
2 
Loop coordinates and the 
extended group of loops 

2.1 Introduction 

Continuing with the idea of describing gauge theories in terms of loops, 
we will now introduce a set of techniques that will aid us in the descrip
tion of loops themselves. The idea is to represent loops with a set of ob
jects that are more amenable to the development of analytical techniques. 
The advantages of this are many: whereas there is limited experience in 
dealing with functions of loops, there is a significant machinery to deal 
with analytic functions. They even present advantages for treatment with 
computer algebra. 

Surprisingly, we will see that the end result goes quite beyond our 
expectations. The quantities we originally introduced to describe loops 
immediately reveal themselves as having great potential to replace loops 
altogether from the formulation and go beyond, allowing the development 
of a reformulation of gauge theories that is entirely new. This formulation 
introduces new perspectives with respect to the loop formulation that 
have not been fully developed yet, though we will see in later chapters 
some applications to gauge theories and gravitation. 

The plan for the chapter is as follows: in section 2.2 we will start by 
introducing a set of tensorial objects that embody all the information 
that is needed from a loop to construct the holonomy and therefore to 
reconstruct any quantity of physical relevance for a gauge theory. In sec
tion 2.3 we will show how the group of loops is a subgroup of a Lie group 
with an associated Lie algebra, the extended loop group. The generators 
of this Lie group will turn out to be coordinates in the extended loop 
space, which we discuss in section 2.4. In section 2.5 we will study how 
the differential operators introduced in the previous chapter act on the 
loop coordinates. In particular we will study the action of the genera
tor of diffeomorphisms. In section 2.6 we will discuss how to construct 
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30 2 Loop coordinates and the extended group of loops 

diffeomorphism invariant quantities in terms of loop coordinates and, in 
particular, knot invariants. In the conclusion we will discuss the differ
ences and similarities between the group structures we have introduced 
and the usual Lie groups. The subject of this chapter has been discussed 
in detail in reference [20], the reader is referred to it for a more technical 
approach. 

2.2 Multitangent fields as description of loops 

As we discussed in the previous chapter, all the gauge invariant informa
tion present in a gauge field can be retrieved from the holonomy. There
fore the only information we really need to know from loops is that used 
in the definition of the holonomy, 

HA(-r) = P exp (i £ Aadya). (2.1) 

We can write this definition more explicitly as 

HA(-r) = 1+ f i1 dx~ ... dx~Aal (Xl) ... Aan (Xn)Xal ... an(XI, ... , xn,,), 
n=l 

where the loop dependent objects X are given by 

xa1 ... an(XI, ... ,xn,,) = 

£ dy~n l Yn dY~~ll .. . l Y2 dYr1c5(xn - Yn) ... c5(XI - yd = 

(2.2) 

£ dy~n ... £ dYr1c5(xn - Yn) ... c5(XI - YI)81'(0, YI,···, Yn) (2.3) 

and 81'(0, YI, ... ,Yn) is a generalized Heaviside function that orders the 
points along the contour starting at the origin of the loop, i.e., 

8 ( ) = { 1 if ° < YI < Y2 < ... Yn along the loop 
l' 0, YI, ... , Yn 0 otherwise. (2.4) 

These relations define the X objects of "rank" n. We shall call them 
the multitangents of the loop ,. 

By writing the holonomy in the non-standard form (2.2) we have been 
able to isolate all the loop dependent information in the multi tangents of 
the loop. No more information from the loop is needed in order to com
pute the holonomy than that present in the multi tangents of all orders. 

In what follows, it will be convenient to introduce the notation 

XJ.ll ... J.ln (-r) == X a1 Xl···an Xn (-r) == X a1 ... an (Xl, ... ,xn,,) , (2.5) 
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2.2 Multitangent fields as description of loops 31 

with f.Li == (aixi), which is more suggestive of the role played by the x 
variables under diffeomorphisms. The X objects transform as multivector 
densities (they behave as a vector density at the point Xi on the index 
ad under the subgroup of coordinate transformations that leaves the base 
point ° fixed. In other words if 

(2.6) 

then 

where J is the Jacobian of the transformation. 
The X s are not really "coordinates" in the sense that they are not 

independent. They are constrained by algebraic and differential relations. 
The algebraic constraints stem from relations satisfied by the general

ized Heaviside function, 

8,(0,Yl,Y2,Y3) + 8,(0,Y2,Yl,Y3) + 8,(0,Y2,Y3,Yl) = 8,(0,Y2,Y3), 

8,(0, Yl) = 1 , 8,(0, Yl, Y2) + 8,(0, Y2, yd = 1, (2.8) 

which imply the following kind of relations among the X s, 

X/-Ll/-L2 + X/-L2/-Ll = X/-Ll X/-L2, 

And in general, 

X/-L!···/-Lk/-Lk+l ... /-Ln == L XPk(/-Ll/-Ln) = X/-Ll .. ·/-Lk X/-Lk+1 ... /-Ln, 

Pk 

(2.9) 

(2.10) 

where the sum goes over all the permutations of the f.L variables which 
preserve the ordering of the f.Ll, ... , f.Lk and the f.Lk+1, ... , f.Ln among them
selves. We have introduced the notation of underlined indices to symbolize 
the permutation for future use. 

