \rtimes S_4$	$p(d_1, 8)/(2^6 \cdot 3)$ square-free
$d_1 + 8$	≥36	8	A_{d_1}	$(S_4 \wr S_2) \cap A_8$	$p(d_1, 8)/(2^6 \cdot 3^2)$ square-free
$d_1 + 7$	≥136	7	A_{d_1}	PSL(3,2)	$p(d_1,7)/168$ square-free
$d_1 + 6$	≥56	6	A_{d_1}	S_4	$p(d_1, 6)/24$ square-free
$d_1 + 4$	≥9	4	A_{d_1}	Z_2^4	$p(d_1, 4)/4$ square-free
7	4	3	A_4	A_3	
7	4	3	Z_2^2	A_3	

TABLE 2. Pairs of orbit length and subgroup transitive restriction Case 1.

TABLE 3. Pairs of orbit length and subgroup transitive restriction Case 2.

$\overline{d_j}$	d_t	H^{Δ_j}	H^{Δ_t}	Remark
>99	2 <i>a</i>	S_{d_i}	$S_a \wr S_2$, $a = 6, 9, 10, 12, 36$	$p(d_j, 2a)/[2 \cdot (a!)^2]$ square-free
			$S_4 \wr S_2$	$p(d_j, 8)/[2 \cdot (4!)^2]$ square-free
			$(S_4 \wr S_2) \cap A_8$	$p(d_j, 8)/[(4!)^2]$ square-free
≥36	8	S_{d_j}	$Z_2^3 \rtimes S_4, Z_2^4 \rtimes [2^2 \cdot 3], Z_2^4 \rtimes A_4$	$p(d_j, 8)/(3 \cdot 2^6)$ square-free
			$Z_2^4 \rtimes S_4$	$p(d_j, 8)/(3 \cdot 2^7)$ square-free
			$Z_2^3 \times PSL(3,2)$	$p(d_j, 8)/(3 \cdot 7 \cdot 2^6)$ square-free
≥136	7	S_{d_i}	PSL(3, 2)	$p(d_j, 7)/(3 \cdot 7 \cdot 2^3)$ square-free
≥36	6	S_{d_j}	$S_4 \times Z_2$	$p(d_j, 6)/48$ square-free
≥56		-	S_4	$p(d_j, 6)/24$ square-free
≥9			PGL(2, 5)	$p(d_j, 6)/120$ square-free
≥8			$Z_3^2 \rtimes D_8$	$p(d_j, 6)/72$ square-free
≥18	5	S_{d_i}	$Z_5 \rtimes Z_4$	$p(d_j, 5)/20$ square-free
≥9	4	S_{d_j}	D_8	$p(d_j, 4)/8$ square-free
			$[2^2]$	$p(d_j, 4)/4$ square-free

odd square-free for i = 1 and 2. Thus either $H^{\Delta_j} = A_{d_i}$ or H^{Δ_j} is known as in (2) or (3) as it is transitive on Δ_i . Calculating $|A_{d_j}: H^{\Delta_j}|$ shows that H^{Δ_j} is one of A_{d_j} , PSL(3, 2) for $d_j = 7$, $Z_2^3 \rtimes \text{PSL}(3, 2)$ for $d_j = 8$, $(S_{d_i/2} \wr S_2) \cap A_{d_i}$ for $d_i \in \{12, 18, 20, 24, 72\}$, $Z_2^3 \rtimes S_4$ for $d_j = 8$, $(S_4 \wr S_2) \cap A_8$ for $d_j = 8$, S_4 for $d_j = 6$, or Z_2^2 for $d_j = 4$.

Since $|A_c: M_1|$ and $|M_2: M_1| = 2|A_{d_1}: H^{\Delta_1}||A_{d_2}: H^{\Delta_2}||$ are square-free, with the help of Lemma 3.1, Corollary 3.2 and Lemma 3.3, $(c, d_1, d_2; H^{\Delta_1}, H^{\Delta_2})$ are listed in Table 2. Assume that $H^{\Delta_i} \nleq \operatorname{Alt}(\Delta_i)$ for some $1 \le i \le t$. Then M_1 has index two or one in $L_1 := H^{\Delta_1} \times \cdots \times H^{\Delta_t}$ depending on $G = A_c$ or not, respectively; and the same thing occurs for M_2 and $L_2 := S_{d_1} \times \cdots \times S_{d_t}$. Thus $|L_2: L_1|$, $|S_c: L_2|$, $|S_c: L_1|$ and $|S_{d_j}: H^{\Delta_j}|$ are all square-free. Then (d_j, H^{Δ_j}) is one of the following pairs: $(d_j, S_{d_j}), (d_j, A_{d_j}), (S_7, \operatorname{PSL}(3, 2)), (S_8, Z_2^3 \rtimes \operatorname{PSL}(3, 2)), (5, Z_5 \rtimes Z_4), (6, \operatorname{PGL}(2, 5)),$

d_{j}	d_{t-1}	d_t	H^{Δ_j}	$H^{\Delta_{t-1}}$	H^{Δ_t}	Remark
≥36	≥36	8	S_{d_j}	$A_{d_{t-1}}$	$S_4 \wr S_2$	$p(d_j, 8)/[2 \cdot (4!)^2]$ odd square-free
					$Z_2^4 \rtimes S_4$	$p(d_j, 8)/(2^7 \cdot 3)$ odd square-free
≥36	≥36	6	S_{d_j}	$A_{d_{t-1}}$	$S_4 \times Z_2$	$p(d_j, 6)/48$ odd square-free
≥9	≥9	4	S_{d_i}	$A_{d_{t-1}}$	D_8	$p(d_j, 4)/8$ odd square-free
≥36	4	4	S_{d_i}	S_4	D_8	$p(d_j, 8)/(3 \cdot 2^6)$ square-free
≥36	4	4	S_{d_i}	A_4	D_8	$p(d_j, 8)/(3 \cdot 2^5)$ square-free
≥36	4	3	S_{d_i}	D_8	S_3	$p(d_j, 7)/48$ square-free
≥136	4	3	S_{d_i}	D_8	A_3	$p(d_j, 7)/24$ square-free
			,	$[2^2]$	S_3	•

TABLE 4. Pairs of orbit length and subgroup transitive restriction Case 3.

