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Abstract. Let G be a connected reductive group defined over a local non-Archimedean fieldF

with residue fieldFq ; let P be a parahoric subgroup with associated reductive quotientM. If σ
is an irreducible cuspidal representation ofM(Fq) it provides an irreducible representation ofP
by inflation. We show that the pair(P, σ ) is anS-type as defined by Bushnell and Kutzko. The
cardinality of S can be bigger than one; we show that if one replacesP by the full centraliser
P̂ of the associated facet in the enlarged affine building ofG, andσ by any irreducible smooth
representation̂σ of P̂ which containsσ on restriction then(P̂ , σ̂ ) is ans-type for a singleton set
s. Our methods employ invertible elements in the associated Hecke algebraH(σ ) and they imply
that the appropriate parabolic induction functor and its left adjoint can be realised algebraically via
pullbacks from ring homomorphisms.
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Introduction

Let G = G(F ) be the group of rational points of a connected reductive group
defined over a local non-Archimedean fieldF . Let B(G) be the set of classes
of irreducible supercuspidal representations of rational Levi components of ra-
tional parabolic subgroups ofG under the equivalence relation arising fromG-
conjugation and twisting by unramified quasicharacters of Levi components. If
π is an irreducible representation ofG, then it determines a unique element of
B(G) which we denote byI(π) and call theinertial equivalence class ofπ . (This
notation and definition is taken from [BK2].)

Now let S be a subset ofB(G). In [BK2] the authors define the notion of an
S-type. This is an ordered pair(K, ρ) whereK is a compact open subgroup ofG
andρ is an irreducible smooth representation ofK with the following property:
an irreducible smooth representationπ of G containsρ if and only if the inertial
equivalence classI(π) of π belongs toS. The authors show thatS-types have
many remarkable properties. In particular, ifV denotes the space ofρ and(π,V)
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136 LAWRENCE MORRIS

is a smooth representation ofG let Vρ = HomK(V,V). Then the functorV 7→ Vρ

induces an equivalence of categories between the categorySRρ(G) of smooth
representations ofG generated by theirρ-isotypic component and the category of
(unital)H(ρ)-modules. HereH(ρ) = H(G, ρ) denotes the algebra ofρ̌-spherical
functions onG with compact support, wherěρ is the contragredient ofρ. The pro-
totype (due to Borel [B]) of allS-types is the pair(B,1) whereB is the centraliser
of an alcove of the enlarged building forG, and 1 denotes the trivial representation
of B. (In general the full centraliser of an alcove may be larger than the Iwahori
subgroup that it contains.) Bushnell and Kutzko provide many other non trivial
examples ofS-types in [BK2] arising from their work onGLn andSLn.

The prototype in the preceding paragraph can be generalised substantially in
the following manner. LetP be a parahoric subgroup ofG with reductive quotient
M, and letσ be an irreducible cuspidal representation ofM. One can viewσ as
a representation ofP by inflation. Theorem 4.8 of this paper asserts that the pair
(P, σ ) is anS-type whereS is a finite set; in factS = {[L, ρ1], . . . , [L, ρn]}
whereL = L(F ) is the group of rational points of a canonically chosen Levi
component. We remark that the numbern can be larger than 1. The proof proceeds
by associating toP a Levi componentL in a canonical way; in fact ifP is any
parabolic subgroup containingL with a Levi decompositionP = L · U there is an
Iwahori decomposition(P ∩U(F ))×(P ∩L)×(P ∩U−(F ))→ P . Further,L∩P
is a maximal parahoric subgroup ofL. The proof of Theorem 4.8 then depends on
the following facts:

(i) Any irreducible smooth representation ofG which contains a cuspidal repres-
entation of a maximal parahoric subgroup must be supercuspidal, and
induced from an open, compact mod centre subgroup ofG. (See Proposition
4.1.)

(ii) The intertwining algebraH(G, σ ) contains invertible elements which are
supported on double cosetsPdP whered is strongly (P,P) -positive. This
is pointed out in Sections 2.4 and 3.3.

(iii) There is an isomorphism of isotypic componentsVσ → (VU)
σU, for any

smooth representation(π,V) which contains the typeσ . Here as usualVU
denotes the (unnormalised) Jacquet module. This is pointed out in Lemma
3.6; to prove it one uses property (ii) above. We remark that results of this sort
go back to Jacquet; see [Cs].

As a variation, letP̂ be the full centraliser inG of the facet associated toP ,
and σ̂ be an irreducible representation ofP̂ /U which containsσ . We show that
(P̂ , σ̂ ) is ans-type for a singleton sets; see 4.7, 4.9. Lemma 3.9 is the vehicle
we use to prove this; it is of independent interest. (See also the remark following
Theorem 4.9.)

Property (iii) above has another consequence. We have the algebrasH(G, σ ),
H(L, σU), and their respective categories of unital modules. On the other hand we
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LEVEL ZEROG-TYPES 137

have the categoriesSRσ (G), andSRσU(L), and the categorical equivalences men-
tioned above. Theorem 4.8 implies that the (unnormalised) induction functor and
(the projection of) the Jacquet functor provide adjoint functors betweenSRσ (G),
andSRσU(L). (See Theorem 4.10.) Theorem 4.12 says that these functors can be
realised algebraically via (pullbacks of) a ring homomorphism fromH(L, σU) to
H(G, σ ). This amounts to showing that one can apply Corollary 8.4 of [BK2].

Corrigenda

(i) The group denoted byH in [M]3.15 and elsewhere in that paper, should be
replaced by the groupH = kerν′ in 1.6 below.

(ii) Contrary to what is asserted inop. cit. 3.15 the groupM′ ∩ P need not be
special inM′; see 1.7 below. This does not affect the proofs. In particular, in
op. cit.4.14 the subgroupMJ need not be special.

Notation and Conventions

F : complete non-Archimedean field;
o: ring of integers ofF ;
p: maximal ideal ofo;
Fq : residue fieldo/p (q = pn, wherep is some prime number);
G: connected reductiveF -group;
Z: maximalF -split torus in the centre ofG;
T: maximalF -split torus inG;
ZG(X) (resp.NG(X)): centraliser (resp. normaliser) inG of X.

In general ifV is an algebraicF -variety we shall writeV for the setV(F ); we
make an exception for parabolic subgroups and their unipotent radicals:

Remark. In this paper, the expression ‘parabolic subgroup’ will always mean
‘F -parabolic subgroup’. IfP is such a group with unipotent radicalU we shall
writeP(F ),U(F ) respectively for theirF -rational points. IfL is a Levi component
for P, we shall writeL = L(F ). We remark that all Levi decompositions will be
assumed to be defined overF .

In fact, we shall writeP,Q, etc., for parahoric subgroups ofG = G(F ).

Other notation is explained as needed.

1. Preliminaries

1.1. We begin with a quick review of the relevant aspects of the theory of reductive
groups. Thus letG denote a connected reductive group defined overF and let8
be the set of relative roots with respect to some maximalF -split torusT; when
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138 LAWRENCE MORRIS

necessary we shall write1 for the set of simple roots corresponding to the choice
of a minimal parabolic subgroupP0.

1.2. LetP be a parabolic subgroup with a Levi decompositionP = L · U.

THEOREM. (i) There is a unique parabolic subgroupP− containingL with Levi
decompositionP− = L · U− with the property thatU ∩ U− = {1}.

(ii) LetP− be as in(i). There is anF -isomorphism of varietiesU− × L×U→
P− · P induced by the multiplication map; the image is a Zariski open subset inG.

Proof. Except for theF -statements, (i) and (ii) are contained in [Bo] 14.21. IfP
is defined overF so isP− ([Bo] 20.5). The multiplication map is defined overF ,
so the rest of (ii) follows since the image of anF -morphism is anF -variety ([Bo]
AG14.3). 2
DEFINITION 1.3. We shall call the groupP− the opposite parabolic subgroup to
P (with respect toL).

PROPOSITION 1.4.If S is anF -split subtorus ofT thenZG(S) is the Levi com-
ponent of a parabolic subgroup ofG.