The differential constraint ensures that the holonomy has the correct 
transformation properties under gauge transformations, and can be read
ily derived from equation (2.2). It is given by 

~ Xalxl ... aixi ... anXn = 
oxa; z 

(8(Xi - xi-d - 8(Xi - Xi+1) )Xalxl ... ai-1xi-l ai+lXi+l ... anXn. (2.11) 

In this expression, both Xo and Xn+1 represent the base point of the loop. 
An important property of the differential constraint is that any multi

tensor density Dalxl ... anXn that satisfies it can be put into equation (2.2) 
and the resulting object is a gauge covariant quantity. When restricted to 
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32 2 Loop coordinates and the extended group of loops 

the multitangents of a loop, the resulting object is the holonomy. It is this 
property that exhibits the relevance of this formulation. In it, loops are 
only a particular case. One can, in general, deal with arbitrary multiten
sor densities and construct gauge invariant objects, for instance by taking 
the trace. The multitensor densities need not have the same distributional 
character as the multitangents associated with a loop. Their divergence 
structure is dictated by the differential constraint, which requires its so
lutions to be distributional. This will have important consequences later. 
We will call the space of all multitensors that satisfy the differential con
straints'Do · 

With this construction in hand, one could go further and forget loops 
and holonomies altogether. Since one can represent any gauge covariant 
object using the Ds, one could represent a gauge theory entirely in terms 
of Ds. This has not been done up to present for non-Abelian theories in 
a complete fashion (nor for gravity), but it can be easily worked out for 
an Abelian theory, as we will do in chapter 4. 

When one allows arbitrary multitensors in (2.2) the convergence of the 
series is not guaranteed. There is no easy way to prescribe multitensors 
such that the series converges, so we will assume from now on that we 
work only with multitensors such that the series converges. Even this 
requirement is not enough to produce an object with a gauge invariant 
trace. The differential constraint (2.11) only ensures that if one performs 
a gauge transformation on the trace of the holonomy of a multitensor the 
resulting series has terms that cancel in pairs. For this to imply gauge 
invariance, it has to happen that [222] 

N 

L Ap.1 ... Ap.k [A, A ]p.k Ap.k+1 ... Ap.n X 1'1 ... p.n 

k=l 

(2.12) 

goes to zero as N ---+ 00. A is the parameter of the gauge transformation 
and is therefore an arbitrary function. Notice that the vanishing of (2.12) 
is not guaranteed by the convergence of the holonomy alone. The question 
of selecting an appropriate set of multi tensors in a precise way in order 
to ensure convergence of these expressions is at present not settled, see 
reference [21]. 

2.3 The extended group of loops 

When we introduced the group of loops in the previous chapter, we no
ticed that no one-parameter subgroup existed (since one could only define 
integer powers of the generators) and therefore it did not form a Lie group. 
In this section we will introduce a Lie group, the "extended loop group" . 
The group of loops will be a subgroup of it. This construction is of in-
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2.3 The extended group of loops 33 

terest in itself, since it is clear that it is a great advantage to have at our 
disposal all the machinery of Lie groups to analyze loops. Among other 
results, by identifying the free parameters of the algebra associated with 
the extended loop group we will be able to solve automatically the homo
geneous part of the differential and algebraic constraints (2.10), (2.11) of 
section 2.2. With some additional construction, we will have a definition 
for the portion of the multitensor density fields that is unconstrained, i.e., 
that we can freely specify. They can therefore genuinely be called "coor
dinates" and contain as a subspace the "loop coordinates" or coordinates 
on loop space. We will elaborate more on this concept in section 2.4. Now 
we will proceed to construct the extended loop group. 

2.3.1 The special extended group of loops 

Let us start by considering arbitrary* multitensor densities similar to 
those introduced in section 2.2 and define a quantity E by 

E - (E E/-tl E/-tl ... /-tn ) - (E E-) - , , ... , , ... = , , (2.13) 

where E is a real number and E/-tl, ... ,/-tn (for any n ¥ 0) is an arbitrary 
multivector density field. It can be readily checked that the set of these 
quantities has the structure of a vector space (denoted as £) with the 
usual composition laws of addition and multiplication. 

We will now introduce a product law in £ in the following way: given 
two vectors El and E2, we define El x E2 as the vector with components 

El X E2 = (EIE2' EIE2 + EIE2 + El x E2), 

where El x E2 is given by 

n-l 
(El X E2 )J.tl···/-tn = L Ei1 ... /-ti E~i+l ... /-tn 

i=1 

(2.14) 

(2.15) 

For any value of n, the rank n component of the x-product of elements 
of £ can be expressed as 

n 
(El X E 2)/-tl ... /-tn = L Ei1 ... /-ti E~i+l ... /-tn (2.16) 

i=O 

with the convention 

(2.17) 

• In this chapter we will always discuss real multi tensor fields. It is obvious that the formal
ism is unchanged if one allows complex fields. In some applications they seem to play an 
important role, as we will see in section 3.4.2 (see also [19]). 
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34 2 Loop coordinates and the extended group of loops 

The product law is associative and distributive with respect to the 
addition of vectors. It has a null element (the null vector) and an identity 
element, given by 

1= (1, 0, ... , 0, ... ) . (2.18) 

An inverse element exists for all vectors with non-vanishing zeroth rank 
component. It is given by 

00 

E-I = E-II + ~)_l)iE-i-I(E - EI)i, (2.19) 
i=l 

such that 

E X E- I = E- I X E = I . (2.20) 

When evaluating the components of E-I it should be noticed that the 
sum involved in (2.19) is actually finite due to the fact that (E - EI) is 
a vector with its zeroth rank component equal to zero. Therefore, 

[Ex.!. xEltLl ... tLn = [(E - EI)i t1 ... tLn = 0 if n < i. (2.21) 

The set of all vectors with non-vanishing zeroth rank component (notice 
the role of E- I in equation (2.20)) forms a group with the x-product as 
composition law. 