TABLE 5. Pairs of orbit length and subgroup transitive restriction Case 4.

с	d_1	d_2	d_3	H^{Δ_1}	H^{Δ_2}	H^{Δ_3}	Remark
$d_1 + 7$	d_1 ≥ 36	4	3	A_{d_1}	D_8	S_3	$p(d_1,7)/48$ odd square-free
$d_1 + 8$	$d_1 \ge 36$	4	4	A_{d_1}	D_8	S_4	$p(d_1, 8)/(2^6 \cdot 3)$ odd square-free
$d_1 + 8$	$d_1 \ge 36$	8		A_{d_1}	$S_4 \wr S_2$		$p(d_1, 8)/[(4!)^2 \cdot 2]$ odd square-free
$d_1 + 8$	$d_1 \ge 36$	8		A_{d_1}	$Z_2^4 \times S_4$		$p(d_1, 8)/(2^7 \cdot 3)$ odd square-free
$d_1 + 6$	$d_1 \ge 36$	6		A_{d_1}	$S_4 \times Z_2$		$p(d_1, 6)/48$ odd square-free
$d_1 + 4$	$d_1 \ge 9$	4		A_{d_1}	D_8		$p(d_1, 4)/8$ odd square-free
8	4	4		S_4	D_8		
7	4	3		D_8	S_3, A_3		
7	4	3		$[2^2]$	S_3		

Table 6. Pairs of orbit length and subgroup transitive restriction Case 5.

c	d_1	$c-c_1$	G	H	Remark
\overline{c}	d_1	≤3	S_c	S_{c_1}	$p(c_1, c - c_1)$ square-free
c	c - 1	1	S_c	\mathbf{A}_{c_1}	c odd square-free
	d_1	≤3	A_c	A_{c_1}	$p(c_1, c - c_1)$ square-free
2a + 1	2a	1	S_{2a+1}	$S_a \wr S_2$	$a \in \{6, 9, 10, 36\}$
			A_{2a+1}	$(S_a \wr S_2) \cap A_{2a}$	
7	6	1	S_7	PGL(2,5)	
				$Z_3^2 \rtimes D_8$	
				$S_4 \times Z_2$, S_4	
			A_7	$Z_3^2 \times Z_4$, A ₄ , S ₄	
				PSL(2, 5)	

 $(2a, S_a \wr S_2)$ for $a \in \{6, 9, 10, 12, 36\}$, $(8, S_4 \wr S_2)$, $(8, (S_4 \wr S_2) \cap A_8)$, $(8, Z_2^4 \rtimes [2^2 \wr 3])$, $(8, Z_2^4 \rtimes S_4)$, $(8, Z_2^4 \rtimes A_4)$, $(8, Z_2^3 \rtimes S_4)$, $(6, S_4)$, $(6, S_2^3 \rtimes D_8)$, $(6, S_4 \rtimes Z_2)$, $(4, S_4)$, $(4, D_8)$ or $(4, [2^2])$. Noting that $|L_2 : L_1| = \prod_{i=1}^t |S_{d_i} : H^{\Delta_j}|$, all $|S_{d_i} : H^{\Delta_j}|$ are pairwise coprime,

c	d_1	d_2	d_3	d_4	H^{Δ_1}	H^{Δ_2}	H^{Δ_3}	H^{Δ_4}	G	H
5	3	1	1		S ₃	1	1		A ₅	S_3
	2	2	1		Z_2	Z_2	1		S_5	Z_2^2
					Z_2	Z_2	1		A_5	$Z_2^{}$
5	4	1			S_4	1			S_5	S_4
					A_4	1			S_5	A_4
					D_8	1			S_5	D_8
					$[2^2]$	1			S_5	$[2^2]$
					A_4	1			A_5	A_4
					Z_2^2	1			S_5	Z_2^2
6	4	1	1		S_4^2	1	1		S_6	S_4^2
					A_4	1	1		A_6	A_4
7	4	2	1		S_4	Z_2	1		S_7	$S_4 \times S_2$, S_4
					A_4	Z_2	1		S_7	$A_4 \times S_2$
					S_4	Z_2	1		A_7	S_4, A_4
7	4	1	1	1	S_4	1	1	1	S_7	S_4
					A_4	1	1	1	A_7	A_4

TABLE 7. Pairs of orbit length and subgroup transitive restriction Case 6.

TABLE 8. Pairs of orbit length and subgroup transitive restriction Case 7.

c	t-r	d_1	d_2	H^{Δ_1}	H^{Δ_2}	Remark
$d_1 + d_2 + 1$	1	≥5	≥3	A_{d_1}	A_{d_2}	$d_1 - d_2 \ge 2$
						$p(d_1, d_2 + 1)/d_2!$ odd square-free
$d_1 + 7$	1	≥136	6	A_{d_1}	S_4	$p(d_1,7)/24$ square-free
$d_1 + 5$	1	≥18	4	A_{d_1}	Z_2^4	$p(d_1, 5)/4$ square-free

Table 9. Pairs of orbit length and subgroup transitive restriction Case 8.

d_{j}	d_r	H^{Δ_j}	H^{Δ_r}	Remark
>99	2 <i>a</i>	S_{d_i}	$S_a \wr S_2, a = 6, 9, 10, 36$	$p(d_j, 2a + 1)/[2(a!)^2]$ square-free
≥36	6	S_{d_j}	$S_4 \times Z_2$	$p(d_j, 7)/48$ square-free
≥136			S_4	$p(d_j, 7)/24$ square-free
≥64	6	S_{d_i}	PGL(2, 5)	$p(d_j, 7)/120$ square-free
≥16			$Z_3^2 \rtimes D_8$	$p(d_j, 7)/72$ square-free
≥9	4	S_{d_i}	D_8	$p(d_j, 5)/8$ square-free
≥18		,	$[2^2]$	$p(d_j, 5)/4$ square-free

and so at most one of them is even square-free. If $H^{\Delta_j} \geq A_{d_j}$ for all j, then $H = (S_{d_1} \times \cdots \times S_{d_t}) \cap G$ or, reordering d_j if necessary, $H = (S_{d_1} \times \cdots \times S_{d_{t-1}} \times A_{d_t}) \cap G$. For the other cases, with the help of Lemma 3.1, Corollary 3.2 and Lemmas 3.3 and 3.4, (d_j, H^{Δ_j}) is as described in Tables 3, 4 and 5.

