RADICAL REGULARITY IN DIFFERENTIAL RINGS

HOWARD E. GORMAN

1. Introduction. In [1], we discussed completions of differentially finitely generated modules over a differential ring R. It was necessary that the topology of the module be induced by a differential ideal of R and it was natural that this ideal be contained in J(R), the Jacobson radical of R. The ideal to be chosen, called $J_a(R)$, was the intersection of those ideals which are maximal among the differential ideals of R. The question as to when $J_d(R) \subseteq J(R)$ led to the definition of a class of rings called radically regular rings. These rings do satisfy the inclusion, and we showed in [1, Theorem 2] that R could always be "extended", via localization, to a radically regular ring in such a way as to preserve all its differential prime ideals.

In the present paper, we discuss the stability of radical regularity under quotient maps, localization, adjunction of a differential indeterminate, and integral extensions.

2. Preliminaries. All rings will be commutative with 1. By a *differential ring* we mean a ring R with distinguished derivation which we always denote by "". For $r \in R$, the successive derivatives of r will be denoted by $r', r'', \ldots, r^{(n)}, \ldots$. A differential ring R is a *Ritt algebra* if it contains the rational numbers. For any ring R, Rad R will denote the *radical* of R, and Rad I will denote the *radical* of I for any ideal I of R.

If R is a differential ring, then the differential polynomial ring in the differential indeterminate x, written $R\{x\}$, is the polynomial ring over R in a countable number of variables $x = x^{(0)}, x^{(1)}, \ldots, x^{(n)}, \ldots$, with derivation defined by $x^{(n)'} = x^{(n+1)}$. We define the weight of the monomial

$$m = x^{(n_1)d_1} \dots x^{(n_r)d_r}$$

to be

$$\omega(m) = \sum_{i=1}^r (n_i + 1)d_i$$

with n_i and d_i non-negative integers.

(*) It is easily checked that $\omega(m^{(k)}) = \omega(m) + k$. (This makes sense since the monomial terms in the derivative of a monomial all have the same weight.)

Let R be a differential ring. Then we call R a d-MP ring if the radical of a differential ideal is again a differential ring. This property is equivalent to each of the following by [1, Lemma 2].

Received October 30, 1969 and in revised form, January 6, 1971. This research was partially supported by NSF Grant 13263.

HOWARD E. GORMAN

- (a) Prime ideals minimal over differential ideals are differential ideals.
- (b) If I is a differential ideal of R and S is a multiplicatively closed set of R disjoint from I, then ideals maximal among differential ideals which contain I and are disjoint from S are prime.

In particular, Ritt algebras are d-MP rings [2, Lemma 18].

If T is a subset of the differential ring R, then write [T]/R and $\{T\}/R$ for the smallest differential ideal and radical differential ideal, respectively, which contain T. Call R radically regular if, for every $x \in R$, $\{x\}/R = R$ if and only if x is a unit of R. Note that for a d-MP ring, $\{x\}/R = R$ if and only if [x]/R = R, and that $\{T\}/R = \text{Rad}([T]/R)$.

Denote the Jacobson radical of R by J(R) and the intersection of all ideals maximal among differential ideals by $J_d(R)$. Then

(**) *R* radically regular implies that $J_d(R) \subseteq J(R)$ with equality if and only if J(R) is a differential ideal (see [1, Lemma 10]).

If S is a multiplicatively closed set in the differential ring R with $0 \notin S$, then the derivation on R extends to R_s via the definition

$$\left(\frac{r}{s}\right)' = \frac{r's - rs'}{s^2}$$
 for all $r \in R$ and $s \in S$

(see [1, Lemma 1]).

3. Quotients and localizations. The property of radical regularity is not stable under quotients. For, let K be a field containing the rationals, equipped with trivial derivation, and let K[x] be the polynomial ring over K equipped with the derivation of calculus. Then K[x] has no proper differential ideals and so is not radically regular. But, by Theorem 1 below, $K\{x\}$ is radically regular and $K\{x\}/[1 - x'] \cong K[x]$.

The situation with regard to the stability of radical regularity with respect to localizations is settled by the following result.

LEMMA 1. Let R be a differential ring and P a prime ideal of R. Then R_P is radically regular if and only if P is a differential ideal.

Proof. Clearly, R_P is radically regular if and only if PR_P is a differential ideal. But this is equivalent to P being a differential ideal.