The x-product law has an interesting property when restricted to mul
titangents. In this case it just corresponds to the composition law of 
loops, 

(2.22) 

where X(-y) = (l,XM(-y), ... ,XtLl ... tLn(-y), .. . ). Therefore we see that the 
product law that gave rise to the group of loops is the same product 
law we are generalizing to the case of arbitrary multitensor fields. The 
x-product law can also represent more general compositions than those 
of two loops sharing a common basepoint, such as the composition of 
an open path with a loop at its end, assuming a generalization of the 
definition of multitangents to open paths. 

After all this construction, let us now make contact with the group of 
loops. First, let us restrict attention to multitensors (not necessarily as
sociated with a loop) that satisfy the constraints (2.10), (2.11). Consider 
the set of vectors X E £ that have their zeroth rank component equal to 
one, X = (1, X). 

The set X is closed under the x-product law. If Xl E X and X2 E X, it 
is clear from the definition of the group product that Xl x X 2 satisfies the 
differential constraint. One can also demonstrate that Xl x X 2 satisfies 
the algebraic constraint. In a similar way one can show that the inverse 
X-I given by (2.19) satisfies the constraints if X does. A detailed proof 
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2.3 The extended group of loops 35 

of these properties can be seen in the appendices of reference [20j. These 
results show that the group structure under the x-composition law is 
preserved by the imposition of the algebraic and differential constraints. 
We call X the Special-extended Loop group (SeL group)t. Note that the 
zeroth rank component of E plays a role analogous to the determinant in 
a group of matrices. For this reason we introduce the name Special when 
selecting E = 1. 

The group of loops is a subgroup of the SeL group since X(r) E X and 
the composition law of the group of loops 0 is mapped via (2.22) to the 
x-product. 

An important question at this point is: is the group SeL just a fancy 
rewriting of the group of loops, or is it actually a more general structure? 
We will show that SeL is actually larger than the group of loops by direct 
construction. Consider the group element xm == Xx .'?1. xX. Note 
that if X gives the multitangent field of certain loop ,,(, xm would be 
the multitangent field of the loop "( swept itself m times. Applying the 
binomial expansion we get, 

m 

Xm == [I + (X - I)jm = 1 + ?: ( 7 ) (X - I)i 
z=l 

(2.23) 

The extension of (2.23) to real values of m is straightforward, being 
defined as 

X A = I + f= ( ~ ) (X - I)i 
z=l 

(2.24) 

with>' real. We usually call this object the analytic extension of X. Note 
that for >. = -1 we recover the expression of the inverse of X. Also 
in this case, due to (2.21) the analytic extension is well defined for all 
elements of X. One can prove that if X is constrained by the differential 
and algebraic identities, its analytic extension also satisfies the constraints 
(again see the appendices of [20]). So, the analytic extension of any X is 
in X. Moreover, we have 

X A x XJL = XA+JL . (2.25) 

We conclude that the set {X A / >. E R and X a given element of X} de
fines an Abelian one-parameter subgroup of the X group. 

For non-integer values of >., the >.th power of a multitangent is not 
a multitangent. This fact explicitly shows that there exist in X other 
elements besides the loop coordinates. 

t Tavares [43] has also considered this group. His "shuffle product" is associated with the 
algebraic constraint in our terminology. 
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36 2 Loop coordinates and the extended group of loops 

Matrix representations of the SeL group can be generated through a 
natural extension of the holonomy. The extended holonomy associated 
with a non-Abelian connection Aax == Aa{x) is defined as HA{X) = A· X, 
where 

A == (1, iAa1x1 , ... ,in Aanxn' ... ), 

X = (1 X a1x1 X a1x 1 ... anX n ) -, , ... , , ... , 
(2.26) 

(2.27) 

and the dot acts like a generalized Einstein convention including contrac
tions of the discrete indices ai and integrals over the three-manifold in 
the continuous indices Xi. We have 

00 00 

H (X ) H (X ) = " " i j A A .Xl-'l ... l-'k Xl-'k+1"'l-'i A 1 A 2 L.J L.J 1-'1 .. ·l-'k I-'k+1"'I-', 1 2 
k=O j=k 

= ~ i j A . (,f-.. Xl-'l ... l-'k XI-'k+1 "'l-'i) = H (X x X ) L.J 1-'1 ... 1-', L.J 1 2 A 1 2 , 
j=O k=O 

(2.28) 

where convention (2.17) has been applied over all the indices. The cor
respondence X -+ HA{X) gives a representation of the SeL group into a 
particular gauge group. In the case of the X group and the connections A 
belonging to the algebra of a unitary group, HA{X) is an element of the 
given unitary group. If one considers multi tensors that do not satisfy the 
algebraic constraint, one still has a group and can construct a representa
tion by considering As that belong to a unitary gauge algebra. However, 
the corresponding representation will give a holonomy that is not an ele
ment of the gauge group. It will, in general, be an element of the general 
linear group of the same dimension as the gauge group. This highlights 
the role of the algebraic constraint in this formalism. The differential con
straint imposed on X ensures that HA{X) is a gauge covariant quantity 
provided that the expressions involved in the proofs converge (see chapter 
12 for some subtleties on this issue). 

We have shown that the analytic extension of any element of the SeL 
group defines a one-parameter subgroup. By studying its properties one 
can find the algebra associated with the SeL group. 