					- 1	
d_{j}	d_{r-1}	d_r	H^{Δ_j}	$H^{\Delta_{r-1}}$	H^{Δ_r}	Remark
≥136	≥136	6	S_{d_i}	$A_{d_{t-1}}$	$S_4 \times Z_2$	$p(d_j, 7)/48$ odd square-free
≥18	≥18	4	S_{d_i}	$A_{d_{t-1}}$	D_8	$p(d_j, 5)/8$ odd square-free

Table 10. Pairs of orbit length and subgroup transitive restriction Case 9.

Table 11. Pairs of orbit length and subgroup transitive restriction Case 10.

С	d_1	d_2	d_3	H^{Δ_1}	H^{Δ_2}	H^{Δ_3}	Remark
$d_1 + 7$	$d_1 \ge 136$	6	1	A_{d_1}	$S_4 \times Z_2$	1	$p(d_1, 7)/48$ odd square-free
$d_1 + 5$	$d_1 \ge 18$	4	1	A_{d_1}	D_8	1	$p(d_1, 5)/8$ odd square-free

Case 2. Assume that H fixes at least one point in \mathbf{c} . Assume that $d_{r+1} = \cdots = d_t = 1$ and $d_j > 1$ for $1 \le j \le r$. Then, as $c \ge 5$, $r \ge 1$ and $t - r \le 3$ by Lemma 3.4. If $\sum_{i=1}^r d_i \le 4$, then $t \le 4$ and $\sum_{i=1}^t d_i \le 8$, and then $(c; d_1, \ldots, d_t; G, H)$ is as listed in Table 7. Assume that $c_1 := \sum_{i=1}^r d_i \ge 5$. Then $H \le G_1 := S_{c_1} \cap G$ and $|G:H| = c(c-1)\cdots(c-t+r+1)|G_1:H| = p(c_1,t-r-1)|G_1:H|$ is square-free.

Assume that r = 1, that is, $c_1 = d_1$ and $t - r = c - d_1$. Then, by Lemma 3.6, either $5 \le c_1 = d_1 \le 8$ and H is a transitive $\{2,3\}$ -subgroup of square-free index in G_1 or (G_1, H) is one of (S_{c_1}, S_{c_1}) , (S_{c_1}, A_{c_1}) , (A_{c_1}, A_{c_1}) , (A_5, D_{10}) , $(S_5, Z_5 \times Z_4)$, $(A_6, PSL(2, 5))$, $(S_6, PGL(2, 5))$, $(S_7, PSL(3, 2))$ $(A_7, PSL(3, 2))$, $(S_8, Z_2^3 \times PSL(3, 2))$, $(A_8, Z_2^3 \times PSL(3, 2))$, $(S_{2a}, S_a \wr S_2)$ or $(A_{2a}, (S_a \wr S_2) \cap A_{2a})$, where $a \in \{6, 9, 10, 12, 36\}$. Noting that c|G:H| is square-free, then $(c; c_1, c - c_1; G, H)$ is as listed in Table 6.

Assume that $r \ge 2$. Consider the restrictions of H on Δ_j for $1 \le j \le r$. Then, by Case 1, consider all possible pairs (d_j, H^{Δ_j}) . If a pair (d_j, H^{Δ_j}) appears in Tables 2 to 5, then $\mathbf{p}(d_1, d_j)/|H^{\Delta_j}| \cdot \mathbf{p}(d_1 + d_j, t - r - 1) = \mathbf{p}(d_1, c - d_1)/|H^{\Delta_j}|$ should be square-free, and then we get Tables $\mathbf{8}$ –11. If $H^{\Delta_j} \ge \mathbf{A}_{d_j}$ for all $j \le r$ and $H^{\Delta_i} = \mathbf{S}_{d_i}$ for some $i \le r$, then $H = (\mathbf{S}_{d_1} \times \cdots \times \mathbf{S}_{d_r}) \cap G$ or, reordering d_j if necessary, $H = (\mathbf{S}_{d_1} \times \cdots \times \mathbf{S}_{d_{r-1}} \times \mathbf{A}_{d_r}) \cap G$. This concludes the proof.

4. Proof of Theorem 1.1

Let G be a finite group with $soc(G) = A_c$ for $c \ge 5$. The first part of Theorem 1.1 follows form Lemmas 3.6 and 3.7. In the following, assume that Γ is a connected (G, 2)-arc-transitive graph on square-free number vertices and sometimes, setting $H = G_{\alpha}$ for some $\alpha \in V\Gamma$, write $\Gamma = Cos(G, H, HxH)$ for some $x \in G$ satisfying Lemma 2.1. Then the second part of Theorem 1.1 follows from Lemmas 4.1, 4.2, 4.3, 4.4 and 4.5.

Lemma 4.1. Assume that G is one of PGL(2, 9), M_{10} and PFL(2, 9). Then Γ is isomorphic to K_{10} or the Tutte's 8-cage.

PROOF. If G is primitive on $V\Gamma$, then, by [26, Main-Theorem (1)], we know that G is three-transitive on $V\Gamma$ and $\Gamma \cong \mathsf{K}_{10}$.