Proof.This is Proposition 20.4 of [Bo]. 2
1.5. We takeT,8,P0,1 just as above, and we writevW for the spherical Weyl
group of the root system8. Let6 be the set of affine roots associated to a reduced
root systemv6 in the same real vector space as the root system8 with affine Weyl
groupW ′. We assume thatv6 and8 have the same Weyl group. This is equivalent
to assuming that ifα ∈ 8 thenλ(α)α ∈ v6 for a positive real numberλ and that
the mapα → λ(α)α is onto. A typical elementa of 6 can be written asDa + k
whereDa ∈ v6 andk is an integer; we refer toDa as thegradientof a. There is
also a homomorphismD:W ′ → vW .

DEFINITION. An échelonnageE ⊂ 8 ×6 of 8 by6 is a subset which satisfies
the following properties:

(E1) if (α, a) ∈ E thenα is a positive multiple ofDa;
(E2) if w ∈ W ′ and(α, a) ∈ E then(Dw(α),wa) ∈ E ;
(E3) the projection maps fromE to8,6 are onto.

Remarks. (i) If (α, a) ∈ E we say thatα,Da areassociated.
(ii) Let 8nd denote the set of non-divisible roots in8. Then (E1) and (E3) imply

that there is a bijectionρ: v6→ 8nd such thatα = µαρ(α) with µα > 0.

1.6. Now we quickly review some aspects of Bruhat–Tits theory; as a general
reference we suggest [T]. The groupG = G(F ) is naturally furnished with the
structure of a second countable locally compact Hausdorff totally disconnected
group (= t.d. group, in brief). The work of Bruhat and Tits associates to(G,T)
an échelonnageE ⊂ 8 × 6. We remind the reader that the ambient vector space
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V on which the roots in either8 or v6 act as functions is the real dual of the
subspace ofXF(T)⊗R generated by8, whereXF(T) denotes the lattice of rational
characters. In turn, from this and a choice of simple affine roots in6 one obtains
a normal subgroupG′ in G, a compact open subgroupB in G′ and a subgroup
N ′ = N ′G′(T ) in G′, and a set of reflectionsS in W ′ such that(G′, B,N ′, S) is
an affine Tits system with respect to the system6. (For the definition ofG′ see
[BT2]5.2.11.) In particular there is a surjectionν′:N ′ → W ′. We denote the kernel
of ν′ byH ; it is a compact normal subgroup of the groupZG(T)(F ). We note that
N ′ ⊆ N = NG(T ), and the triple(G,B,N) is ageneralisedaffine BN-pair in the
sense of [M]3.2. The generalised affine Weyl group here is the quotientW = N/H ;
we writeνW :N → W for the natural projection.

Any subgroup conjugate inG (or G′) to B is called anIwahori subgroup of
G. The affine Tits system(G′, B,N ′, S) gives rise to a polysimplicial complex on
whichG andG′ act, preserving the simplicial structure. The geometric realisation
of this complex is called theaffine building associated to(G′, B,N ′, S); we denote
it by I. In fact I is obtained by pasting together copies (calledapartments) of an
affine Euclidean spaceA whose underlying space of translations isV above. The
points ofA correspond tovaluationsof (G,ZG(T ), (Uα)α∈8). For more on this
see [BT1]6.2. In particular,A embeds intoI. The groupN ′ acts onA as a group
of affine automorphisms with kernelH . Furthermore, the affine root system6
partitionsA in the usual way intofacets; it is this partition which gives rise to the
underlying simplicial structure ofI. Thus the facets ofA are facets ofI and any
facet ofI is a translate by an element ofG′ of a facet ofA. We remark that the
choice of a different apartment amounts to choosing a differentT; the resulting
E is the same. TheG′-centralisers of facets inI are calledparahoric subgroups;
in particular the centralisers of chambers (facets of maximal dimension) inI are
conjugates ofB. Any parahoric subgroup is a compact open subgroup ofG. See
[BT1] 6.2, 6.5, and Section 2. Finally we haveH = B ∩N ′.
WARNING. The subgroupH that we employ here isnot theH employed in[BT1,
BT2]. The subgroup that we denote byH is denoted byH 0 in [BT2]4.6.3(4),or by
Zo(O\) in ibid. 5.2.10.

For many purposes theenlarged buildingI1 is a more convenient object; in
particular it guarantees that the centralisers inG of facets will be compact open
subgroups ofG. It is defined as follows. LetV 1 denote the dual ofXF(G) ⊗ R
where as usualXF(G) is the group of rational characters ofG. ThenI1 = I × V 1

and the action ofG onI (which we have not explicitly defined) is extended to one
onI1 by definingθ :G× V 1→ V 1 by θ(g)(χ) = −ω(χ(g)), for all χ ∈ XF(G).

We identify I with I × {0}, and we writeG1 for the stabiliser inG of this
set. A facetF in I corresponds to a facetF 1 = F × V 1 in I1. We write P̂F

for the centraliser inG of the facetF 1 ⊆ I1. It is also the centraliser inG1 of
F 1, and it is the centraliser inG of the ‘facet’ F × {0} in I1. We always have
G′ ⊆ G1; if G is semisimple we haveG = G1, andI = I1. We note that the group
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140 LAWRENCE MORRIS

G′ ⊆ G = G(F ) is the subgroup ofG generated by the connected centralisers
(= parahoric subgroups) of facets of the enlarged buildingI1.

We haveG/G′ = N/N ′. We set� = N/N ′. LetW = NG(T)(F )/H be the full
affine Weyl group associated to(G,T). It is a semidirect productW ′ o �̃ where
�̃ is the subgroup of elements stabilising some specified alcove inI1; in particular
under the obvious projection mapW → W/W ′ the group�̃ maps isomorphically
to�. The groupN acts onA by affine transformations; this defines a mapν:N →
Aff (A) (as in [BT1]), which factors throughνW . Indeed the generalised affine Weyl
groupW is an extension ofvW by the groupD = ZG(T)(F )/H ; hereD is an
extension of the latticeZG(T)(F )/kerνW by the finite Abelian group kerνW/H .

1.7. The choice ofB amounts to choosing a set of simple affine roots5 in 6,
and one can attach alocal Dynkin diagramto this in a way similar to the usual
case of ordinary root systems. For example ifG is split this diagram is just the
usual completed Dynkin diagram. IfF is a facet inA ⊂ I we take the set6F of
affine roots vanishing onF . The set of roots8F ∈ 8 associated to this set is a
not necessarily closed subroot system of8: for example, ifα ∈ 8F it need not
be the case that 2α ∈ 8F ; we denote its closure byc8F . We remark that it can
happen thatc8F = 8 if F is a nonspecial vertex, even if8 is reduced; ifG is
split this does not occur. In particular, letF be a facet in the closure of the chamber
(alcove) corresponding toB. ThenF also corresponds to a subsetJ = JF ⊆ 5
giving rise to afinite reflection groupWJ and a subset of5; the groupWJ is
generated by the fundamental reflections associated to the elements ofJ . ThenWJ

is the Weyl group for8F (but not necessarilyc8F ), and the Dynkin diagram for
8F is obtained from the local Dynkin diagram by striking out all the nodes not
corresponding to elements ofJ and all edges meeting such a node. Each of these
objects only depend onF ; we sometimes write8J instead. See [T] Section 1 and
[BT1] 6.2,6.4.

1.8. The root system8J has the following interpretation. LetP be the parahoric
subgroup centralising the facetF . There is a short exact sequence 0→ U → P →
M → 0 whereU is an open compact pro-p subgroup ofG andM is the group
of Fq-rational points of a connectedFq-reductive groupM. There is an obvious
o-split torus schemeT whose generic fibre isT and whose reduction modFq gives
a maximalFq-split torusT in M. The root system forM with respect toT is then
just8J . See [T] 3.5.1.