2.3.2 Generators of the BeL group 

Consider the one-parameter subgroup {X A} and suppose that we increase 
). by an infinitesimal amount. We can write 

dXA 
X A+dA = X A X X dA = X A + -- d)' 

d)' 

and taking ). = 0 we get 

X dA = I + F d)', 

(2.29) 

(2.30) 
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where 

dX.>' (00 (_1)i-l .... ) ... 
F == d)" 1>.=0 = 0, t; i X t = (O, F) . (2.31 ) 

Introducing (2.30) in (2.29) we obtain the following differential equation 
for the elements of {X>'} 

dX>' -- = X>' X F = F X X>' 
d)" 

This equation can be iteratively integrated to give 

(2.32) 

>. n ).. k kIlo>' 10>'1 Io>.n >. X = I + L kiF + F n+ x d)..l d)..2 . . . d)..n+! X n+1 
k=l . 0 0 0 

(2.33) 
The process actually stops for any finite rank n component (Fn+! = 

F x ~t ~ x F = 0 in this case). Therefore 

00 )..k 
X>' = 1+ E k! Fk = exp()..F) . (2.34) 

We conclude that the vector F given by (2.31) is the generator of the 
one-parameter subgroup {X>'}. It is evident that the generator satisfies 
the differential constraint. We shall now prove the following fundamental 
property: F satisfies the homogeneous algebraic constraint (Le., the sum 
over permutations defined in equation (2.1O) vanishes). In other words, 
the generator of the one-parameter subgroup {X>'} is the algebraic free 
part of X. 

We know that 

{X>. )J.£l"'l-'kJ.£k+1 ••• J.£n = {X>. )J.£l ••• J.£k (X>. )1-'k+1 ... J.£n (2.35) 

Differentiating with respect to ).. and evaluating for)" = 0 we get 

d (dX>' ) J.£l· .. J.£k 
_ (X>' )J.£1 ... J.£kJ.£k+ 1 ... J.£n = -- IJ.£k+1 ... l-'n 

d)" >.=0 d)" >.=0 

+IJ.£l ... J.£k __ ( 
dX>' )J.£k+1 ... J.£n 

d)" >.=0 
(2.36) 

As 1 :::; k < n, we conclude 

FJ.£l .. ·J.£kJ.£k+1·"J.£n = 0 , 1:::; k < n . (2.37) 

Reciprocally, one can demonstrate that the exponential of any alge
braically free quantity produces an object that satisfies the algebraic con
straint. It is important to stress that these results allow us to obtain the 
general solution for the algebraic constraint (equation (2.34) with)" = 1 
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and its inverse (2.31) give the relationship between an object that satisfies 
the algebraic constraint and its algebraic-free part). 

The set of all Fs that satisfy the differential constraint and the homo
geneous algebraic constraint forms a vector space:F. One can define a 
bilinear operation on :F in the following way, 

(2.38) 

This operation is closed on:F. The vector space :F together with the 
bracket operation (2.38) defines the Lie algebra associated with the SeL 
group. 

2.4 Loop coordinates 

The quantities X that we introduced in section 2.2 are not freely speci
fiable. That is, in order to be able to construct a gauge covariant object 
via equation (2.1), the Xs had to satisfy the differential and algebraic 
constraints (2.10), (2.11). That they are not freely specifiable is a natural 
thing, since they are elements of a group. That is why it was impor
tant to find the associated algebra, since its free parameters give us a 
chance to separate the part of the multitangents that we can freely spec
ify. In the previous section we saw how to construct the set of objects :F. 
These objects had the advantage of being constrained not by the algebraic 
constraint, but by the homogeneous algebraic constraint. This latter con
straint is very easily solvable, simply by requiring some symmetries on the 
Fs, given by equation (2.37). In terms of the Fs one immediately is able 
to compute a solution to both the differential and algebraic constraints 
making use of equation (2.34), 

X = exp(F). (2.39) 

However, the Fs are far from freely prescribable since they are con
strained by the differential constraint. The main intention of this section 
is to give a prescription for generating the Fs (and through them the Xs) 
from freely specifiable quantities. In order to do this we will need to in
troduce some technology to deal with transverse tensors. This technology 
will also be useful for dealing with knot invariants. 

2.4.1 Transverse tensor calculus 

First of all notice that the notion of transversality (divergence equal to 
zero) is well defined for vector densities, since their divergence can be com
puted without introducing an external metric. For instance, statements 
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such as 

(2.40) 

are well defined for an object like E which is a vector density on the index 
a at the point x. 

Let us introduce the notion of transverse and longitudinal projectors 
in the multivector density space. In order to do this, it is convenient to 
endow the space of transverse vector densities of rank one with a natural 
metric structure. Given two transverse fields vax and wax one can define 
their inner product [22], 

g(V, W) = J d3x Va A~, 
(2.41 ) 

where A~ is a "potential" defined in the following way. Construct a 
two-form Wab = EabcWc. This two-form is curl-free, 8[cW ab] , due to the 
transversality of W a . Then one can define the one-form ("potential") 
A~ by 8[bA~ = Wab. This one-form is defined up to the addition of 
a gradient. This will force us to give ad-hoc prescriptions when dealing 
with expressions in terms of A~. However, the inner product (2.41) is 
well defined in a prescription independent way since the addition of a 
gradient to A~ only contributes a total divergence term. 