Thus we assume that H is not maximal in G. Then(G, H) is one of (PGL(2, 9), S_4), (M₁₀, S_4) and (PΓL(2, 9), $S_4 \times Z_2$). Further, for these three cases, G has a subgroup of index two which contains H, say, $X = S_6$ for $G = P\Gamma L(2, 9)$ and $X = A_6$ for the other two cases. Thus Γ is a bipartite graph with two parts, say, U and V, each having size 15. It is easy to see that X acts primitively on both U and V. In particular, X acts transitively on the edges of Γ . We claim that the actions of X on U and V are not permutation equivalent; otherwise, X will have a primitive permutation representation of degree 15 with a two-transitive subconstituent, which contradicts the main theorem of [26]. Thus assume that U consists of two-subsets of G while V is the set of partitions of G into three parts with the same size. Let G0, G1 be an edge of G2 with G2 and G3 is not a part of G3, then it is easily shown that G4 is not a part of G5, but G5 and, in this case, G6 is isomorphic to Tutte's 8-cage.

Lemma 4.2. If H is a transitive subgroup of S_c , then c = 5, 6 and $\Gamma \cong K_6$; or c = 6 and $\Gamma \cong K_{10}$; or c = 7, 8 and Γ or its complement graph in $K_{15,15}$ is isomorphic to the point-hyperplane incidence graph of PG(3, 2).

PROOF. Assume that H is transitive on \mathbf{c} with respect to the natural action of S_c . Since Γ is (G,2)-arc-transitive, $|H|=|G_\alpha|$ has at least one odd prime divisor. It follows from Lemma 3.6 and checking the imprimitive groups of degrees six and eight that one of the following three cases occurs: (i) H is maximal in G and H is one of $(S_a \wr S_2) \cap G$ for c=2a and $a \in \{6,9,10,12,36\}$, $(Z_5 \rtimes Z_4) \cap G$ for c=5, $PGL(2,5) \cap G$ for c=6, $(Z_3^2 \rtimes D_8) \cap G$ for c=6, $(S_4 \times Z_2) \cap G$ for c=6, PSL(3,2) for c=7 and $G=A_7$, $(S_4 \wr S_2) \cap G$ for c=8, and $(S_4 \wr S_4) \cap G$ for $(S_4 \wr S_4) \cap G$ for

Case 1. Assume, first, that H is maximal in G. Then G is primitive on $V\Gamma$. Noting that H is transitive on \mathbf{c} , it follows from [26] that c=5 and $\Gamma\cong \mathsf{K}_6$, or c=6, $G=\mathsf{P}\Sigma\mathsf{L}(2,9)=\mathsf{S}_6$ and $\Gamma\cong \mathsf{K}_{10}$ (noting that this case was missed in [26]), or H is almost simple and primitive on \mathbf{c} , so H is one of $\mathsf{PGL}(2,5)\cap G$ and $\mathsf{PSL}(3,2)$. If $H=\mathsf{PGL}(2,5)\cap G$, then $\Gamma\cong \mathsf{K}_6$. Suppose that $G=\mathsf{A}_7$ and $H=\mathsf{PSL}(3,2)$. Then $|V\Gamma|=|G:H|=15$ is odd and Γ is of even valency. It yields $|\Gamma(\alpha)|=8$, and hence $H_\beta=G_{\alpha\beta}\cong Z_7\rtimes Z_3$ for some $\beta\in\Gamma(\alpha)$. It is easily shown that $\mathsf{N}_G(G_{\alpha\beta})=G_{\alpha\beta}$. Then there is no $x\in\mathsf{N}_G(G_{\alpha\beta})$ with $\langle H,x\rangle=G$, which contradicts the hypothesis.

Case 2. Assume that $G = S_7$ or S_8 and H = PSL(3,2) or $Z_2^3 \times PSL(3,2)$, respectively. Then $H \le SOC(G) = A_c$, c = 7 or 8. Then Γ is a bipartite graph with two parts, say, U and V, each having size 15. Further, A_c is primitive on both U and V and transitive on $E\Gamma$.

Assume that the actions of A_c on U and on V are permutation equivalent. Then A_c is a primitive permutation group with degree 15 and a suborbit of size $|\Gamma(\alpha)|$.

It is known that such a primitive permutation group is two-transitive. Thus $|\Gamma(\alpha)| = 14$ and $\Gamma \cong \mathsf{K}_{15,15} - 15\mathsf{K}_2$, but such a graph cannot admit S_c acting transitively on its two-arcs, which contradicts the hypothesis.

Therefore, assume that U is the point set while V is the hyperplane set of the projective geometry PG(3,2), respectively. (Note that A_7 is viewed as a transitive subgroup of $PSL(4,2) \cong A_8$ on projective points or on hyperplanes.) Then Γ or its complement graph in $K_{15,15}$ is isomorphic to the point-hyperplane incidence graph of PG(3,2).

Case 3. Assume that c=6 or 8 and H is soluble. Then $H^{\Gamma(\alpha)}$ is a two-transitive affine group. Further, by checking one by one the possible $H=G_{\alpha}$ here, Γ is of valency three or four.

Suppose that Γ is of valency three. Note that the stabilizers for cubic two-arctransitive graphs are explicitly known (see [2, 18f], for example). Then the only possible case is $(G, H) = (S_6, S_4)$, and so Γ is (S_6) , 4)-arc-transitive. By [4], all cubic two-arc-transitive graphs of order 30 are isomorphic and five-transitive. Thus Γ is isomorphic to the graph given in Example 2.5, but such a graph cannot admit S_6 acting transitively on vertices, which contradicts the hypothesis.

Now let Γ be of valency four. If Γ is (G, s)-transitive for $s \ge 4$, then H should contain a subgroup with quotient GL(2,3) by checking the stabilizers listed in Table 1, which is impossible. Thus Γ is (G, 2)-transitive or (G, 3)-transitive. Then, by Lemma 2.12, $(G, H) = (A_6, A_4)$ or (S_6, S_4) .

Suppose that $G = S_6$ and $H = S_4 \le soc(G) = A_6$. Then Γ is a bipartite graph with A_6 acting primitively on both two parts, say, U and V. If the actions of A_6 on U and V are not permutation equivalent, then a similar argument as in Lemma 4.1 yields that Γ is of valency three, which contradicts the hypothesis. Thus the actions of A_6 on U and V are permutation equivalent. So A_c is a primitive group with degree 15 and a suborbit of size four, which is impossible.