1.9. The structure ofP can be described more precisely as follows. First, for
any elementα of 8nd let a(α,F ) be the smallest affine root which is nonnegative
on F and which corresponds toα by the map in 1.5: i.e.ρ(Da(α,F )) = α.
For each affine roota with ρ(Da) = α there is a compact open subgroupUa of
Uα = Uα(F ). LetU+(F ) be the group generated by all theUa(α,F ) for α ∈ 8+nd =
8nd ∩8+ and defineU−(F ) in a similar way. Here8+ denotes the set of positive
roots with respect to1. Finally letN ′(F ) be the subgroup inN ′ which fixesF
pointwise.
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THEOREM. (i)The product map
∏
α∈8+nd Ua(α,F ) → U+(F ) is bijective for every

ordering of the factors, and similarly forU−(F ).
(ii) PF = U−(F ) · U+(F ) ·N ′(F ).
(iii) If F is a chamber, the product map

∏
α∈8nd Ua(α,F )×H → B is a bijection

for every ordering of the product.
(iv) LetU be as in1.8. For eachUa(α,F ) as above letU ∗a(α,F ) = Ua(α,F )∩U and

letH ∗ = H ∩ U . Then the product map
∏
α∈8nd U

∗
a(α,F ) ×H ∗ → U is a bijection

for every ordering of the product.
Proof.Statements (i) and (ii) are proved in 6.4.9 and 7.1.8 of [BT1]. Statement

(iii) is proved in 6.4.48 ofop. cit.Statement (iv) also follows from that result, on
using the concave functionf ∗F of 6.4.23 ofop. cit. 2
1.10. LetP = PJ be as in 1.8. There are then the subroot systems8J ⊂ c8J ⊂ 8.
Sincec8J is closed there is a connected reductiveF -subgroupM ⊂ G containing
T and which has the relative root systemc8J with respect toT. Indeed this group
is generated by those root groupsUα with α ∈ c8J , and byT. (One may have
M = G whenP is maximal but not special.) We letM′ ⊆M(F ) be the subgroup
generated by theUα(F ) with α ∈ c8J , and byH .

PROPOSITION. (i)If P = PF for a facetF in the apartmentA with respect to
T thenP ∩M′ is a parahoric subgroup ofM, and there is a short exact sequence
0→ U ∩M′ → PF ∩M′ → M → 0.

(ii) Similarly, if P̂ = P̂F for a facetF in the apartmentA with respect toT
thenP̂ ∩M′ centralises a facet forM, and there is a short exact sequence

0→ U ∩M′ → P̂F ∩M′ → M̂ → 0.

Proof. Let M′
0 be the group generated by theUα with α ∈ c8J . ThenM′ =

H ·M′
0. Taking the valuated root system(ϕα)α∈8 that gives rise to the affine Tits

system(G′, B,N ′, S) and applying [BT1] 7.6.3 (see also 1.12 below) to the groups
G1 =M′ andG0

1 =M′
0 we see that we obtain a valuated root system onM′. Now

observe that the groupT1 of loc. cit. is just the groupH · (ZG(T)(F ) ∩M′
0). In

particular this enables us to apply Corollary 7.6.5 ofop. cit., which implies (i), and
the proof of (ii) is similar. 2
1.11. There is a bijective correspondence between parahoric subgroups contained
in P and (Fq-rational points of) parabolic subgroups of the groupM. This cor-
respondence is realised byQ 7→ U\Q. This is part (i) of Proposition 5.1.32 of
[BT2].

1.12. We conclude this section by comparing parahoric subgroups of a Levi com-
ponentL = L(F ) (as in 1.2) with parahoric subgroups ofG. Let L be a Levi
component ofG defined by some subset2 of the set of simple roots1 as in
1.3. ThusL = ZG(S) whereS = ⋂

α∈2 kerα. The set2 is a basis for a closed
subroot system8L; indeed this last is the root system for(L,T). Let L′, L1 be
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the analogues forL of G′,G1, and letL0 be the subgroup ofL generated by the
root groupsUα(F ), α ∈ 8L. ThenL′ = H · L0 andL1 = (ZG(T ) ∩ L1)L0.
For the time being letL1 be any subgroup ofL which is generated byL0 and a
subgroupZG(T )1 ⊆ ZG(T ) which containsZG(T )∩L0. According to [BT1]7.6.3
if ϕ = (ϕα)α∈8 is a valuation for(G,ZG(T ), (Uα)α∈8) thenϕL1 = (ϕα)α∈8L is a
valuation for(L1, ZG(T )

1, (Uα)α∈8L).
We writeV (L),A(L),I(L), . . . , etc. to denote the corresponding objects for

L that have been defined previously forG. We also letV 1(L) = ⋂
α∈2 kerα,

where now the intersection is taken in the vector spaceV of 1.6, and we define
V1(L) = V/V 1(L); this last space can be identified withV (L). In particular there
is a natural mapvπ :V → V (L). If we suppose that avW -invariant inner product
has been chosen onV with orthogonal projectionp:V → V 1(L) thenV (L) can
be identified with kerp. As before, we can form the buildingsI(L),I(L1); as
complexes these are the same, with the action ofL extending that ofL1. We then
have the following facts.

(i) Let π be the mapA → A(L) defined byϕ + v → ϕL1 +v π(v). Proposi-
tion 7.6.4 in [BT1]) says that

(a) there is a uniqueL1-equivariant mapπ̃ :L1 · A → I(L1) extendingπ ; the
inverse image of an apartment, half-apartment, wall, is an apartment, half-
apartment, wall inI;

(b) there is a unique actionV 1(L)×L1 ·A→ L1 ·A extending the actionV 1(L)×
A→ A; this action factors through̃π and the quotient map defines a bijection
(L1 · A)/V 1(L)→ I(L1).

Note thatL1 · A has the structure of a polysimplicial complex, inherited from
that of I. The definition of affine roots forI(L1) implies that ifF is a facet in
L1 · A thenπ̃ (F ) lies in a unique facet, but this image is not necessarily a facet.

(ii) Let � ⊆ L1 · A ⊆ I; write P̂� for the pointwise centraliser of�. Then
[BT1]7.6.5 says in particular that

(a) P̂� ∩ L1 ⊆ P̂π̃ (�) (the pointwise centraliser inL1 of π̃(�)), and
(b) if the subgroupZG(T )1 is contained in ker(p ◦ ν) whereν:NG(T )→ Aff (A)

thenP̂� ∩ L1 = P̂π̃(�).
(iii) Now choose a pointϕ ∈ A and consider the affine subspaceϕ+kerp. We
can then formI′ = L0 · (ϕ + kerp) ⊆ I sinceL0 ⊆ G. According to
[BT2]4.2.17,

(a) the restriction of̃π in (i)(a) provides anL0-equivariant isometryπ ′:I′ → I(L)
extending the mapϕ + kerp→ A(L);

(b) the inversej of π ′ provides a bijection(y, v) 7→ j (y)+ v from I(L)×V 1(L)

toL · A;
(c) there is a homomorphismθ(L1):L1 → V 1(L) such that for anỳ ∈ L1, y ∈

I(L), v ∈ V 1(L), ` ·(j (y)+v) = j (` ·y)+v+θ(L1)(`),andθ(L1)|ZG(T ) =
p ◦ ν; θ(L1)|L0 = 0.
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The affine subspaceϕ+kerp inherits a polysimplicial decomposition fromA.
We note that the isometriesπ ′, j take facets to facets.

(iv) Taking L1 = L in (iii) and applying the definitions ofI1,I(L)1 one de-
ducesop. cit. 4.2.18 thatI(L)1 can be isometrically identified with the smallest
subset ofI1 stable byL and containing the ‘enlarged’ apartmentA × V 1. Under
this identification the mapθL for the enlarged buildingI(L)1 which corresponds
to the mapθ in 1.6 forG, is given byθ(L)+ θ ; thusL1 = kerθ(L) ∩ kerθ .

LEMMA 1.13. LetF be a facet inL · A, P̂ = P̂F andP ⊆ P̂ the corresponding
parahoric subgroup. Then

(i) P̂ ∩ L1 = P̂ ∩ L is the centraliser of a facet inI(L)1;
(ii) P ∩ L′ = P ∩ L is a parahoric subgroup inL.

Proof.From 1.12(i) we see that̃π(F ) lies in a facetFL in I(L) andFL identifies
with a facetj (FL) in the complexI′ of 1.12(iii). Applying 1.12(ii) to the groupL′
we see that ifP = PF is a parahoric subgroup inG′ thenP ∩ L′ is the parahoric
subgroup inL′ for the facetj (FL). Now,P ∩L ⊆ kerθ(L)∩ kerθ by 1.12(iii)(c),
henceP ∩ L ⊆ P̂j (FL)×{0}×{0}. But this last group only differs from its connected
component by elements of(ZG(T )∩L1)−H ⊆ ZG(T )−H and these cannot lie
in P in any case. This proves (ii).