The inner product introduced by (2.41) gives rise to a covariant metric 
on the space of transverse vectors, 

g(V, W) = go axby vaxwby, (2.42) 

which can be explicitly written, for instance, in the transverse ( non
covariant) prescription, 

(2.43) 

as 
1 XC _ yC 

go axby = - 411" Eabc 1 x _ Y 13 (2.44) 

Notice that due to the use of a non-covariant prescription the final ob
ject has both coordinate and background metric dependence. go is a well 
known object in knot theory, where it plays the role of the kernel of the 
Gauss knot invariant, as we will see in section 2.6. It is the expression in 
a particular prescription of the covariant metric in the space of transverse 
vector densities defined by (2.41). Notice that in what follows we will 
not need to specify a background metric unless we want to give a specific 
prescription. In general, the covariant metric is defined up to gradients 

https://doi.org/10.1017/9781009290203.004 Published online by Cambridge University Press

https://doi.org/10.1017/9781009290203.004


40 2 Loop coordinates and the extended group of loops 

that change according to the prescription chosen, 

gaxby = go axby + Pax y,b + Pby x,a . (2.45) 

'Ifansverse and longitudinal projectors may easily be written without 
the use of a background metric in terms of g and its inverse in the trans
verse space, 

(2.46) 

We define the quantities OT and 0 L (the transverse and longitudinal 
Dirac deltas) as 

s;- ax _ axcz 
VT by = g gczby (2.47) 

and 
s;-ax _s;-ax s;-ax 
v L by = v by - VT by, (2.48) 

where oax by = oabo(x - y). It is straightforward to check that they have 
the desired projection properties, 

OTJ.t P OTP v = OTJ.t v , 

OLJ.tp OLPv = OLJ.t v , 

o L J.t P OTP v = OTJ.t pOL P v = 0 . 

By using the explicit form of the covariant metric one can prove that 

s;- ax ,.j,.ax 
vL by='f' y,b, (2.49) 

where 

~ ¢ ax = -O(x _ y) . aXa y 
(2.50) 

The ambiguity in the definition of the metric induces an ambiguity in 
the decomposition into transverse and longitudinal parts. Each function 
¢ that satisfies (2.50) determines a particular prescription of the decom
position. It is important to note that the transverse density fields and in 
particular the contravariant metric (2.46) are prescription independent. 
In the particular case in which we choose the transverse metric to be go 

we have 

¢ax 
1 a 1 

(2.51) ---o y 41l" axa I x - y I ' 

o ax 
OT by = 

oax aaab 1 
b +--
Y 41l" I x - y I (2.52) 

A transverse projector acting on the vector space £ of multitensor den
sities can be immediately introduced through the matrix OT, defined in 
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components as 

(2.53) 

Given any multi vector density E one can construct a multivector den
sity ET that is transverse or in other words that satisfies the homogeneous 
part of the differential constraint (2.11) by, 

ET=6T ·E. (2.54) 

The set of all ETS forms a linear vector space t:T' The definition of ET 
is not unique, it depends on the prescription used in the definition of the 
projector. 

Since 6T a projector, relation (2.54) is obviously not invertible in gen
eral. However, it turns out that it can be inverted on a subspace of t: 
given by t: D, the multitensor densities that satisfy the differential con
straint (2.11). In order to do this, let us start by evaluating 

E /-'l"'/-'n _ 5:/-'1 5:/-'n E V 1 ... Vn 
D - U V1"' U Vn D , (2.55) 

making use of identity (2.48) and the differential constraint and recalling 
that the first rank component of E is transverse, we then get 

ED=a·ET. (2.56) 

The soldering quantities (J' only depend on the function ¢ which char
acterizes the choice of decomposition in transverse and longitudinal parts, 

with 

ifm=n 
ifm <n 
ifm > n 

(2.57) 

(2.58) 
Again, this definition is not unique and will be prescription dependent. 

However, starting from a given ED one can construct an ET and then 
uniquely reconstruct the original ED by applying a. 

A crucial property is that the quantities a satisfy the differential con
straint in their upper indices, as can be checked from their definition. 
That is, given an arbitrary transverse multitensor density ET, one can 
construct a solution of the differential constraint by applying equation 
(2.56). 
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The quantities a have definite transversality properties 

oT·a=oT, 

a·oT=a. 

(2.59) 

(2.60) 

Notice that due to these properties we can relax the requirement to 
construct a solution to the differential constraint, i.e., given an arbitrary 
multitensor E, the quantity a·E is a solution of the differential constraint. 

Under a change of the prescription <pf~ ---t <p~~ we get a a[<P2] satisfying 

(2.61) 

The operations OT and a define an isomorphism between vector spaces, 
ED the space of multitensors that solve the differential constraint and ET 
via, 

ET=OT·ED, 

ED = a· ET. 

(2.62) 

(2.63) 

The vector product can be introduced in the vector space ED and, due 
to the isomorphism, it is simply given by 

(2.64) 

This last property will have useful applications in section 2.6 where we 
construct diffeomorphism invariants. 

We are now ready to combine this construction with the ideas of the 
last section to define the loop coordinates. 

2.4.2 Freely specifiable loop coordinates 

We saw in section 2.3.2 that one could generate a solution to the differ
ential and algebraic constraints X by considering 

X = exp(F) (2.65) 

but for this to hold F had to satisfy the differential constraint and the 
homogeneous algebraic constraint. 

Let us now consider an arbitrary transverse multitensor ET. Applying 
the results of the last subsection, we notice that the quantity a . ET 
satisfies the differential constraint. Unfortunately, it does not satisfy the 
homogeneous algebraic constraint (if it did, we would be done, since it 
would be an element of :F). 

We will remedy this situation now. We define a new matrix, given by 

n-l ( ) 
nl-ll···IJ.n = oIJ.1 ••• IJ.n + ""' n - k (_1)k oIJ.l ••• lJ.klJ.k+l ... lJ.n 

Vl···Vm - Vl···Vm L..J n Vl···Vm , 

k=l 
(2.66) 
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where 

>:/-L1···/-Ln - >: >:/-L1 >:/-Ln 
U Vl ... lJm = Un,m U VI··· U V n . (2.67) 

The matrix n has the following important property: it satisfies the 
homogeneous algebraic constraint in the upper indices. This fact imme
diately shows that n is a projector. Given an arbitrary vector E, n· E 
is an algebraic-free object. In particular we have F = n . F. 