The above argument implies that Γ is $(A_6, 2)$ -arc-transitive, and it is easily shown that $(A_6)_{\alpha} = H \cap A_6 \cong A_4$ is transitive on **6**. Then, replacing G by A_6 if necessary, assume that $H = \langle \sigma, \tau \rangle$ and $G_{\alpha\beta} = \langle \sigma \rangle$, where $\sigma = (1\ 2\ 3)(4\ 5\ 6)$ and $\tau = (1\ 4)(2\ 5)$. Calculation indicates that there is no $x \in N_G(G_{\alpha\beta}) = \langle (1\ 2\ 3), (4\ 5\ 6) \rangle \rtimes \langle (2\ 3)(4\ 5) \rangle$ with $\langle x, H \rangle = G$, which contradicts the hypothesis.

By Lemmas 4.1 and 4.2, assume that $G \leq S_c$ and H is intransitive on \mathbf{c} in the following three lemmas. Let $\Delta_1, \ldots, \Delta_t$ be H-orbits on \mathbf{c} , where $t \geq 2$. Let $d_j = |\Delta_j|$ for $1 \leq j \leq t$. Then Lemma 3.7 is available for our further argument. By Lemma 2.10, $H = G_\alpha$ has at most two insoluble composition factors. It follows that at most two of H^{Δ_j} are insoluble.

Lemma 4.3. If H is soluble, then Γ is isomorphic to one of K_5 , O_3 and $K_{5,5} - 5K_2$ for c = 5, or to O_4 for c = 7.

PROOF. Assume that $G \leq S_c$ and H is a soluble intransitive subgroup of S_c .

Case 1. H is fixed-point-free on ${\bf c}$. In this case, it is shown that $d_j \le 4$ for $1 \le j \le t$ by checking all possible H^{Δ_j} in Lemma 3.7. Thus $t \le 4$ and $c = \sum_{j=1}^t \le 8$ by Lemma 3.4. Further, Γ is of valency three or four by considering the possible two-transitive affine group $H^{\Gamma(\alpha)}$, and the fact that Γ is not (G,s)-transitive for $s \ge 4$, by Lemma 2.11, if Γ is of valency four.

Assume that Γ is valency three. Then (c, G, H) is one of $(5, S_5, S_3 \times S_2)$, $(5, A_5, (S_3 \times S_2) \cap A_5)$, $(6, A_6, (S_4 \times S_2) \cap A_6)$, $(6, S_6, S_4 \times S_2)$ and $(7, A_7, ([2^2] \times S_3) \cap A_7)$. If c = 7, then $|V\Gamma| = |G: H| = 210$, but there is no cubic arc-transitive graph with order 210 by [4], which contradicts the hypothesis. Each of the first four triples imply that G is primitive on $V\Gamma$, so then, by [26], the only possible case is that c = 5 and $\Gamma \cong O_3$.

Assume that Γ is valency four. Then (c,G,H) is one of $(6,A_6,(S_4\times S_2)\cap A_6)$, $(7,S_7,S_4\times S_3)$, $(7,A_7,(S_4\times S_3)\cap A_7)$, $(7,A_7,A_4\times A_3)$, $(7,S_7,A_4\times S_3)$, $(7,S_7,S_4\times A_3)$ and $(7,A_7,A_4\times A_3)$. Each of the first three triples imply that G is primitive on $V\Gamma$, so then, by [26], c=7 and $\Gamma\cong O_4$. Each of the last four triples imply that Γ is $(A_7,3)$ -transitive. Thus suppose that $G=A_7$ and $F=A_7$ and $F=A_7$. Then, for $F=A_7$ 0, calculation shows that $F=A_7$ 1, $F=A_7$ 2, $F=A_7$ 3, $F=A_7$ 3, $F=A_7$ 4, and there is no $F=A_7$ 5, with $F=A_7$ 5, which contradicts the hypothesis.

Case 2. *H* fixes exactly one point in **c** and (c, G, H) is one of $(5, S_5, S_4)$, $(5, A_5, A_4)$, $(5, S_5, A_4)$, $(7, S_7, Z_3^2 \times D_8)$, $(7, A_7, Z_3^2 \times Z_4)$, $(7, S_7, S_4 \times S_2)$, $(7, S_7, A_4 \times S_2)$, $(7, S_7, S_4)$, $(7, A_7, S_4)$, $(7, A_7, A_4)$. The first two triples yield $G = K_5$. The third triple yields $\Gamma \cong K_{5.5} - 5K_2$.

Thus assume that c = 7. The first two triples for c = 7 imply that Γ is of valency nine, while the others yield that Γ is of valency three or four and $H \neq A_4 \times S_2$. Assume that H fixes the point 7 in 7.

Suppose that Γ is of valency nine. Then, for $\beta \in \Gamma(\alpha)$, $H_{\beta} = G_{\alpha\beta} = D_8$ or Z_4 and $N_G(G_{\alpha\beta})$, contained in S_6 , is a Sylow two-subgroup of S_7 . Thus $\langle x, H \rangle \leq S_6$ and so $\langle x, H \rangle \neq G$ for each $x \in N_G(G_{\alpha\beta})$, which contradicts the hypothesis.

Suppose that Γ is of valency three. Then $|V\Gamma|$ is even. By inspecting the stabilizers of cubic arc-transitive graphs, the only possible case is that $G = S_7$ and $H = S_4$, which leads to a similar contradiction to that above by considering the normalizer of an arc stabilizer in G.

Suppose that Γ is of valency four. Then there are three triples, say, $(7, S_7, S_4)$, $(7, A_7, S_4)$, $(7, A_7, A_4)$. Since H fixes 7 and is transitive on $\mathbf{6}$, so $G_{\alpha\beta}$ fixes 7 and has two orbits on $\mathbf{6}$ with size three. Then each $x \in N_G(G_{\alpha\beta})$ also fixes 7, yielding $\langle x, H \rangle \neq G$, which contradicts the hypothesis.