Applying 1.12(i)–(iii) in a similar way to the groupL1 we see that ifP̂ ⊂ G1

fixes pointwise a facet inL ·A thenP̂ ∩L1 is the full centraliser inL1 of a facet in
I(L1) = I(L) , hence the centraliser inL1 of a facet inI(L1) = I(L). Thus it is
the centraliser inL of a facet inI(L)1. 2

2. Parabolics and Parahorics

2.1. We now fix a facetF ⊆ A and letP = PF be the associated parahoric
subgroup, with corresponding short exact sequence 0→ U → P → M → 0 as
in 1.8, and associated root system8J = 8F . As in 1.6 we writeP̂ for the full
centraliser inG1 of F . We remark thatP is the group of integral points of the
connected component of a smootho-group schemeP̂ such thatP̂ (o) = P̂ . There
is an exact sequence 0→ U → P̂ → M̂ → 0, whereM̂ is the group of rational
points of a reductiveFq-groupM̂, and the group denotedM in 1.8 is the identity
component ofM̂.

Recall the groupM in 1.10; it has a centre containing anF -split componentS.
The centraliser ofS is a (connected) reductiveF -groupL. Note thatS is theF -split
component ofZL: we haveL ⊃ M so theF -split component ofZL centralises
M and containsS, hence it must beS. Moreover,S = Z(G) if and only if P is
maximal.

THEOREM.The groupL is the Levi component of a parabolic subgroupP = L·U;
setL = L(F ). Furthermore, the following properties hold.
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(i) P̂ ∩ L = Q̂ is the centraliser inL of a vertex ofI(L)1, andQ = P ∩ L is a
maximal parahoric subgroup ofL, which is contained inQ̂. There are short exact
sequences0→ U ∩ L→ Q→ M → 0,0→ U ∩ L→ Q̂→ M̂ → 0.

(ii) LetP be a parabolic subgroup containingL with Levi decompositionP =
L · U. There is a homeomorphism in thep-adic topology

U ∩ U− × P̂ ∩ L× U ∩ U→ P̂ ,

and there is a similar decomposition for the groupP .
Proof. The first assertion follows from 1.4 and the first exact sequence follows

from the observation thatQ contains the subgroupP ∩M′ and this group projects
ontoM as in 1.10. Now letP = L · U be anF - parabolic for whichL is a Levi
component. (Note that ifP is maximal thenP = G trivially satisfies (i), (ii) and
(iii).)

Applying 1.13 we see that̂P ∩ L is the centraliser of a facet in the enlarged
building for L, andQ = P ∩ L is the corresponding parahoric subgroup. The
remark above implies thatM is the connected reductive subgroup ofL associated
to Q as in 1.10. The definition of affine roots forI(L) and the identifications of
1.12 imply immediately that̃π(F ) is a point; in fact it is not difficult to see by
unravelling the definitions in 1.12–13 that it must be a vertex. Alternatively, ifQ

were not maximal inL we could repeat the argument above inL itself to produce
a proper Levi componentK within L with the same properties (with respect toL
and Q). SinceM is the connected reductive subgroup ofL associated toQ we
haveK = ZL(S) = L. It follows thatQ is a maximal parahoric subgroup inL as
claimed. For the last part of (i) observe thatP ∩L containsP ∩M′ which projects
ontoM as in 1.10; similarlyP̂ ∩ L containsP̂ ∩M′ which projects ontoM̂.

To prove (ii) recall from 1.2 that given any parabolic subgroupP = L · U with
opposite parabolic subgroupP− = L · U− there is an isomorphism of varieties
induced by multiplication:U × L × U− → P · P− and the image is an open set
in G. In particular, ifP is defined overF we can takeF -valued points to get a
homeomorphism in thep-adic topology onG. Now consider the restriction

P̂ ∩ U× P̂ ∩ L× P̂ ∩ U− → P̂ ∩ (P · P−)(F ).
To finish we need only show that the image is all ofP̂ . Let x ∈ P̂ ; by (i) we can
find l ∈ P̂ ∩ L with y = l−1x ∈ U . If I is any Iwahori subgroup contained inP
thenU ⊂ I ; this follows immediately from 1.11. Invoking [BT1] 6.4.9, 6.4.48 we
see that (ii) is true if we replacêP by I , hence it is true if we replacêP byU . (See
1.9.) Writey = u1mu2 with m ∈ U ∩ L, u1 ∈ U ∩ U(F ), u2 ∈ U ∩ U−(F ). Thus
x = lu1mu2. SinceP ∩ L normalisesU ∩ U we can rewrite this asx = vlmu2

with v ∈ U ∩ U. The argument forP is the same. 2
Remark2.2. Although(P ∩ L)0 is maximal inL, it is not usually special in

L (as easy examples show), even ifP ∩M(F ) is special inM(F ). (Observe that
P ∩M(F ) = P ∩M′ becauseM′ is toM(F ) asG′ is toG.)
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2.3. We assume thatL is standard with respect to the basis1 of 1.3. ThusL = L2
for some2 ⊆ 1, and we writeS for its split centre. WriteL = L(F ) as usual;
observe thatT ⊆ L. The generalised affine Weyl groupWL = WL,aff for L is an
extension ofD (see 1.6) byW2 = vWρ(2) ⊆ vW .

Let X∗(S) denote the group of rational cocharacters ofS. Recall that there is
a homomorphismHS : S → X∗(S) ⊗ R defined byHS(s)(χ) = −ordF (χ(s)) if
χ ∈ X(S) = XF(S). LetDS = im(HS).

2.4. Now letP,L,Q = P ∩ L be the particular subgroups of Section 2.1. TheF -
split torusSacts onU by conjugation; from this one obtains a set of weights which
we denote by8(P,S)+. The elements of this set can be obtained by considering
the nontrivial restrictions toSof the roots in8+; if we write1(P,S) for the set of
nontrivial restrictions of the elements of the basis1 then each element of8(P,S)+
can be expressed as a linear combination of elements of1(P,S) with nonnegative
coefficients. (As usual, we are assumingL is standard.)

Since the elements of8(P,S) are rational characters forS, obtained by restric-
tion from the elements of8 we can writeS+ = {s ∈ S(F ) = S|HS(s)(α) >
0}, α ∈ 1(P,S). We defineS++ by replacing inequality by strict inequality in the
definition above.

LEMMA. (i) Let s ∈ S+. Then

s(U(F ) ∩U)s−1 ⊆ U(F ) ∩ U ; s−1(U−(F ) ∩ U)s ⊆ U−(F ) ∩ U.
(ii) If s ∈ S++ then

(a) For any pair of compact open subgroupsH1 andH2 of U(F ) there is a non-
negative integern such thatsnH1s

−n ⊆ H2.
(b) For any pair of compact open subgroupsK1 andK2 ofU−(F ) there is a non-

positive integern such thatsnK1s
−n ⊆ K2.

Proof. In (i) we shall only prove the second assertion. We suppose that the
parabolic subgroupP corresponds to the subset2 ⊆ 1. The groupU− is directly
spanned by root groupsUγ whereγ ∈ 8nd andγ = ∑α∈1 mαα with at least one
α /∈ 2 with mα < 0. It suffices to show thats−1Uγ,rs ⊆ Uγ,r if Uγ,r ⊆ Uγ (F ) is a
valuation group. Writeγ =∑α/∈2 mαα+

∑
β∈2 mββ. If s ∈ S then [BT2]5.1.22(2)

implies thats−1Uγ,rs = Uγ,r−∑α/∈2(HS(s),α)mα; the assertion fors ∈ S+ follows
immediately.

For (ii) it is enough to show (c.f. [BK2] 6.14) that ifs ∈ S++ then⋂
n>0

sn(U(F ) ∩ U)s−n = {1},
⋃
n60

sn(U(F ) ∩ U)s−n = U(F ),

or again thatsUγ,rs−1 ( Uγ,r, s
−1Uγ,rs ) Uγ,r, if Uγ,r ⊆ Uγ (F ) ⊂ U(F ) is a

valuation group. This follows from the argument for (i). 2
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2.5. In the language of [BK2]6.16, Lemma 2.4 says that the elements ofS which
lie in S++ arestrongly(P, P )-positive.

