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ABsTRACT. As an extension of an intensive study of Gulkana Glacier a 42 station gravimeter survey was
made to gain some insight into its third dimension. This survey showed that the glacier’s main tongue
occupies a complex valley composed essentially of two parallel channels separated by a medial ridge which
extends southward from rock bastions in the accumulation zone. At mid-glacier the ice thickness in the larger
eastern channel is 225 m., in contrast to 130 m. in the western channel. The medial ridge degenerates down-
glacier probably disappearing within 2 km. of the glacier terminus. The basic surface flow pattern of the
glacier described by Moores can be adequately explained by this basal topography. Seasonal velocity
variations are possibly caused by melt-water basal lubrication with one channel being favored over the other
at different times of the year, in agreement with observations by Elliston on the Gorner-Gletscher, Switzer-
land, and with the glacier sliding theory of Weertman.

Risumi. Topographie sous-glaciaire du Gulkana Glacier, Alaska Range, Alaska. 1.’¢étude intensive du Gulkana
Glacier a ét¢ étendue par la mesure de la gravité en 42 stations pour obtenir une idée de sa troisieme
dimension. Ce levé a montré que la langue principale du glacier occupait une vallée complexe composée
essentiellement de deux chenaux paralléles séparés par une aréte médiane qui sentend vers le sud a partir
de bastions rocheux de la zone d’accumulation. Vers le milien du glacier, I'épaisseur de glace est de 225 m
dans le chenal est le plus large comparativement aux 130 m du chenal ouest. L’aréte médiane diminue vers
le bas pour disparaitre dans les deux derniers km du front. Les traces superficielles de 1'écoulement du
glacier décrites par Moores peuvent étre bien expliquées par cette topographie sous-glaciaire. Des variations
saisonniéres de la vitesse sont probablement causées par lubrifaction basale de eau de fonte qui favorise
'un des chenaux au détriment de Pautre a différents moments de Pannée, en accord avee les observations
d’Elliston sur le Gorner-Gletscher, Suisse, et avee la théorie du glissement des glaciers de Weertman.

ZUSAMMENFASSUNG. Die Gestall des Untergrundes am Gulkana Glacier, Alaska Range, Alaska. In Erweiterung
einer ausfihrlichen Untersuchung des Gulkana Glacier wurden auf 42 Stationen Schweremessungen vor-
genommen, um cinige Daten iiber den Untergrund des Gletschers zu gewinnen. Die Messungen ergaben,
dass der Hauptarm des Gletschers ein kompliziertes Tal einnimmt, das im wesentlichen aus 2 parallelen
Rinnen — getrennt durch einen Mittelriicken, der sich siidwiirts von Felsbastionen in der Akkumulationszone
erstreckt — besteht. In Gletschermitte betriigt die Eisdicke in der grisseren éstlichen Rinne 225 m, im
Gegensatz zu 130 m in der westlichen Rinne. Der Mittelriicken nimmt gletscherabwiirts an Hohe ab und
verschwindet 2 km vor der Gletscherzunge. Die Fliesshewegung auf der Oberfliche des Gletschers, wie sie von
Moores dargestellt wird, kann im wesentlichen aus dieser Untergrundsgestalt erklirt werden. Jahreszeitliche
Geschwindigkeitsschwankungen sind méglicherweise durch dic Schmierwirkung von Schmelzwasser am
Untergrund verursacht, wobei cine Rinne gegeniiber der anderen zu verschiedenen Zeiten des Jahres
bevorzugt wird. Dies steht in Ubereinstimmung mit Beobachtungen von Elliston am Gorner-Gletscher,
Schweiz, und mit der Gleittheorie von Weertman.

Gurkana Gracier has undergone intensive study since 1960 under a program of integrated
investigation conducted by the Department of Geology, University of Alaska. From this efTort
four extensive papers have been written on the budget, foliation and flow of the glacier (Rutter,
unpublished; Sellmann, unpublished; Mayo and Péwé, 1963; Moores, unpublished). As an
extension to this program a gravity survey was made over a large part of the glacier during
September 1961 in the hope that some insight might be gained into its third dimension.
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PrysicAL SETTING AND FLOW STRUCTURE

Gulkana Glacier is situated on the south flank of the Alaska Range (lat. 63° 17' N.,
long. 145° 25" W.) bordering the Denali fault, which is a major tectonic element running
the full length of the mountain system. It is one of the most accessible of the many valley
glaciers in the rugged central Alaska Range, being only 2 km. off a short access road leading
from the Richardson Highway. The structure of the glacier is complex as it originates from
what appears to be three or four separate accumulation basins whose combined area is
12 km.? (Fig. 1). The maximum elevation of the firn zone extends to about 2,000 m. From the