Case 3. H fixes at least two points in \mathbf{c} and (c, G, H) is one of $(7, S_7, S_4)$, $(7, A_7, A_4)$, $(6, S_6, S_4)$, $(6, A_6, A_4)$. Let $\beta \in \Gamma(\alpha)$. Each of these four cases yields that $H \leq S_4$ and $N_G(G_{\alpha\beta}) \leq S_4 \times S_{c-4}$. Thus there is no $x \in N_G(G_{\alpha\beta})$ with $\langle x, H \rangle = G$, which contradicts the hypothesis.

Lemma 4.4. If H is intransitive on \mathbf{c} and H has only one insoluble composition factor, then $\Gamma \cong K_c$, $K_{c,c} - cK_2$ or the graph in Example 2.7.

PROOF. Assume that $G \leq S_c$, H is intransitive on \mathbf{c} and H has only one insoluble composition factor. Assume that H^{Δ_1} is insoluble and each H^{Δ_j} is soluble for $j \geq 2$. Then, by Lemmas 3.4 and 3.7, $c_2 := \sum_{i=2}^t \leq 8$.

Case 1. Assume that $d_1 > 9$, or $d_1 = 9$ and $c_2 \le d_1 - 2$. In this case, since A_{d_1} is not a simple group of Lie type, $H^{\Gamma(\alpha)} = G_{\alpha}^{\Gamma(\alpha)} \cong S_{d_1}$ or A_{d_1} , by checking possible H^{Δ_1} in Lemma 3.7. In particular, Γ is of valency d_1 . Further, by Lemma 2.11, Γ is not (G,s)-transitive for $s \ge 4$. Let $\beta \in \Gamma(\alpha)$. Then $G_{\alpha\beta}^{[1]} = 1$ by Lemma 2.9. Recalling that $(G_{\alpha}^{[1]})^{\Gamma(\beta)} \le G_{\alpha\beta}^{\Gamma(\beta)} \cong G_{\alpha\beta}^{\Gamma(\alpha)}$ and $G_{\alpha} = G_{\alpha\beta}^{[1]} \cdot (G_{\alpha}^{[1]})^{\Gamma(\beta)} \cdot G_{\alpha}^{\Gamma(\alpha)} = G_{\alpha}^{\Gamma(\alpha)}$, $G_{\alpha\beta} \cong S_{d_1-1}$ or A_{d_1-1} . Suppose that some $d_j \ne 1$. Assume that $d_2 \ge \cdots \ge d_r > d_{r+1} = \cdots = d_t = 1$ for a suitable $r \ge 2$. Then $H = \Gamma$ fixes set-wise a subset $\Delta = \Delta_2 \cup \cdots \cup \Delta_r$ of \mathbf{c} . Noting that $|\Delta| \le 8 < d_1 - 1$, $L := (H^{\Delta_2} \times \cdots \times H^{\Delta_r}) \cap H \le G_{\alpha}^{[1]} \le G_{\alpha\beta} \le H$ and L has no fixed point on Δ , this implies that each $x \in N_G(G_{\alpha\beta})$ also fixes Δ set-wise, and hence $\langle x, H \rangle \ne G$, which contradicts the hypothesis.

Assume that $d_j = 1$ for $t \ge j \ge 2$. Then $H = G_{\Delta_1}$ and $G_{\alpha\beta}$ fixes a δ in Δ_1 . Let $\Delta_1 = \mathbf{d_1}$ and $\delta = d_1$. Then $N_G(G_{\alpha\beta}) \le S_{d_1-1} \times Sym(\{d_1, \delta_1 + 1, \dots, c\})$. Thus $\langle x, H \rangle \ne G$ for $x \in N_G(G_{\alpha\beta})$ with $x^2 \in G_{\alpha\beta}$ unless $c - d_1 = 1$. It follows that $c = d_1 + 1$ and either $\Gamma \cong K_{c,c}$ if $H = A_{c-1}$ and $G = S_c$ or $\Gamma = K_c$ otherwise.

- Case 2. Assume that $5 \le d_1 \le 8$, or $d_1 = 9$ and $c_2 = 8$. By Lemma 3.7, noting that |G:H| is square-free, $d_1 \le 8$ and three cases arise.
- (1) H is maximal in G and H is one of $S_{c-1} \cap G$ for c = 6 and T, $(S_5 \times S_2) \cap G$ for c = 7, $(S_6 \times S_4) \cap G$ for c = 10, $(S_7 \times S_4) \cap G$ or $S_8 \times S_3$ for c = 11. Then $\Gamma = K_c$ for c = 6, T follows from [26].
- (2) t=2 or 3, $d_2>1$ and H is one of $(S_8\times Z_3^2\rtimes D_8)\cap G$ for c=14, $(A_8\times S_3)\cap G$ or $(S_8\times A_3)\cap G$ for c=11, $(S_6\times S_4)\cap G$ for c=11, and $A_5\times S_2$ for c=7. Then $G^{\Gamma(\alpha)}\cong A_{d_1}=\operatorname{PSL}(m,q)$ for suitable m and q, and Γ is of valency d_1 or $q^m-1/(q-1)$. It is easily shown that $N_G(G_{\alpha\beta})\leq \operatorname{Sym}(\mathbf{c}\setminus\Delta_2)\times\operatorname{Sym}(\Delta_2)$. Thus there is no $x\in N_G(G_{\alpha\beta})$ with $\langle x,H\rangle=G$, which contradicts the hypothesis.
- (3) t = 2 or 3, $d_j = 1$ for j > 1, c = c and either $(G, H) = (S_7, A_6)$ or H is one of PGL(2, 5) \cap G for t = 2, and $S_5 \cap G$ for t = 3. The first case, that is, $(G, H) = (S_7, A_6)$, yields $\Gamma \cong K_{7,7} 7K_2$.

Suppose that t = 3. Then either $N_G(G_{\alpha\beta}) \leq \operatorname{Sym}(\Delta_1) \times \operatorname{Sym}(7 \setminus \Delta_1)$ when Γ is of valency six or, for some $\delta \in \Delta_1$, $N_G(G_{\alpha\beta}) \leq \operatorname{Sym}(\Delta_1 \setminus \{\delta\}) \times \operatorname{Sym}((7 \setminus \Delta_1)) \cup \{\delta\})$ when Γ is of valency five. It is easily shown that there is no $x \in N_G(G_{\alpha\beta})$ with $x^2 \in N_G(G_{\alpha\beta})$ and $\langle x, H \rangle = G$, which contradicts the hypothesis.