3. Invertible Elements in H(G, σ )

3.1. We retain the notation of the previous sections. In particular,P = PJ and we
have the short exact sequence of 1.8: 0→ U → P → M → 0. Let (σ, V ) be an
irreducible cuspidal representation of the groupM = M(Fq) with contragredient
representation(σ̌ , V ∨) This inflates to a representation of the groupP , and we can
form the compactly induced representationc-IndGP (σ̌ ). The intertwining algebra
EndG(c-IndGP (σ̌ )) is isomorphic to the algebraH(G, σ ) = H(σ ) of σ̌ -spherical
functions onG with compact support where the multiplication in the latter is given
by the standard convolution product (see [M] Section 4, or [BK2] Section 2.6). In
[M] this algebra was analysed and described by generators and relations. Roughly
speaking it is an affine Hecke algebra twisted by a group algebra (with a 2-cocycle).

Indeed, letSJ = {w ∈ W | wJ = J } and putNJ = P ∩ N ; thenSJ is a
complement inNW(WJ ) to the finite groupWJ and, moreover, one has

NN(P ∩M′)
NJ

' NW(WJ )

WJ

' SJ .

For this see [M] 4.16, 6.1. It then follows that

W(J, σ ) = W(σ) = {w ∈ SJ | wσ ' σ }
is well defined. (Note thatσ can be viewed as a representation onP ∩M′.)

PROPOSITION.There is a(canonically defined) affine Coxeter subgroupR(σ ) ⊂
W(σ) together with a(canonically defined) complementC(σ ) W(σ ) = R(σ ) o
C(σ ). Moreover, there is a canonical choice for a set of simple roots in the affine
root system associated toR(σ ), once a set of set of positive roots has been chosen
in 6.

This is proved in [M] 7.3. Henceforth we suppose that a set of positive affine
roots for the affine system6 has been chosen, as well as the matching affine basis
in the root system associated withR(σ ).

3.2. The definition ofW(σ) implies the existence of a 2-cocycleµ:W(σ)×W(σ)→
C×, which is nontrivial only onC(σ )× C(σ ) . (See [M] 6.2, 7.11.)

THEOREM.The algebraH(σ ) is generated by elementsTw, w ∈ W(σ) subject
to the following relations. Letw ∈ W(σ), t ∈ C(σ ) and letv be a reflection in
R(σ ) corresponding to a simple roota (chosen as above in3.1).

(i) TwTt = µ(w, t)Twt ;
(ii) TtTw = µ(t,w)Ttw;
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(iii ) TvTw =
{
Tvw, if w−1a > 0;
paTvw + (pa − 1)Tw, if not;

(iv) TwTv =
{
Twv, if wa > 0;
paTwv + (pa − 1)Tw, if not.

Herepa 6= 1 is a nonnegative power ofp (the residue characteristic), and the
elementTw is supported on one double coset of the formP ẇP whereẇ is an
element inN(T ) such thatνW(ẇ) = w.

This is Theorem 7.12 in [M]. We remark thatR(σ ) can be trivial.

3.3. Now consider the translationsT (J ) inW(σ) provided by the group of rational
points of the split centre ofM′. They always provide a lattice inW(σ) of rank at
least as large as the lattice of all translations in the group denotedRJ in [M]7.3.
(See also [M]2.6-2.7.) Further, their definition and that of the 2-cocycleµ, ensure
that µ restricted toT (J ) is always trivial. (See remark (b) followingloc. cit.).
If we takew = v in 3.2(iii) and (iv) we see thatTv is invertible whenv is a
fundamental reflection in the ‘quotient’ affine root system. Then, by writing an
arbitraryw ∈ R(σ ) as a minimal product of such reflections, we see thatTw is
invertible for any suchw, again using 3.2(iii) and (iv). In general we can express
w = rc wherer ∈ R(σ ) andc ∈ C(σ ); sinceTc is invertible by 3.2(i), it follows
thatTw is invertible by 3.2(i) or (ii) once again. In particular we have the following
result.

LEMMA. The elementsTd, d ∈ T (J ), are invertible.

3.4. Let H(G) = {f :G → C | f locally constant, compact support}. This is
an associative algebra with multiplication defined by convolutionf ∗ h(x) =∫
G
f (xg−1)h(g)dg.
With σ as above defineeσ ∈ H(G) by

eσ (x) =
{
(1/volP)dim(σ ) trace(x−1), if x ∈ P ;
0, if not.

This is an idempotent inH(G); we then have the algebraeσ ∗ H(G) ∗ eσ
which has as an identity the elementeσ . From Proposition 4.2.4 of [BK1] there is
a canonical isomorphismϒ :H(σ )⊗C EndC(V )→ eσ ∗H(G) ∗ eσ .

It is realised in one direction in the following manner. We identify the left side
with H(σ )⊗CV⊗CV ∨ where we denote the dual ofV byV ∨. Thenϒ(8⊗v⊗v̌) is
the functionφ(g) = dim(σ )〈v,8(g)v̌〉, where〈 , 〉 denotes the canonical pairing
onV ×V ∨. The isomorphismϒ implies that the algebrasH(σ ), eσ ∗H(G)∗eσ are
Morita equivalent, hence their module categories are equivalent.This is realised as
follows. If M is anH(σ )-module thenM ⊗C V is the correspondingeσ ∗H(G) ∗
eσ (' H(σ )⊗CEndC(V ))-module. Conversely, ifN is aneσ ∗H(G)∗ eσ -module,
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we view V ∨ as a right EndC(V )-module and formV ∨ ⊗EndC(V ) N . We then get
a H(σ )-module via the right factor since there is an embeddingH(σ ) → eσ ∗
H(G) ∗ eσ . For more details we refer the reader to [BK1] Ch.4. We shall denote
the equivalence between the module categories byϒ∗.

3.5. Now we takeP as in Section 2 with respect toP . We denote byσU the
representation ofL ∩ P on V by restriction ofσ : it is also the inflation ofσ
on M = M(Fq) (notation of 1.8) hence is irreducible. Let(π,V) be a smooth
representation ofG. We denote byVσ theσ -isotypic part ofV. Recall that there is
a representation ofH(G) onV defined byπ(f )v = ∫

G
f (x)π(x)v dx.

Given (σ, V ) as above, and(π,V) a smooth representation ofG we define
Vσ = HomP (V ,V) ' HomG(c − IndGP (σ ),V), the isomorphism following from
Frobenius reciprocity for compact induction. The algebraH(σ̌ ) acts on the left
on c − IndGP (σ ) via convolutionφ ∗ f (x) = ∫

G
φ(y)f (y−1x)dy, if φ ∈ H(σ̌ ),

andf ∈ c − IndGP (σ ). On the other hand there is a canonical anti-isomorphism of
algebras with identity provided by the mapφ 7→ φ̌ whereφ̌(x) = (φ(x−1))ˇ.

This means thatVσ is canonically aleft H(σ )-module.
There is an obvious evaluation mapVσ ⊗ V → Vσ ; in terms of the canonical

isomorphismϒ of 3.4 one deduces that there is a natural isomorphism ofeσ ∗
H(G) ∗ eσ -modulesVσ ' ϒ∗(Vσ ⊗ V ) provided by this evaluation map. See
[BK2]2.13 for more details on this.

3.6. From Theorem 2.1 we have

(i) (P ∩ U(F )) · (P ∩ L) · (P ∩ U−(F )) = P ;

(ii) σ is trivial onP ∩ U(F ), P ∩ U−(F ), since it factors throughL ∩ P .

In the terminology of [BK2]6.1, (i) and (ii) say that the pair(P, σ ) is decom-
posedwith respect to(L,P). Indeed 2.1 says that it is decomposed with respect to
(L,P′) whereP′ is anyparabolic which containsL as Levi component.

Let s ∈ S. Recall from Section 2, thats lies in the split centre ofL by construc-
tion. We have already seen that the elementsTν(s) (ν as in 1.12(ii)(b)) are invertible,
hence any non zero element ofH(G, σ ) which is supported onPsP is invertible.
Lemma 2.4 says that an abundance of suchs are strongly(P, P ) positive. The
above observations tell us that Theorem 7.9 of [BK2] is applicable in this situation.
We immediately deduce the following lemma.