145°27' W, 145720 W,

145°27" W, 19521 W

Fig. 1. Gulkana Glacier and accumulation basins. The glacier is laterally divided into four physical ice streams : 1, 2, 3a and 3b.
Physical ice streams 1, 2 and 3b flow as a unit forming the eastern velocity ice stream. Physical ice stream 3a /Iaws at a
different rate as the western wlaﬂtv ice stream (afier Moores, unpublished). Black dots indicate ice movement survey markers.
“The numbered dots are also grauity stations. Transverse profiles 1, 2 and 3 refer to Figure 2
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accumulation basins the ice coalesces to form a glacial tongue 7:2 km.* in area, being approxi-
mately 4-5 km. long, 1-75 km. wide and terminating at an elevation of 1,130 m. The glacial
tongue is divided laterally into four ice streams which Moores (unpublished) has numbered
1, 2, 3a and gb (Fig. 1). The ice streams originate from separate accumulation areas and are
delineated by medial moraines and longitudinal bands of rock debris. lce stream g originates
at the Gabriel Ice Fall. A second ice fall, the Moore Ice Fall, is located towards the head of
the easternmost accumulation basin.

Moores (unpublished) described the unique surface velocity structure of Gulkana Glacier
in considerable detail and has shown that the glacier flows faster in summer than in winter
and that the relative motion between the ice streams changes with the seasons (I'ig. 2). The
mean yearly velocity distribution shows two parallel ice streams flowing at different velocities
in the central part of the glacier and as a single unit farther down-glacier (Fig. 3). The
eastern velocity stream is composed of physical ice streams 1, 2 and gb, whereas the western
velocity stream consists of physical ice stream 3a. An area of relatively low velocity which
separates the two ice streams is coincident with a surface topographic low, despite a uniform
rate of ablation across the glacier. Longitudinal velocity profiles drawn along the center lines
of the ice streams show an irregular decrease in velocity towards the glacier terminus. Moores
interpreted this irregular movement as being due to probable changes in bedrock slope.

The surface velocity structure of Gulkana Glacier during the winter differs little from the
annual mean except that both velocity streams move only about g4 per cent of their yearly
average. Although the summer velocity pattern also preserves the same general configuration
of the yearly mean, the deviations are considerably more complex than those noted during
the winter months. The most striking change in the summer flow structure is the marked
increase in down-glacier velocity. However, unlike the winter uniform decrease in flow rate,
the relative increase in velocity is greater in the eastern ice stream than that in the western
stream. The former increases by about 170 per cent over the annual mean, whereas the latter
increases by only 140 per cent. Furthermore, the increase in velocity is greater at transverse
profile 2 than it is farther down-glacier at profile 1 (Fig. 2). At transverse profile 1 the east
and west velocity ice streams flow at different relative velocities during the summer, whereas
in winter they flow essentially as a single unit. During July the east velocity ice stream flowed
appreciably faster than it did in August. In contrast, the west velocity ice stream flowed
slower in July than in August.

The motion in the terminal part of the glacier is complicated by thrusting, collapse (Rutter,
unpublished) and relatively large surveying errors (Moores, unpublished), and will not he
considered in this discussion.

(GRAVIMETER SURVEY

The gravity survey consisted of 42 stations on the glacier or just off its margin (Fig. 1;
Table I). These stations were located at movement survey stakes and were identified according
to the University of Alaska numbering system. The movement study network has been very
carefully surveyed and is reported as being accurate to an estimated +4o-4ft. (12 cm.)
vertically and +o-2ft. (6 cm.) horizontally at mid-glacier (Moores, unpublished). The
gravity survey was conducted with a thermostated LaCoste and Romberg geodetic gravimeter
(No. G-26) and observations are believed to be accurate to +o0-2 mgal. Because Gulkana
Glacier is situated in a deep mountain valley, the terrain effect is significant and corrections
had to be applied to all the observations. These corrections were determined by the zone
chart (out to a radius of 15 km. around a station) and tables computed by Hammer (1939).
The magnitude of the corrections varied from 3 mgal. for a central station to 8 mgal. for a
station at the margin of the glacier.

In 1955 a similar gravity survey was made of the less complex Jarvis Glacier (Ostenso and
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Holmes, 1962) which lies just to the north of Gulkana Glacier on the other side of the moun-
tain divide. The same method was used on both glaciers in calculating ice thickness from
gravity observations, with the exception that the empirical relationship of 1 mgal. anomaly
equals 20 m. change in ice thickness for regions of marked bottom relief (Bentley, 1964) was
used rather than the relationship of 1 mgal. = 13-5m. of ice as determined from simple
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flat-plate theory. Figure 2 graphically illustrates that Bentley’s empirical relationship is sound.
Here the points of calculated ice thickness are connected by smooth lines to form two
transverse profiles of the glacier. The gravity effect of these cross-sections is then calculated
using Hubbert’s (1948) line-integral method assuming mean densities of 0-go g./cm.’ for
ice and 2-67 g./em.’ for bedrock, which in this area consists of coarse-grained acidic igneous
and complex metasedimentary rocks (Capps, 1940, p. 201; Moffit, 1954).