Let us now introduce the following set of vectors 

(2.68) 

with 

(2.69) 

which written explicitly in components is 

(s )J.l1 ••• J.ln = (J"J.l1 ••• J.ln n01 •.. O / 
/.I1 ••• /.Im 01 ..• 0/ /.I1 ••• /.Im· (2.70) 

These vectors combine the action of (J", which converted an arbitrary 
multitensor into a solution of the differential constraint, and n, which 
projects into the space of solutions of the homogeneous algebraic con
straint. That is, given an arbitrary multivector density E, projecting it 
with S one obtains an element of F. Simply by exponentiating this ele
ment, as we saw in section 2.3.2, we obtain a solution of the differential 
and algebraic constraint. That is, we just consider, 

x = exp(S· E), (2.71) 

and the Es are unconstrained! Notice that expression (2.71) is the usual 
relation between elements of a Lie group (X), a basis of generators Sand 
their free parameters (E). 

Expression (2.71) does not really depend on the portion of the Es that 
does not satisfy the homogeneous algebraic and differential constraints 
since the contraction with the Ss is independent of that portion. There
fore, one will usually concentrate on the set of transverse vectors Y that 
satisfy the homogeneous algebraic constraint, and we will call this set y, 

y: Y=DT'Y and y/-L1 ..• J.lk/-Lk+1···/-Ln = 0 , 1::; k < n . 

(2.72) 
The situation is totally analogous, for instance, to that of the Lorentz 

group. In that case the generators are antisymmetric matrices and there
fore one usually works with free parameters that are antisymmetric ma
trices in spite of the fact that any kind of matrix would do. It is just that 
one can only code relevant information in its antisymmetric part. Simi
larly here, any arbitrary multitensor E would work as a free parameter, 
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but only information coded in the portion that satisfies the homogeneous 
constraints will be relevant for constructing the Xs via equation (2.71), 

x = exp(S· Y). 

The elements of Yare immediately related to those of F by 

Y=8T ·F. 

(2.73) 

(2.74) 

When referring to multitangents rather than arbitrary multitensors we 
can therefore call the objects Y "loop coordinates" or coordinates in loop 
space. Abusing the terminology a bit we will also refer to them in this 
way when we talk about arbitrary multitensor densities not necessarily 
associated with loops. 

Since they are solutions to the homogeneous algebraic and differential 
constraint, the Ss are elements of F and therefore they form a basis for 
the algebra as we suggested above. Details of their construction, the 
proof that they satisfy the algebra and the determination of the structure 
constants of the SeL can be seen in reference [20]. 

2.5 Action of the differential operators 

In the previous chapter we introduced a series of differential operators 
that represented the infinitesimal generators of the group of loops. The 
loop coordinates provide us with an explicit representation in terms of 
which we can explore the action of the differential operators. We will 
not discuss in detail the action of all the differential operators, since as 
we saw, they are related to each other. We will only concentrate on the 
action of the loop derivative and of the contact derivative. The former can 
be used as the starting point to compute any other derivative. The latter 
is related to diffeomorphism invariance and therefore deserves a detailed 
treatment. 

Let us therefore start by computing the action of the loop derivative 
on a multitangent field. By the definition of the loop derivative (1.17), 

(1 + ~aab ~ab( 7l'~) )Xalxl ... anXn (r) == Xalxl ... anXn (7l'~ 0 8u8v8u8v 0 7l'~ 0,), 

(2.75) 
and recalling the relation between the x-product and the composition law 
(2.22), we can write 

x a1 Xl .. ·anXn (7l'~ 0 8u8v8u8v 0 7l'~ 0 ,) = 
(X(7l'~) x X z(8u8v8u8v) X X(7l'~) x X(r))a1xl ... anXn. (2.76) 

Notice that Xz(8u8v8u8v) is a multitangent basepointed at z, which is in 
line with the fact that it is composed with an open path that ends at z. 
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We therefore need to evaluate X(8u8v8u8iJ) applying the definition of 
the multitangents (2.3). We can do this order by order. We will only 
make explicit the calculation of the first order, 

Xz(8u8v8u8iJ)a1Xl = flUa1 8(Xl - z) + f2V a1 8(Xl + flU - z) 

-flua18(Xl + flU + f2V - z) - f2V a1 8(Xl + f2V - z), (2.77) 

we now expand the Dirac deltas 

(2.78) 

and noticing that all linear terms cancel, we collect terms of order fl f2 to 
get 

(2.79) 

In this last expression aab = 2fl f2U[a vb] as usual and we have intro
duced the antisymmetrized Kronecker delta 8~i = ~(8~8g - 8b8~) and the 
notation 8,c(x - z) = oc8(x - z). 

With this in mind, similar calculations follow for higher order multi
tangents. The results are 

b.ab(7r~)XalXl (r) = 8:tC8,c(Xl - z), (2.80) 
b.ab(7r~)XalXla2x2(r) = 8:t28(Xl - Z)8(X2 - z) 

+8:Ec8,c(X2 - Z)Xa1X1 (7r~) + 8:t8,c(Xl - z)xa2X2(7r~ 0,), (2.81) 

and, in general, 

b.ab(7r~)xalXl ... anXn(r) = 
8:t C8,c(Xl - z)Xa2x2 ... anXn(7r~ 0,) 

+8anC8 (x _ z)Xalxl ... an-lXn-l (7rZ) ab ,c n 0 

+8:ta28(Xl - Z)8(X2 - z)Xa3x3 ... anXn (7r~ 0,) 
+8:b-lan8(xn_l - z)8(xn - z)xalxl ... an-2Xn-2(7r~) 

n-2 
+ L 8:~+lC 8,c(Xj+l - z)Xalxl ... ajXj (7r~)Xai+2Xi+2 ... anXn (7r~ 0,) 

j=l 
n-3 
'""' a'+la"+2 + ~ 8a~ J 8(xj+1 - Z)8(Xj+2 - z) 
j=l 

xxalxl ... ajXj (7r~)xai+3Xj+3 ... anXn (7r~ 0,). (2.82) 

In terms of these expressions for the loop derivative one can recon
struct the action of any other differential operator. We will consider as 
an example the expressions for the contact derivative. 