Assume that t=2 and $H=\operatorname{PGL}(2,5)\cap G$. Then $H\leq\operatorname{Sym}(\Delta_1)$. If Γ is of valency five, then $G_{\alpha\beta}\cong\operatorname{S}_4$ or A_4 is transitive on Δ_1 , and so $\operatorname{N}_G(G_{\alpha\beta})\leq\operatorname{Sym}(\Delta_1)$ yields a similar contradiction to that above. Thus Γ is of valency six. It is easy to see that Γ is $(A_7,2)$ -arc-transitive. Then, replacing G by $\operatorname{soc}(G)$ if necessary, $G_{\alpha\beta}\cong Z_5\rtimes Z_2$, and $G_{\alpha\beta}$ fixes a point $\delta\in\Delta_1$. Set $\Delta_1=\mathbf{6}$, $\delta=6$ and $G_{\alpha\beta}=\langle\sigma,\tau\rangle$, where $\sigma=(1\ 2\ 3\ 4\ 5)$ and $\tau=(1\ 5)(2\ 4)$. Then $\operatorname{N}_G(G_{\alpha\beta})=\langle\sigma,\pi\rangle\cong Z_5\rtimes Z_4$, where $\pi=(1\ 4\ 5\ 2)(6\ 7)$. It is easy to show $\langle x,H\rangle=A_7$ and $x^2\in G_{\alpha\beta}$ for $x\in\operatorname{N}_G(G_{\alpha\beta})\backslash H$, and $x=h\pi$ for some $h\in G_{\alpha\beta}$. Then $\Gamma\cong\operatorname{Cos}(A_7;A_5,A_5\pi A_5)$, as in Example 2.7.

Lemma 4.5. If H is an intransitive subgroup of S_c and H has at least two insoluble composition factors, then $\Gamma \cong O_k$, $k \in \{6, 9, 10, 12, 36\}$.

PROOF. Assume that H is intransitive on \mathbf{c} and H has at least two insoluble composition factors. By Corollary 2.10, H has exactly two insoluble composition factors. Consider the restrictions of H on its orbits Δ_j on \mathbf{c} . Then one or two of those restrictions are insoluble, and the others are soluble.

Suppose that H has two isomorphic insoluble composition factors. Then $H^{\Gamma(\alpha)} = G_{\alpha}^{\Gamma(\alpha)}$ is an affine two-transitive group. By Lemmas 3.4 and 3.7, t = 2, $d_1 = 2a$, $d_2 = 1$, $H = (S_a \wr S_2) \cap G$ and $G = S_{2a+1}$ or A_{2a+1} , where $a \in \{6, 9, 10, 36\}$. But such an H can not have an insoluble affine quotient, which contradicts the hypothesis.

Therefore, H has two nonisomorphic insoluble composition factors. Then $H^{\Gamma(\alpha)} = G_{\alpha}^{\Gamma(\alpha)}$ is an almost simple two-transitive group. Further, by Lemma 3.7, assume that H^{Δ_1} and H^{Δ_2} is insoluble and any other H^{Δ_j} is soluble. Assume, further, that $d_1 = |\Delta_1| \ge d_2 = |\Delta_2|$. Noting that $H \le S_{d_1} \times \cdots \times S_{d_t} \cap G$ and |G:H| is square-free, $f(c; d_1, \ldots, d_t)$ is square-free. Then $d_1 > d_2$ and $H^{\Delta_1} = A_{d_1}$ or S_{d_1} by Lemma 3.4. So $G_{\alpha}^{\Gamma(\alpha)} \cong A_{d_1}$ or S_{d_1} .

Assume that $d_1 \leq 8$. Then either $A_{d_1} \times \cdots \times A_{d_r} \leq H \leq S_{d_1} \times \cdots \times S_{d_r}$ for some $2 \leq r \leq t$ such that $d_1, \ldots, d_r \geq 2$ and $d_j = 1$ for j > r or the pair $(H^{\Delta_1}, H^{\Delta_2})$ appears in Table 2 for $c = d_1 + d_2$ and in Table 8 for $c = d_1 + d_2 + 1$. By calculation, these two cases yield t = 2 = r, $H = (S_6 \times S_5) \cap G$ for c = 11 and $A_8 \times A_6 \leq H \leq S_8 \times S_6$ for c = 14. If c = 14, then $soc(G_{\alpha}^{\Gamma(\alpha)}) \cong A_8$ and the other insoluble composition factor of H should be A_7 or PSL(3, 2), which contradicts the hypothesis. Thus c = 11, and c = 11 and c =

Assume that $d_1 \geq 9$. Then Γ is of valency d_1 , and Γ is not (G, s)-transitive for $s \geq 4$ by Lemma 2.11, so $G_{\alpha\beta}^{[1]} = 1$ by Lemma 2.9. Then, by (2.1), we conclude that $H = G_{\alpha} = G_{\alpha\beta}^{[1]} \cdot (G_{\alpha}^{[1]})^{\Gamma(\beta)} \cdot G_{\alpha}^{\Gamma(\alpha)} \cong (A_{d_1} \times A_{d_1-1}) \rtimes Z_2^l$ for some $l \leq 2$. In particular, $d_2 = d_1 - 1$. By Lemma 3.4, $f(d_1 + d_2; d_1, d_2) = (2d_1 - 1)!/(d_1!(d_1 - 1)!)$ is squarefree. Then $d_1 \in \{9, 10, 12, 36\}$ by Corollary 3.2. It is easy to see that $|G:H| = c!/(d_1!(d_1-1)! \cdot 2^{l-i})$ for i=1 or 2. Since |G:H| is square-free, calculation indicates that $1 \leq i \leq l$ and $c = 2d_1 - 1$. It implies that $H = (S_{d_1} \times S_{d_1-1}) \cap G$ is maximal in G. Then $\Gamma \cong O_{d_1}$ follows from [26].