Lemma 1 shows that localization is of limited use in discussing radical regularity.

4. Differential polynomial rings. For d-MP rings, radical regularity is stable under adjunction of a differential indeterminate.

LEMMA 2. Let R be a differential ring, and let r be a unit of R. Then for any $x \in R$, [x] = [rx].

Proof. The proof follows immediately from the fact that $x \in [rx]$ and $rx \in [x]$.

THEOREM 1. Let R be a differential ring and let x be a differential indeterminate. Suppose that $R{x}$ is a d-MP ring. Then R is radically regular if and only if $R{x}$ is.

Proof. We note first that if $R\{x\}$ is a d-MP ring, then so is R; for if P is a prime ideal of R minimal over the differential ideal I of R, then $PR\{x\}$ is a minimal prime over $IR\{x\}$.

Necessity. Let $r \in R$ and [r]/R = R. Then $[r]/R\{x\} = R\{x\}$, and so there exists $f \in R\{x\}$ such that rf = 1. Let s be the constant term of f so that f = s + g with $g \in R\{x\}$. Then 1 = r(s + g) = rs + rg, from which it follows that 1 = rs and rg = 0; i.e., r is a unit of R.

Sufficiency. Let $f \in R\{x\}$ be such that $[f]/R\{x\} = R\{x\}$. Then

(1)
$$1 = \sum_{i=0}^{k} g_i f^{(i)}$$

with $g_i \in R\{x\}$ for each *i*. If *f* has no constant term, then (1) is impossible. Let $a \neq 0$ be the constant term of *f*, and let b_i be the constant term of g_i for each *i*. Then (1) implies that

(2)
$$1 = \sum_{i=0}^{k} b_{i} a^{(i)}$$

so that [a]/R = R. Hence *a* is a unit of *R*. By Lemma 2, $[f] = a^{-1}[f] = [a^{-1}f]$. Hence we may assume that a = 1, the advantage being that 1' = 0. Now (2) becomes $b_0 = 1$, and now $f^{(k)}$ has no constant term if k > 0.

Suppose that $f \neq 1$. (We assume a = 1.) Let *m* be the sum of those terms of *f* which have minimal, non-zero weight. We note that, for k > 0, $f^{(k)}$ has no terms of this weight. (See (*) in § 2.) Since $b_0 = 1$, *m* appears in (1) and is not cancelled by any other terms in (1) because they all have larger weights. But this contradicts (1). Hence f = 1 and the proof is complete.

5. Integral extensions. Let *R* and *S* ($R \subseteq S$) be differential rings. When we say that *S* is an integral extension of *R*, we shall assume that the derivation of *R* is the restriction to *R* of the derivation of *S*.

The next lemma shows that for differential d-MP rings, the "lying over" and "going up" theorems for integral extensions behave well with respect to derivations.

LEMMA 3. Let R and S ($R \subseteq S$) be differential d-MP rings, and let S be integral over R. Let P be a prime ideal of R, and let $Q \subseteq S$ lie over P. Then P is a differential ideal if and only if Q is.

Proof. If Q is a differential ideal, then so is $Q \cap R = P$.

Conversely, let P be a differential ideal of R. Then PS is a differential ideal of S, and $PS \cap (S - Q) = \emptyset$. Let Q_1 be an ideal of S maximal among differential ideals of S which contain PS and exclude S - Q. Then Q_1 is prime

because S is a d-MP ring, and $Q_1 \subseteq Q$ by construction. Further, Q_1 lies over P since

$$P = Q \cap R \supseteq Q_1 \cap R \supseteq PS \cap R = P.$$

By the lying over theorem, $Q = Q_1$; i.e., Q is a differential ideal.

Before stating Theorem 2, we prove the following lemma.

LEMMA 4. Let R be a differential ring and let M be any maximal ideal of R. Let $\langle N_{\lambda} \rangle_{\lambda \in \Lambda}$ be the set of proper differential ideals of R such that $M \cap N_{\lambda} \neq 0$. Then R is radically regular if and only if, for each maximal ideal M, $M \subseteq \bigcup_{\lambda} N_{\lambda}$.