The expression of the action of the contact derivative on a multitangent 
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is, 

n L t5:t C t5,c(Xj - Z)xalXl ... aj-1Xj-lbzaH1XH1 ... anXn (-y) + 
j=l 
n-l L t5:tH1 t5(Xj - Z)t5(Xj+1 - Z)XalXl ... aj-1Xj-lbzaH2XH2 ... anXn(-y). 

j=l 
(2.83) 

This expression can be written as a linear transformation of the X s. 
This is just an expression of the fact that a "passive" diffeomorphism 
where one deforms the loop is the same as an "active" diffeomorphism 
where one maintains the loop fixed but changes coordinates. Let us take 
a minute to explore this result in detail. We rewrite the expression for 
the contact derivative as 

n 
Ca(z)xalxl ... anXn (,) = L Aaz ajXj byXalxl ... aj-1Xj-lbyaH1Xj+l ... anXn (,) 

with 

j=l 
n-l 

+ ~ B ajXjaj+1Xj+l xalxl ... aj-1Xj-lbyaj+2Xj+2 ... anXn 
~ ~ by , 
j=l 

AazalXlby = t5:tct5,c(Xl - z)t5(y - z), 

Bazalxla2X2by = t5:ta2t5(Xl - Z)t5(X2 - z)t5(y - z), 

(2.84) 

(2.85) 

(2.86) 

where we have used a generalized Einstein convention on the index y. 
Sometimes it will be useful to compute the action of differential oper

ators on cyclic multitangents, for instance, if one wants to evaluate the 
contact derivative of a Wilson loop, which only depends on the cyclic 
portion of the multitangents, 

(2.87) 

It is given by 
n 

Ca(z)X~lxl ... anXn (-y) = L Caz ajXj byX~lxl ... aj-1Xj-lbyaHlxHl ... anxn (-Y), 
j=l 

(2.88) 
where 

(2.89) 
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Equation (2.84) can also be rearranged in terms of the linear transfor
mation matrix C making use of the differential constraint, which was also 
used to derive (2.88). 

These expressions allow us to write the expression for the transforma
tion law of the multi tangents under an infinitesimal coordinate transfor
mation xa ~ x,a = Da(x) == xa + Na(x) simply by computing 

(1 + J d3XNa (X)Ca (x)) X/1-l ••• /1-n = AD~~ ... AD~: X II1 ••• lln, (2.90) 

with the coordinate transformation matrices given by 

ay _ 1 aDa(x) ( -I( )) _ aDa(x) ( 
AD bx - J(x) axb 0 x - D y - axb o(D x) - y)), (2.91) 

where J(x) is the Jacobian of the coordinate transformation. 

2.6 Diffeomorphism invariants and knots 

Any vector F belonging to the SeL algebra behaves as a multi vector den
sity under a diffeomorphism that leaves the basepoint fixed. In matrix 
form the transformation law corresponding to a coordinate transformation 
xa ~ x'a = Da(x) is 

F' =AD . F (2.92) 

where 

A /1-l···/1-n - 1: A /1-1 A /1-n D IIl ... lIm = Un,m D Ill'" D lin' (2.93) 

From here it is immediate just by inspecting equation (2.62) to derive 
the transformation law for the transverse algebraic-free vectors Y, 

y' = OT . F' = CD . Y, (2.94) 

where 

CD ==oT·AD·a. (2.95) 

The diffeomorphism transfor~ation given by (2.92) is just a particular 
example of a more general family of transformations: the automorphisms 
of the algebra. Other automorphisms can be considered, for instance, the 
conjugation F' = X x F X X-I. 

The isomorphism between the vector spaces CD and CT makes CD a 
representation of the diffeomorphism group. This representation emerges 
as the push-forward of the natural action of diffeomorphisms on the space 
of solutions of the differential constraint through the isomorphism of that 
space with the space of transverse vectors CT. 
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The presence of the non-diagonal matrix a in CD makes this representa
tion highly non-trivial. This is an important result, due to the possibility 
of introducing objects that transform under the adjoint representation 
of the diffeomorphism group. In fact, the isomorphism guarantees the 
following property of the as 

a = AD . a . CD-I. (2.96) 

This relationship clearly shows the role played by the as as the soldering 
quantities between the fundamental representation AD and the adjoint 
representation CD. It is straightforward to see that the subspaces :F and 
y are invariant under diffeomorphisms. 

Our task is to construct quantities invariant under automorphisms. To 
illustrate the procedure to follow, let us consider what is usually done to 
construct invariants of a group, say SU(2). One takes elements of the 
group WWi , where a i are the usual Pauli matrices and Wi free parameters, 
and computes their trace 

(2.97) 

The result is obviously an invariant and it has the form of a metric Gij (in 
this particular case equal to 6ij ), which is invariant under the action ofthe 
automorphisms of the group, contracted with the free parameters of the 
group. Analogously one can take traces of higher order products of ele
ments and one would end up with invariants of the form Gil ···in Wil ... Win. 

