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Abstract. Thediscriminant function A isacertain rigid analytic modular form defined on Drinfeld's
upper half-plane (2. Its absolute value | A| may be considered as afunction on the associated Bruhat—
Titstree T. We compare log | A| with the conditionally convergent complex-valued Eisenstein series
E defined on 7 and thereby obtain results about the growth of |A| and of some related modular
forms. We further determine to what extent roots may be extracted of A(z)/A(nz), regarded as a
holomorphic function on €. In some cases, this enables us to calculate cuspidal divisor class groups
of modular curves.
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Notations

We will throughout use the following notation:

F, =finitefield of characteristic p with ¢ elements

A =TF,[T] polynomia ring in an indeterminate '

K =TF,(T) rational function field

K., =TF,((w)) completion of K at theinfinite place (= := T?)
Voo = Normalized valuation of K

O =T, |[[x]] integersin Ko

C  =completed algebraic closure of K

| .| =normalized absolute value on K., extended to C

|.|¢ =‘imaginary part': C — R, |z|; = infoex., |2 — ]

G = group scheme GL(2)

B =Borel subgroup of upper triangular matricesin G

Z  =scalar matricesin G

K =G(0«x)=0GL(2,0)

I ={(*})eK | c=0mod } Iwahori subgroup

I' =G(A)=GL(2,A4)

Q  =PYC) - PYKw) = C — Ko Drinfeld upper haf-plane
T  =Bruhat-Titstreeof PGL(2, K)

For any graph S, we let X (S) beits set of vertices, of oriented edges, respec-
tively. Fore € Y (S), o(e), t(e) € X(S) ande € Y (S) denoteitsorigin, terminus,
and inversely oriented edge, respectively. We write ‘log’ for the logarithm to
base g.
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0. Introduction

WeletT' = GL(2, A) be the modular group over the rational function field K =
IFy (T") with ring of integers A = F,[T]. The group I" acts on Drinfeld’s upper
half-plane €2, and the quotient I" \ © is canonically identified with the affine line
over C' = completed algebraic closure of K, = F, ((1/7)).

The isomorphism is given by a j-invariant (the invariant of rank-two Drinfeld
A-modules) j = %H, where g and A aremodular forms on €2 of respectiveweights
g — 1and g% — 1. They share anumber of properties with their counterparts g2, g3
and A, respectively, inthe classical modular theory: relationswith Eisenstein series
[13], product formulas[4], expansionsaround ‘infinity’ [7]. Further, the C-algebra
of modular formsfor I" isgenerated by g and A (or by g and the canonical (¢ —1)th
root h of A, if a‘nebentype’ is admitted).

Surprisingly, not much is known so far about the behavior of the absolute values
of A, g, h, j, considered as real-valued functions on €2. Our aim in the present
paper is, among others, to fill this gap.

The first main result is Theorem 2.13, where we give a formula for |A| as a
function 2 — R that actually factors over the Bruhat—Tits tree 7 attached to €.
Corresponding expressions are given for |j| and |g| (Thm 2.17, Cor. 2.18). The
next topic is the (related) question to what extent the functions A/A,, (where
Ap(z) = A(nz), n € A) admitrootsin (a) the function field of the modular curve
Xo(n) of Hecketype associated with the congruence subgroup I'g(n) of T'; (b) the
group O(2)* of invertible holomorphic functions on 2. The answer is given in
Theorem 3.16 and its corollaries. We further determine the character w,, of T'g(n)
through which I'g(n) acts on the ‘maximal root’ D,, of A/A,, (Thm 3.20 + Cor.
3.21). These questions are connected with the structure of the cuspidal divisor
class group of Xo(n), as is demonstrated in the concluding Examples 3.23 and
3.25.

Our main technical tools are the ‘logarithmic derivative’ mapping r: O(2)* —
H(T,7) (see (1.10)) and Fourier analysis on the tree ', \ 7, where ', =
{(¢% € I'}. We compare r(A) with the improper Eisenstein series £ on T
defined by complex analytic means [8]. Since r(A) and E agree up to a constant
(Cor. (2.8)), we can derive properties of A from the properties of E shown in
[8]. Thisway thereresultse.g. an upper bound for max{i | A/A,, hasanithroot}.
We then verify it is sharp by constructing such a root through modular
forms.

1. Drinfeld modular forms, logarithmic derivatives, Fourier coefficients

A C-vaued function f on the ‘upper half-plane’ Q@ = C' — K, isamodular form
of weight &£ € Np andtypem € Z/(q — 1) for I' = GL(2, A) if
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O F(Z5) = e+ e (o)
ab
=7\ .4 e, ze (L1

(i) f isholomorphic (in therigid analytic sense);
(iii) f isholomorphic at infinity.