Discussion

In Figure 2 the computed gravity profiles are seen to be in excellent agreement with the
observed Bouguer gravity profiles. Except for transverse profile 1, no attempt is made to
obtain a better fit to the data, as the inherent lack of precision in this method of determining
ice thickness would make such a refinement meaningless. In the case of profile 1, where the
sharp subglacier ridge has a profound topographic effect on the gravity observations, an
alternative bottom profile is given which represents a line-integral fit to the observed data.
The down-glacier surface velocity profiles shown in this figure are modified after Moores
(unpublished).

It is estimated that the accuracy of the glacier depth determinations is 20 m. relative to
each other, but the datum of the network may be in error by + 50 m. relative to sca-level.
The computed ice thicknesses are plotted in Figure 4 using Rutter’s (unpublished) foliation
chart as a base map. In Figure 3 glacier thickness profiles are shown along transverse lines.
1, 2 and § using Moores’s (unpublished) yearly surface velocity chart as a base map.

Figures 2, g and 4 show a marked correlation between subglacial topography and ice
surface motion. Essentially, Gulkana Glacier can be regarded as occupying a complex valley
composed of two parallel channels separated by a medial ridge. The eastern channel is the
larger and deeper of the two. The medial ridge crops out to the north forming a series of rock
bastions. Down-glacier the ridge narrows and stands out in sharper relief. The surface yearly
velocity vectors, and particularly the foliation pattern, correspond well with the subglacial
topography. The median ridge appears to terminate not far below transverse profile 1 and
beyond this point the valley probably has a simple U-shape. It is here that the cast and west
velocity streams join to flow as a single unit as would be expected. The velocity vectors over
the western trough in transverse profile 2 show a tendency of the ice to override the medial
ridge. This could be caused by the influence of the Gabriel Ice Fall immediately to the north
and/or the bend in the glacier at this point. In profile 1 the ridge is offset slightly to the east
relative to the summer velocity profile. This apparent displacement is probably due to wide
spacing between gravity observations and the inherent lack of resolution in the gravity
method of subglacial profiling in a region of marked basal relief. Profile 3, which presents a
simple U-shaped cross-section, exhibits the conventional simple distribution of surface velocity
with increasing speed toward the center of the valley. The location of medial moraines is
apparently influenced mainly by the source of the physical ice streams and exposed rock
bastions, with subglacial topography playing only a minor role in distorting some of the
lineations.

That there should be such a marked correlation between a glacier’s basal topography and
surface motion is not surprising in the light of what is known from the recently developed
theory of glacier flow (e.g. Nye, 1952, 1959; Glen, 1955; Weertman, 1957) and from limited
observational evidence,

Moores (unpublished) noted that the region of relatively low velocity which separates the
eastern and western velocity streams is coincident with a surface topographic low despite a
uniform rate of ablation across the glacier. This trough is best developed directly behind the
rock bastion and becomes progressively narrower down-glacier. Its cause is probably a
“*shadow” effect of the hastion,
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The reason that the eastern and western velocity streams reach their maximum velocities
at different times (July and August, respectively) was cxplained by Moores (unpublished) as
possibly being caused by one or a combination of the following factors: (1) The influence of
the Gabriel Ice Fall, (2) the slope of the bedrock surface immediately above the ice falls, and
(3) the eastward-flowing ice stream 3 applies a confining stress on the southward-flowing
velocity streams 1 and 2. Elliston ([Union Géodésique et Géophysique Internationale], 1963,
p- 65-66), in an attempt to explain similar seasonal velocity changes on the Gorner-Gletscher
(a temperate valley glacier in southern Switzerland), measured the surface velocity of the
glacier and discharge of the terminal melt-water stream. He found correlation between change
in velocity and volume of stream discharge. It seemed that the availability of melt water at
the ice-rock interface influenced the rate of glacier flow. Elliston’s work, coupled with
Weertman’s (1962, 1964) water layer hypothesis, may explain why the east and west velocity
streams’ flow rates are accelerated during July and August. The east and west channels of the
glacier valley could receive varying amounts of melt water throughout the summer months
with consequent variability in basal lubrication. Subglacier lubrication variations could also
explain the short-interval “jerky” movement observed during the summer. This mechanism is
substantiated by the great volume of melt water that can be seen discharging into the glacier
throughout the ablation season. In his most recent treatment of the problem of glacier sliding,
Weertman (1964) shows that a water layer an order of magnitude thinner than the size of
controlling obstacles (roughness) on the glacier bed can appreciably increase the sliding
velocity.

CONCLUSION

The gravimeter survey of Gulkana Glacier shows that it occupies a complex valley
composed essentially of two parallel channels separated by a medial ridge which extends
southward from a rock bastion. The ridge degenerates southward, probably terminating just
below transverse line 1 at which point the valley has a simple profile and the two velocity ice
streams flow as a unit. The basic surface flow pattern of the glacier can be adequately explained
by this basal topography. Seasonal velocity variations are believed to be caused by melt-water
basal lubrication with one channel being favored over the other at different times of the year,

MS. received 18 November 1964
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