LEMMA. Let (π,V) be a smooth representation ofG. Write (πU,VU) for the
Jacquet module of(π,V) with respect toP. Then there is a canonical isomorphism
Vσ → (VU)

σU .

This isomorphism can be described as follows. Letr:V → VU denote the
quotient map. We then obtain a mapq:HomP (V ,V) = Vσ → HomQ(V,VU) =
(VU)σU by composing withr; hereQ = P ∩ L as in Section 2. The mapq then
induces the isomorphism in Lemma 3.6.
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Remark. If P is not maximal then the Levi componentL of 2.1 is proper.
Suppose that(π,V) is irreducible admissible containing(σ, V ). Then 4.1 implies
that the Jacquet moduleVU cannot be zero. In particular,(π,V) cannot be super-
cuspidal. This gives an alternative proof of [M1]3.5. We point that each of these
proofs requires some knowledge of the structure of the Hecke algebra.

3.7. The fact that the elementsTd are invertible has a further consequence. Note
that in addition toH(G, σ ) there is also the intertwining algebraH(L, σU) for
the pair(Q, σU). Let ϕ ∈ H(L, σU) have supportQ`Q for some` ∈ L. Because
(P, σ ) is decomposed relative to(L, P ) there is a unique elementT ϕ = 8 in
H(G, σ ) with support inP`P ; see [BK2]6.3. LetH+(L, σU) ⊂ H(L, σU) de-
note the collection of functions whose support is contained in a union of double
cosets of the formQ`Q where` is positive relative to(P,P). Corollary 6.12, and
Theorem 7.2 ofop. cit. then tell us in particular the following.

THEOREM. (i) H+(L, σU) is a subalgebra ofH(L, σU) with the same identity
element.

(ii) The mapT induces an injective homomorphism of algebras with identity

T :H+(L, σU)→ H(G, σ ).

(iii) The mapT in (ii) extends uniquely to an injective homomorphism of al-
gebras with identity

t :H(L, σU)→ H(G, σ ).

We remark that the proof of (i) and (ii) does not require the existence of an
invertible elementTd , but that of (iii) does.

3.8. We now have accumulated the following results concerning the pair(P, σ )

and its relation withanyparabolic subgroupP containing the Levi componentL:

(i) the pair(P, σ ) is decomposed with respect to(L,P);
(ii) the representationσU is smooth irreducible for the (maximal) parahoric sub-

groupQ = P ∩ L in L;
(iii) there is a strongly(P, P )-positive elements ∈ S ⊂ Z(L)(F ) such thatPsP

supports an invertible element ofH(σ ).

In the language of [BK2]8.1 the pair(P, σ ) is acoverfor the pair(Q, σU).

3.9. The following lemma will be used in 3.10 below; it is of independent interest.
We start with a Levi componentL in the groupG. Suppose that̂J ⊃ J are compact
open subgroups inG. Now let τ̂ be a smooth irreducible representation ofĴ whose
restrictionτ̂ | J containsτ .

LEMMA. Suppose(i) (J, τ) is a cover for(JL, τL) in the sense of[BK2]8.1.
(ii) if P is any parabolic subgroup containingL with Levi decompositionP =

L·U and opposite parabolicP− = L·U− thenĴ = (J∩U−(F ))(Ĵ∩L)(J∩U(F )).
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(iii) (Ĵ ∩ L)/ker(τ̂ |(Ĵ ∩ L)) ∼= Ĵ /kerτ̂ .
Then(Ĵ , τ̂ ) is a cover for the pair(Ĵ ∩ L, τ̂ | (Ĵ ∩ L)).
Proof.Assumption (ii) guarantees an Iwahori decomposition forĴ with respect

to (L,P), and assumption (iii) ensures that(Ĵ , τ̂ ) is decomposed with respect to
(L,P) for anyP containingL as Levi component. Thus our pair(Ĵ , τ̂ ) satisfies
condition (i) of loc. cit., and condition (ii) is trivially satisfied by construction. We
must verify condition (iii).

Now defineτ∗ = IndĴJ (τ ); then τ̂ occurs inτ∗. Just as before we can define
the algebrasH(G, τ̂ ),H(G, τ∗). According to [BK1]4.1.3, there is a canonical
isomorphism of algebras0:H(G, τ) → H(G, τ∗) with the property that ifφ ∈
H(G, τ) has supportJxJ then0(φ) has supportĴ xĴ , and if 8 ∈ H(G, τ∗)
has supportĴ xĴ then0−1(8) has supportJxJ . On the other hand, the algebra
H(G, τ̂ ) can be identified (non canonically) with a subalgebra ofH(G, τ∗). To see
this it is enough to replace the representations in the algebras in question by their
contragredients, since taking contragredients commutes with induction. Denoting
contragredients by ‘∨ ’ we see thatH(G, (τ̂ )ˇ ) can be identified with someτ∗-
spherical functions which transform viâτ . Indeed, letV∗ denote the space ofτ∗;
thenV∗ = ⊕ni=1Vi whereVi runs through the not necessarily distinct irreducible
constituents ofτ∗. We can then identifŷτ with (at least) one of these, and the
assertion follows from this. Moreover we see that the identity inH(G, (τ∗)ˇ )
can be written as a sum of the identities of the algebras EndC(Vi) corresponding
to the irreducible constituentsVi counted according to multiplicity. We conclude
that indeedH(G, τ̂ ) can be identified with a subalgebra ofH(G, τ); furthermore
the identity ofH(G, τ̂ ) occurs as a nonzero direct summand of the identity of
H(G, τ).

Let s be an element of the split centreS of L. It fixesL pointwise under con-
jugation, hence does the same to any subgroup ofL; in particular it fixes pointwise
the subgroupsĴL = Ĵ ∩ L, JL = P ∩ L. It follows that s fixes τ∗, τ̂ , τ (not
merely up to isomorphism); hence there are nonzero spherical functionsφ∗s , φ̂s , φs
in H(G, τ∗),H(G, τ̂ ),H(G, τ) respectively. Furthermore the isomorphism
H(G, τ) ' H(G, τ∗) identifiesφs with a non zero multiple ofφ∗s . Since(J, τ)
is a cover for(JL, τL) condition (iii) of Definition 8.1 in [BK2] says that there is
an s such thatφs is invertible. It follows thatφ∗s is invertible inH(G, τ∗). Now
φ∗s is a direct sum of operatorsφ(1)s , φ

(2)
s , . . . , φ

(r)
s corresponding to the irreducible

constituents ofτ∗, sinces acts trivially on each constituent. Sinceφ∗s is invertible
so is eachφ(1)s , φ

(2)
s , . . . , φ

(r)
s . But φ̂s is a non zero multiple of one of these, hence

it is invertible in the subalgebraH(G, τ̂ ). It follows that Condition 8.1(iii) holds
for the pair(Ĵ , τ̂ ) as well. 2
VARIANT 3.10. We resume the notation and conventions of 1.6, 1.12 and 2.1. In
particular ifF is a facet inI we writeP = PF for the corresponding parahoric
subgroup and we writêP = P̂F ⊆ G1 for the full centraliser ofF . We then write
M̂ = P̂ /U ; it is the group ofFq-rational points of a disconnectedFq-reductive

165882.tex; 23/08/1999; 9:09; p.16

https://doi.org/10.1023/A:1001019027614 Published online by Cambridge University Press

https://doi.org/10.1023/A:1001019027614


LEVEL ZEROG-TYPES 151

group whose connected component is the groupM of 1.8. We suppose that we are
given an irreducible representationσ̂ of M̂ which containsσ ; as usual we view it
also as a representation ofP̂ . We also writeQ̂ = P̂ ∩ L.

We now letσ̂U be the restriction toQ̂ of σ̂ . It is immediate from 2.1 that the
hypotheses (ii) and (iii) of 3.9 hold for the pair(P̂ , σ̂ ), and we have already seen
in 3.8 that hypothesis (i) holds. We immediately deduce the following.

COROLLARY.The pair(P̂ , σ̂ ) is a cover for the pair(Q̂, σ̂U).