Proof. Let $x \in R$. Then x is a non-unit of R if and only if $x \in M$ for some maximal ideal M of R. If $M \subseteq \bigcup_{\lambda} N_{\lambda}$, then $x \in N_{\lambda_0}$ for some λ_0 so that $[x]/R \subseteq N_{\lambda_0}$. Conversely, if $M \nsubseteq \bigcup_{\lambda} N_{\lambda}$, choose $x \in M - \bigcup_{\lambda} N_{\lambda}$, $x \neq 0$. Then x is not in any proper differential ideal of R so that [x]/R = R.

THEOREM 2. Let R and S ($R \subseteq S$) be differential d-MP rings and let S be an integral extension of R. Then

- (i) If S is radically regular, then so is R, and, in this case, $J(S) = J_d(S)$ implies $J(R) = J_d(R)$;
- (ii) Let R be radically regular. Then S is radically regular if either:
 - (a) R has only a finite number of maximal ideals, or
 - (b) S is a finitely generated free R-module.

Proof. (i) Suppose that S is radically regular. Let M be a maximal ideal of R and let N be a maximal ideal of S lying over M. Then, by Lemma 5, $N \subseteq \bigcup_{\lambda} N_{\lambda}$, a union of differential ideals of S. Hence $M = N \cap R \subseteq (\bigcup_{\lambda} N_{\lambda}) \cap R = \bigcup_{\lambda} (N_{\lambda} \cap R)$, and so M is also contained in a union of differential ideals of R; i.e., R is radically regular by Lemma 4. If $J(S) = J_d(S)$, then $J(S) \cap R = J(R)$ is a differential ideal. Hence $J(R) = J_d(R)$ by (*) in § 2.

(ii) (a) Suppose that R is radically regular and that R has only a finite number of maximal ideals. Then by [1, Theorem 3], each of them is differential. By Lemma 3, every maximal ideal of S is differential so that S is radically regular by Lemma 5; it follows also that $J_d(S) = J(S)$.

(ii) (b) Let a_1, \ldots, a_n be a free basis of S over R and let x be a non-unit of S. Suppose that

$$xa_i = \sum_{j=1}^n r_{ij}a_j$$

for each j with $r_{ij} \in R$. Let det $x = \det(r_{ij}) = r$. Then r is a non-unit of R, so that r lies in a proper, prime differential ideal P of R. Let $\hat{R} = R_P$ and $\hat{S} = S_{R-P}$. Then $P\hat{S} + x\hat{S}$ is a proper ideal of \hat{S} . For if 1 = (s/u)x + (t/v)p, with $u, v \in R - P$, $s, t \in S$, and $p \in P$, then $uv \equiv svx \pmod{PS}$ and $u^nv^n =$ $\det(uv) \equiv v^n \det s \det x \pmod{P}$. But $u^nv^n \notin P$ and $\det x \in P$, a contradiction. Now $(P\hat{S} + x\hat{S}) \cap \hat{R} = P\hat{R}$ since $P\hat{R}$ is the maximal ideal of \hat{R} . Hence there is a maximal ideal M of \hat{S} containing P and x and lying over $P\hat{R}$. By Lemma 3, M is a differential ideal. Hence x lies in a proper, differential ideal of S, and our proof is complete. Acknowledgement. I would like to thank the referee for supplying a correct proof of (ii) (b).

6. A result on rings without differential ideals. In Proposition 1 below we give conditions under which a d-MP ring without differential ideals is a field.

LEMMA 5. Let R be a d-MP ring with no proper, non-zero, differential ideals. Then R is a domain.

Proof. Since *R* is a d-MP ring, 0 is a prime ideal. Hence *R* is a domain.

PROPOSITION 1. Let R be a d-MP ring which is either radically regular or consists entirely of units and zero divisors. Then R is a field if and only if it contains no non-zero, differential ideals.

Proof. It is enough to prove the "if" part. Assume that R contains no non-zero differential ideals. Then, for every non-zero $x \in R$, [x] = R. Further, by Lemma 5, R is a domain; thus, if every element of R is a unit or a zero divisor, then R is a field. If R is radically regular, then this last statement implies that every non-zero x is a unit of R; i.e., R is a field, and our proof is complete.

References

1. H. E. Gorman, Differential rings and modules (to appear in Scripta Math.).

 I. Kaplansky, An introduction to differential algebra, Actualités Sci. Indust., No. 1251 = Publ. Inst. Math. Univ. Nancago, No. 5 (Hermann, Paris, 1957).

Stanford University, Stanford, California