We will generically call the Gs "invariant metrics". 
We will now follow a similar procedure to find invariants under automor

phisms of the SeL group. Since we showed that diffeomorphisms are just a 
particular case of automorphisms, the result will be diffeomorphism invari
ant. Consider a covector in the space y, g = (O, gIJ.11£2'···' gl£l ... l£n'···) 

with the following properties: 

g=g·CD, (2.98) 

(2.99) 

With it, we can define a multilinear form from Y x ... x Y into the 
complex numbers, 

In = g. (Yl X ••• X Y n) (2.100) 

that is invariant with respect to all automorphisms described above. The 
invariance property (2.98) ensures that (2.100) is invariant under dif
feomorphisms, (2.99) ensures invariance under conjugation. Why do we 
require the extra cyclicity property (2.99)? The reader should remember 
that all the multitangent formalism is basepointed, i.e., there is a pre
ferred point in the manifold as was obvious, for instance, when writing 
the differential constraint (2.11). The diffeomorphisms under which the 
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constructed quantity would end up being invariant would be those that 
leave the basepoint fixed. This is not what one is usually interested in, 
not even in the case of knot invariants, when the multitensors really are 
multitangents to loops. The cyclicity property ensures that the quantities 
constructed do not depend on any basepoint. 

Unfortunately, we do not have a general technique for constructing the 
invariant tensors 9. Taking traces as in the SU(2) example does not 
work since we want objects not only invariant under conjugacy but also 
under other automorphisms, specifically the ones that represent diffeo
morphisms and the traces are not invariant under these transformations. 
Some invariant tensors 9 are known and we will discuss them in some 
detail later. 

This formalism appears to be a very powerful technique for construct
ing invariants associated with three-manifolds. Its implications have not 
been worked out in detail yet, so we will end the generic discussion here. 
However, it is quite clear that this construction can immediately be partic
ularized to the case in which one is not dealing with arbitrary multitensor 
fields, but with multitangents associated with loops. The resulting in
variants would be knot invariants. There is an abundant literature on 
the subject and therefore we will find it worthwhile to explore the im
plications of our formalism in some detail for this case in order to make 
contact with well known results. 

Therefore, we will now consider the quantities 

In(-y) = g. (Y(-y) x ... x Y(-y)), (2.101) 

and it is evident by construction that In ('Y) = In ('Y') if'Y and 'Y' are related 
by a diffeomorphism. 

Let us consider some particular examples of these quantities. Take 
n = 2. In this case, the invariant metric has only one non-vanishing 
component, 

9a 1£1 ••• l£n = 8n,2 91£11£2 , (2.102) 

where 91£11£2 is the metric on the space of order one multitangents, already 
introduced in (2.45). It leads to the following invariant: 

(2.103) 

For a first order multitangent yl£(-y) = XI£(-y)j replacing the definition 
of the X s (2.3) and of 9 (2.44) and performing the integrals over the 
three-manifold explicitly we get 

(2.104) 

The reader may recognize in this expression the Gauss linking number. 
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Since we computed it for only one curve, it is a "self-linking number", 
a quantity which is in general ill-defined and to which we will return in 
chapter 10. 

Although there is not a systematic procedure for constructing the in
variant metrics, an infinite family of them can be constructed applying 
results from Chern-Simons theories, a class of topological field theories 
that has recently attracted great attention [45J. Using these techniques 
other invariant metrics have been computed in explicit fashion [187, 47], 
but we will postpone their discussion until chapter 10 when we discuss 
Chern-Simons theory in some detail. 

The metrics are prescription dependent objects, as can be readily seen 
from equation (2.98). The knot invariants, however, should be prescrip
tion independent. In order to see this let us fix some prescription for g, 
gl = gl . I5Tl . Then 

gl . 91 = gl . I5Tl . F = gl . F. (2.105) 

But F = 0'2 .92 , then 

gl .91 = gl . 0'2 .92 = g2 .92 , (2.106) 

where 

(2.107) 

is the invariant tensor in the prescription 2. Using the algebraic-free 
coordinates we have 

(2.108) 

If one is considering a specific representation of the group of loops in 
terms of a gauge group, as we will start to do in the next chapter, func
tionals of a loop and of multiloops will be related by a series of identities 
called the Mandelstam identities. With these identities one can build and 
relate invariants of links of more than one component. We will return to 
this subject in chapter 10. 

2.7 Conclusions 

In this chapter we introduced a series of analytic techniques for describing 
loops. We exhibited the important role of multitensor densities as rep
resentations of loops. In fact we noticed that multitensor density fields 
can play a more fundamental role than loops in physics altogether. We 
showed how to represent the group of loops and how to extend it to form 
a Lie group in terms of multitensor fields. We found, by constructing the 
associated Lie algebra and its free parameters, a set of freely prescribable 
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multitensors that can be used as fundamental objects to describe loops or 
to build a more general framework. We showed how the diffeomorphisms 
are represented in terms of these objects and how to use them to construct 
invariants of three-manifolds and of knots. All these techniques will play 
a fundamental role in chapters 10 and 11 in the applications to quantum 
gravity. They will be especially useful for revealing the relations between 
quantum gravity and topological field theories and will possibly become 
the calculational bridge between the beautiful notions of knot theory and 
the Einstein equations. Of all the mathematical technology that we will 
introduce in chapters 1-3, the extended loop calculus is the most recently 
discovered and its implications are least explored. A great degree of im
provement in the understanding of these issues is likely to appear in the 
years to come. 

https://doi.org/10.1017/9781009290203.004 Published online by Cambridge University Press

https://doi.org/10.1017/9781009290203.004