References

- [1] R. W. Baddeley, 'Two-arc transitive graphs and twisted wreath products', *J. Algebraic Combin.* **2** (1993), 215–237.
- [2] N. Biggs, Algebraic Graph Theory (Cambridge University Press, New York, 1992).
- [3] Y. Cheng and J. Oxley, 'On weakly symmetric graphs of order twice a prime', *J. Combin. Theory B* **42** (1987), 196–211.
- [4] M. Conder and P. Dobcsányi, 'Trivalent symmetric graphs on up to 768 vertices', J. Combin. Math. Combin. Comput. 40 (2002), 41–63.
- [5] J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker and R. A. Wilson, *Atlas of Finite Groups* (Oxford University Press, Eynsham, 1985).
- [6] J. D. Dixon and B. Mortimer, *Permutation Groups* (Springer, New York–Berlin–Heidelberg, 1996).

- [7] X. G. Fang and C. E. Praeger, 'Finite two-arc transitive graphs admitting a Suzuki simple group', Comm. Algebra 27 (1999), 3727–3754.
- [8] X. G. Fang and C. E. Praeger, 'Finite two-arc transitive graphs admitting a Ree simple group', Comm. Algebra 27 (1999), 3755–3769.
- [9] A. Gardiner, 'Arc transitivity in graphs', Quart. J. Math. Oxford (2) 24 (1973), 399–407.
- [10] A. Hassani, M. Iranmanesh and C. E. Praeger, 'On vertex-imprimitive graphs of order a product of three distinct odd primes', J. Combin. Math. Combin. Comput. 28 (1998), 187–213.
- [11] A. Hassani, L. R. Nochefranca and C. E. Praeger, 'Two-arc transitive graphs admitting a two-dimensional projective linear group', J. Group Theory 2 (1999), 335–353.
- [12] M. A. Iranmanesh and C. E. Praeger, 'On non-Cayley vertex-transitive graphs of order a product of three primes', J. Combin. Theory B 81 (2001), 1–19.
- [13] A. A. Ivanov and C. E. Praeger, 'On finite affine 2-arc transitive graphs. Algebraic combinatorics', Eur. J. Combin. 14(5) (1993), 421–444.
- [14] W. M. Kantor, 'Homogeneous designs and geometric lattices', *J. Combin. Theory A* **38** (1985), 66–74.
- [15] C. H. Li, 'A family of quasiprimitive 2-arc-transitive graphs which have non-quasiprimitive full automorphism groups', Eur. J. Combin. 19 (1998), 499–502.
- [16] C. H. Li, 'On automorphism groups of quasiprimitive 2-arc transitive graphs', J. Algebric Combin. 28 (2008), 261–270.
- [17] C. H. Li, Z. Liu and Z. P. Lu, 'The edge-transitive tetravalent Cayley graphs of square-free order', Discrete Math. 312 (2012), 1952–1967.
- [18] C. H. Li, Z. P. Lu and D. Marušič, 'On primitive permutation groups with small suborbits and their orbital graphs', J. Algebra 279 (2004), 749–770.
- [19] C. H. Li, Z. P. Lu and G. X. Wang, 'Vertex-transitive cubic graphs of square-free order', J. Graph Theory 75 (2014), 1–19.
- [20] C. H. Li and A. Seress, 'The primitive permutation groups of square-free degree', Bull. Lond. Math. Soc. 35 (2003), 635–644.
- [21] C. H. Li and A. Seress, 'On vertex-primitive non-Cayley graphs of square-free order', *Des. Codes Cryptogr.* 34 (2005), 265–281.
- [22] D. Marušič and P. Potočnik, 'Classifying 2-arc-transitive graphs of order a product of two primes', Discrete Math. 244 (2002), 331–338.
- [23] A. A. Miller and C. E. Praeger, 'Non-Cayley vertex-transitive graphs of order twice the product of two odd primes', J. Algebraic Combin. 3 (1994), 77–111.
- [24] C. E. Praeger, 'An O'Nan-Scott theorem for finite quasiprimitive permutation groups and an application to 2-arc transitive graphs', J. Lond. Math. Soc. 47 (1992), 227–239.
- [25] C. E. Praeger, 'On a reduction theorem for finite bipartite 2-arc transitive graphs', Australas. J. Combin. 7 (1993), 21–36.
- [26] C. E. Praeger and J. Wang, 'On primitive representations of finite alternating and symmetric groups with a 2-transitive subconstituent', J. Algebra 180 (1996), 808–833.
- [27] C. E. Praeger, R. J. Wang and M. Y. Xu, 'Symmetric graphs of order a product of two distinct primes', J. Combin. Theory Ser. B 58 (1993), 299–318.
- [28] C. E. Praeger and M. Y. Xu, 'Vertex-primitive graphs of order a product of two distinct primes', J. Combin. Theory Ser. B 59 (1993), 245–266.
- [29] G. Sabidussi, 'Vertex-transitive graphs', Monatsh. Math. 68 (1964), 426–438.
- [30] A. Seress, 'On vertex-transitive, non-Cayley graphs of order pqr', Discrete Math. 182 (1998), 279–292.
- [31] J. M. Turner, 'Point-symmetric graphs with a prime number of points', *J. Combin. Theory* **3**(2) (1967), 136–145.
- [32] R. J. Wang and M. Y. Xu, 'A classification of symmetric graph of order 3p', J. Combin. Theory B 58 (1993), 197–216.
- [33] R. Weiss, 'Groups with a (B, N)-pair and locally transitive graphs', J. Nagoya Math. 74 (1979), 1–21.

- [34] R. Weiss, 's-transitive graphs, Algebraic methods in graph theory', Colloq. Soc. Janos Bolyai 25 (1981), 827–847.
- [35] R. Weiss, 'The nonexistence of 8-transitive graphs', Combinatorica 1 (1981), 309–311.

GAI XIA WANG, Department of Applied Mathematics, AnHui University of Technology, Ma'an shan 243002, PR China e-mail: wgx075@163.com

ZAI PING LU, Center for Combinatorics, LPMC, Nankai University, Tianjin 300071, PR China e-mail: lu@nankai.edu.cn