4. G-types

4.1. We continue with the notation of Section 3. We begin by recalling a result
from [M1]; see also the remark following 3.7. Namely, letL be a connected re-
ductiveF -group withL = L(F ); let Q be a maximal parahoric subgroup ofL
with short exact sequence 0→ U → Q→ M → 0 and suppose that(σ, V ) is an
irreducible cuspidal representation ofM. We regard(σ, V ) as a representation of
Q by inflation.

PROPOSITION.Let (τ,V) be an irreducible smooth representation ofL con-
taining (σ, V ). Then(τ,V) is supercuspidal, and there is an irreducible smooth
representation(ρ,W) of Q+ = NL(Q) containing (σ, V ) such that(τ,V) =
c − IndLQ+(ρ).

Proof.This is proved in [M1] Sections 1–2. 2
4.2. Next we recall some ideas and results from [BK2] Sections 3–4.

First, we consider pairs(L, ρ) whereL is a (rational) Levi subgroup,L =
L(F ), andρ is an irreducible supercuspidal representation ofL. As usual ifg ∈ G
we write gρ for the (supercuspidal) representation ongLg−1 defined bygρ(`) =
ρ(g−1`g). Finally, we letXu(G) denote the group of unramified quasicharacters
of the (rational points of the) reductive groupG: the elements ofXu(G) are finite
products of quasicharacters of the formg 7→ |φ(g)|s for somes ∈ C and some
φ ∈ XF(G), whereXF(G) denotes the rational character group ofG.

DEFINITION. The pairs(L, ρ), (L′, ρ ′) areinertially equivalentif there is ag ∈
G and ξ ∈ Xu(L

′) such thatL′ = gLg−1 and gρ ' ρ ′ ⊗ ξ . We denote the
equivalence class containing(L, ρ) by [L, ρ].

We write B(G) for the set of equivalence classes arising from the relation in
the definition above.

4.3. If P is a parabolic subgroup with Levi decompositionP = L · U we let δP
denote the associated modulus quasicharacter; it provides an unramified quasichar-
acter ofL. We write IndGP to denote unnormalised induction fromP toG andιGP to
denote normalised induction. These are related byιGP (τ ) = IndGP (τ ⊗ δ−1/2

P ). The
left adjoint for ιGP is denoted byrGP ; it is simply the unnormalised Jacquet functor
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(of 3.6) tensored byδ1/2
P . If (π,V) is an irreducible smooth representation ofG,

there is always a parabolic subgroupP with Levi decompositionP = L · U such
thatπ is equivalent to a subquotient ofιGP (ρ) for some irreducible supercuspidal
representation ofL; see [Cs]. The resulting inertial classI(π) = [L, ρ] is determ-
ined uniquely byπ , and is called theinertial support of π . Note that sinceδP is
an unramified quasicharacter ofL, the remarks above imply that the inertial class
could have been defined by replacingι by Ind.

Let SR(G) denote the category of smooth representations ofG. If S ⊂ B(G)
we write SRS(G) for the full subcategory ofSR(G) whose objects are those
objects (π,V) of SR(G) for which every irreducible subquotient has inertial
support inS. If S = {s} we shall simply writeSRs(G) rather thanSRS(G).
According to Proposition 2.10 of [BD] the categorySR(G) is thedirect product
of the categoriesSRs(G) ass runs throughB(G). This means that

(a) for each smooth representationV, and for eachs ∈ B(G) there is a unique
G-subspaceVs which is an object inSRs(G), maximal with respect to this
property, andV is the direct sum of theVs ass runs throughB(G);

(b) if V,W are objects inSR(G) then HomG(V,W) is the direct product of the
various HomG(Vs,W s).

DEFINITION. LetS be a subset ofB(G). An S-type inG is a pair(K, σ ) where
K is a compact open subgroup ofG, andσ is an irreducible smooth representation
of K with the following property: an irreducible smooth representation(π,V) of
G containsσ if and only if I(π) ∈ S.

If S = {s} is a singleton, we shall abuse notation and write ‘s-type’.

4.4. Definition 4.3 has significant consequences, some of which we shall list be-
low. In what follows, (K, σ ) always denotes anS-type. If (π,V) is a smooth
representation we shall writeV[σ ] for theG-module generated by theσ -isotypic
vectors. Recall that one can formeσ ∗ V which provides aneσ ∗ H(G) ∗ eσ -
module. Composing this with the Morita equivalence of 3.4 then provides a functor
Mρ :SRσ (G)→ H(σ )-Mod.

We then have the following result.

THEOREM ([BK2] Theorem 4.3). (i)There is a uniquely determinedG-spaceU
such thatV = V[σ ] ⊕U.

(ii) If V = V[σ ] then any irreducibleG-subquotient ofV containsσ .
(iii) The functorMρ above provides an equivalence of categoriesSRσ (G) →

H(σ )−Mod.

(iv) SRS(G) = SRσ (G)

4.5. In [BK2] the authors provide many examples ofs-types drawn from their work
on linear and special linear groups. The prototype of alls-types is the pair(B,1)
whereB is the centraliser of an alcove in the ‘enlarged’ building forG and 1
is the trivial representation ofB. The full centraliser is typically larger than the
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corresponding Iwahori subgroup (connected centraliser). The admissible form of
4.4(iv) in this case is due to Borel [B]; see [BK2] for a simple proof of the more
general situation, based on ideas in [MW].

THEOREM. Let (σ, V ) be an irreducible cuspidal representation as above and
suppose thatP is a maximal parahoric subgroup. Then(σ, V ) is anS-type, for a
finite setS.

Proof. Let (π,V) be an irreducible smooth representation containing(σ, V ).
From 4.1 we can writeπ = c− IndGP+(ρ) whereρ is an irreducible smooth repres-
entation forP+ which containsσ . Let χ denote the central quasicharacter forπ ,
and letπ ′ be another such representation which also containsσ and which also has
central quasicharacterχ . We suppose thatπ ′ = c− IndGP+(ρ

′). The representations
ρ ′, ρ are determined onZU , whereU is the prounipotent radical ofP hence we
can writeρ ′ = ρ ⊗ τ whereτ is an irreducible representation of the finite group
P+/ZU . In particular if we fix a central quasicharacter there are only finitely many
choices for the representationρ and hence there are only finitely many suchπ
containingσ with prescribed central quasicharacter.

Now suppose that we considerπ andπ ′ as above but with possibly different
central quasicharactersχ, χ ′. We haveχ | Z ∩ P = χ ′| Z ∩ P in any case. Let
Zc be the kernel of the mapHZ defined in 2.3 for the Levi componentG. From
2.3 there is an exact sequence 0→ Zc → Z → 3 → 0 where3 is a lattice of
finite rank and rank3 = split rankZ. On the other hand ifH is the group in 1.6,
thenZc ⊂ H ⊂ P for any parahoric subgroupP centralising a facet inA, since
Z ⊂ T. In particularχ−1 ·χ ′ is trivial onZc hence comes from a quasicharacter on
3. Now3 is a lattice of the same rank as the dual of the rational character group
XF(G) of G. IndeedXF(G) is a subgroup of finite index inXF(Z) as one sees
from the isogenyZ×Gder→ G. Practically by definition, any quasicharacter of3

is a (finite) product of ones of the formz(modZc) 7→ |ψ(z)|s for somes ∈ C and
someψ ∈ XF(Z).

It follows immediately that any quasicharacter ofZ which is trivial onZc is
the restriction of anunramifiedquasicharacter ofG (i.e. one which is a product
of ones of the formg 7→ |φ(g)|s for somes ∈ C and someφ ∈ XF(G)). In
particularχ−1 ·χ ′ is such a quasicharacter. Thus replacingπ byπ⊗φ for a suitable
unramified quasicharacterφ of G we see thatπ ⊗ φ andπ ′ have the same central
quasicharacter and we are in the situation of the previous paragraph. 2

Remark4.6. One can easily produce examples(σ, V ) for which the setS is not
a singleton, by considering the case whereσ is unipotent cuspidal. In fact, many
of the cases considered in [M1] provide such examples.

VARIANT 4.7. By modifying the pair(P, σ ) slightly the setS can be reduced to
a singleton. Indeed we know from 4.1 that any irreducible smooth representation
(π,V) containing(σ, V ) has the formπ = c− IndGP+(ρ), whereρ is an irreducible
smooth representation forP+ which containsσ . SinceP is maximal it fixes an
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‘enlarged’ vertexv × V 1 in I1, andP+ is the stabiliser inG of v × V 1. It follows
thatG1 ∩ P+ = P̂ is the centraliser inG1 of v × V 1. Let σ̂ be any irreducible
component ofρ | P̂ . The groupP̂ is open compact inG; in fact it is the maximal
compact subgroup ofP+.

THEOREM.(P̂ , σ̂ ) is a [G,π ]-type.
Proof.To say thatπ ′, π are inertially equivalent means thatπ ′ ' π ⊗ χ where

χ is an unramified quasicharacter ofG. But thenπ ′ ' c − IndGP+(ρ ⊗ (χ |P+)).
Sinceχ is trivial onG1 henceP̂ , it follows thatπ ′ containsσ̂ . On the other hand
if π ′ containsσ̂ thenπ ′ = c − IndGP+(ρ

′) whereρ ′ is an irreducible constituent
of c − IndP+

P̂
(σ̂ ). Now P+/P̂ can be identified with a subgroup of the lattice

G/G1, and it contains the group denoted3 in the proof of 4.5 becauseP+ contains
Z. It follows that P+/P̂ is a sublattice ofG/G1 of the same rank, hence any
quasicharacter of it extends to a quasicharacter ofG/G1. Now observe that ifρ, ρ ′
both containσ̂ then they are determined onZ ∩ P̂ by the central character of̂σ ;
sinceZ is a splitF -torus this means that the representationσ̂ can be extended to
ZP̂ (by an unramified quasicharacter ofZ). Clifford–Mackey theory then implies
thatρ ′ = ρ ⊗ χ for some quasicharacterχ of P+P̂ , and then thatπ ′ = π ⊗ χ ′ for
some extensionχ ′ toG of χ . 2

Remark. Note that this result says that each irreducible constituentσ̂ of ρ|P̂ is
ans-type for the same singletons.

4.8. We now combine 3.8, 4.5, and [BK2] Theorem 8.3, to deduce the following
result.

THEOREM.If (σ, V ) is an irreducible cuspidal representation as above whereP

is not necessarily maximal, then(σ, V ) is anS-type for a finite setS.
Proof.Let L be as in 2.1. Applying Theorem 4.5 toL and the pair(Q, σU) we

see that(Q, σU) is anSL-type for some finite setSL. HereSL consists of a finite
set of inertial equivalence classes with respect toL of the form[L, τ ] whereτ is
an irreducible supercuspidal representation ofL. On the other hand 3.8 says that
(P, σ ) is aG-cover for the pair(Q, σU). Theorem 8.3 of [BK2] then says that
in this situation(P, σ ) is anSG-type whereSG is the finite set formed from the
inertial equivalence classes with respect toG of the elements inSL.

Briefly, the argument goes as follows. First, let(π,V) be an irreducible smooth
representation ofG containing(σ, V ). There is always an irreducible supercuspidal
representationτ of L containingσU such thatπ is isomorphic to aG-subspace
of IndGP (τ ). Indeed 3.6 implies that the unnormalised Jacquet module(πU,VU)
containsσU. SinceσU is anSL-type Proposition 2.10 of [BD] (described in 4.3
above) and part (iv) of Theorem 4.4 imply that some irreducible quotientτ has
I(τ ) ∈ SL. SinceδP is unramified the same is true on replacing the unnormalised
Jacquet module by the normalised version. Frobenius reciprocity then implies that
I(π) ∈ SG.
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To go the other way, letSG be as in the preceding paragraph, and suppose that
I(π) ∈ SG. This means thatπ occurs as a subrepresentation ofιGP (ρ) for some
(L, ρ) with [L, ρ] in S, and by constructionρ containsσU. One may now apply
3.6 to see thatπ containsσ . 2
VARIANT 4.9. Again, by replacing the pair(P, σ ) by the pair(P̂ , σ̂ ) where
P̂ is the full centraliser of the appropriate facet andσ̂ is an irreducible smooth
representation of̂P which containsσ as in 3.10, we can deduce the following.

THEOREM.(P̂ , σ̂ ) is ans-type for a singleton sets.
Proof.We know from Variant 3.10 that(P̂ , σ̂ ) is aG-cover for the pair(Q̂, σ̂U).

Here the(P̂ , σ̂ ) is with respect toG, while (Q̂, σ̂U) is with respect toL. The result
then follows immediately from Variant 4.7 and Theorem 8.3 of [BK2]. 2

Remark. The technique above can be codified into a general principle. We re-
vert to the notation of 3.9, and assume we have pairs(Ĵ , τ̂ ), (J, τ) satisfying the
conditions in Lemma 3.9. Assume further that(Ĵ ∩L, τ̂ | (Ĵ ∩L)) is ans-type for
a singletons. The argument above impliesthat (Ĵ , τ̂ ) is ansG-type for a singleton
sG.

4.10. Now we recall some results in [BD]. First, lets = [L, τ ] ∈ B(G) and let
(L, τ) be a representative for it. Then(L, τ) determines a classsL ∈ B(L). If we
change the representative then it must have the form(gL, gτ ⊗ χ) for someg ∈ G
andχ ∈ Xu(gL). If we writeL′ for gL andsL′ for the resulting class inB(L′) then
conjugation byg provides an equivalence of categoriesSRsL(L) ' SRsL′ (L).

Second, if we interpret [BD] 2.8 in the language above (c.f. [BK2] 2.3,6.1) we
obtain the following statements.

THEOREM. (i) Let (π,V) be an object ofSRs(G). Then(πU,VU) is an ob-
ject of the subcategory5tSRt(L) of SR(L) where t runs through theNG(L)
orbit of sL.

(ii) The representation(π,V) is an object ofSRs(G) if and only if there are
parabolic subgroupsP of G each of which has Levi componentL , and smooth
representationsτL ∈ SRsL(L) and aG-injectionπ →∐

P IndGP (τL).

4.11. The unnormalised Jacquet functor provides a functorrU:SRS(G) →
SR(L). Composing this with the projection functorpSL :SR(L) → SRSL(L)

guaranteed by Theorem 4.4(i) we obtain a functorrU:SRS(G) → SRSL(L),

since this last category is also the categorySRσU(L) by 4.4(iv).
Going the other way, 4.10(ii) implies that the unnormalised induction functor

Ind takes the categorySRsL(L) to the categorySRs(G). Heres is the class de-
termined bysL as in the proof of Theorem 4.8. It follows that Ind takesSRSL(L)

to the categorySRS(G).
If τ is an object inSRsL(L) we then have HomG(π, IndGP (τ ) ' HomL(rU(π),

τ ) ' HomL(pSLrU(π), τ ).
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In other words, we have the following result.

PROPOSITION.The unnormalised Jacquet functorrU provides a functor

rU:SR
S(G)→ SR

SL(L).

It has a right adjoint functor provided by the unnormalised induction functorInd.

Remark. If we used normalised induction here we would have to (un)twist the
Jacquet functor byδ−1/2

P .

4.12. Iff :A→ B is a homomorphism of associative rings, andM is aB-module
we writef ∗(M) for theA-moduleM induced byf . If N is anA-module we write
f∗(N) for theB-module HomA(B,N).

Theorem 4.8 guarantees equivalences of categories

SRσ (G)→ H(G, σ )−Mod, SRσU(L)→ H(L, σU)−Mod.

Furthermore, Proposition 4.11 implies that unnormalised induction provides a
functor SRσU(L) → SRσ (G), and that the Jacquet functorrU provides a
functor rU:SRσ (G) → SRσU(L). Recall the injective algebra homomorphism
tP:H(L, σU) → H(G, σ ) of 3.7. Applying Corollary 8.4 of [BK2] to this we
immediately obtain the following result.

THEOREM.Each of the following diagrams is commutative:

SRσ (G)
Mσ- H(G, σ )−Mod

SRσU(L)

rU
? MσU- H(L, σU)−Mod;

t∗P
?

SRσ (G)
Mσ- H(G, σ )−Mod

SRσU(L)

Ind
6

MσU- H(L, σU)−Mod.

tP∗
?
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