The description of the analytic structure on Q2 is given eg. in [1, 2, 9, 13]; the
meaning of condition (iii) is explained in [7] 5.7. Similarly, we define modular
forms for subgroupsT”’ C T of finite index. Besides the Eisenstein series

E®(z) = Y az+b)7F (0<k=0mod q—1),
a,be A

which are modular of weight £ and type 0 [13], there are three distinguished

modular forms g, h, A which, among others, enjoy the following properties (see

[7] for asystematic presentation; herewe usethenormalization g = goig, A = Aoid

of loc. cit. p. 683, which involves a dlight change of constantsin some formulas).
Let Mj, ., bethe C-vector space of forms of weight £ and type m. Then

g=(T"-T)ETY € M, 19
A =TT -T)ECY 4 (77 —THECI™ € Mo_y
vanishes nowhere on €2
A’ d
h=g ——39€Mpa (f' = 7%)
hil=_—A

P Mio=Clg,A] (David Goss[14])
k>0

@ Mk,m:C[g,h]
k>0,mez/(q-1)

(1.2)

HereT € C is some constant analogous with 27r¢, with logarithmic absolute value
log|7| = q%l Notethat f — f'is7? times the operator 6 of [7], which compen-
sates the different normalizations of g, h, and A. These forms naturally appear as
the coefficients of Drinfeld modules. Whereas ¢ is similar to the coefficient forms
g2, g3 inthetheory of elliptic curves, the Drinfeld discriminant A shares many of
the properties of the classical discriminant A(z) = (27i)* [J(1 — €7m#)?4,
Next, let 7 be the Bruhat-Titstree of PGL (2, K ). Itisa(q + 1)-regular tree

with

X(T) = G(Kx)/K - Z2(K) (vertices),

Y(T) = G(Kx)/Z - Z2(Ks) (orientied edges),
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wherethe canonical mapfrom Y (7") to X (7") associateswith each edgee itsorigin
o(e). Itis easily verified that

-3

isaset of representativesfor X (7). Welet v(k, u) be the vertex corresponding to

(Wok zi). By an end of 7, we understand the equivalence class of an infinite path

without backtracking, where two paths that differ in a finite number of edges are
identified. The set 97 of ends of 7 isin 1 — 1 correspondence with PY(K,) =
space of linesin V = K2,. We normalize the bijection such that the end (v(, 0),
v(k —1,0),...) correspondsto cc. It definesan orientation on 7, i.e., adecompo-
sitionY(7) = YHT)UY(T) withY+(T) =Y~ (T). Namely, e € Y(T) is
positive (& e € Y(T) < sgn(e) = +1) if it points to the end oo, end negative
(& ecY (T) < son(e) = —1) otherwise. We thus get a section

ke€l,ue Ky,
uw mod 7F04

X(T) = YH(T) = Y(T)
v  +— esSt.o(e) =v, sgn(e) = +1
for the ‘origin’ map from Y (7") to X (7). Since the reflection e — & on Y (7)
group-theoretically is given by
01
classof g € G(K) — classof g ( O) ,
T
eache € Y(T7) isuniquely represented by

7Tk U
ith if =+1
e|er<01> (if sgn(e) = +1,

inthiscaseweput e =: e(k,u)) (1.4)
7wk 01 i _
o (1) (5] e =y

with (”Ok 1{) € Sx. Now each such element of Sy withu & 7*O,, may be written
as

7Ta+t th
( 0 ’ L > with t € Z,a € N uniquely determined,
andv € O}, uniquely determined modulo 7*O,. We define the functions x, 7, «
onY (T) by

7(e) =t, ale) =a, eoreequatoe(k,u), u € ™8Oy,

’ i (1.5)
(e) =k, a(e) =0, e oreequal toe(k, 0).

https://doi.org/10.1023/A:1000169607214 Published online by Cambridge University Press


https://doi.org/10.1023/A:1000169607214

ON THE DRINFELD DISCRIMINANT FUNCTION 185

By definition, x, 7 and « are invariant under e — €, and « is invariant under the
action of the stabilizer

l'e=T'NB

of theend oo inT". Theintuitive meaningisasfollows: Let A(0, o) bethe principal
axisof T,i.e,thepath(...,e(k+1,0),e(k,0),e(k —1,0),...) fromtheendOto
the end oo of 7. Then a(e) is the distance from e to A(0, o), 7(e) describes the
vertex next to e on A(0, oo), and « decreases by one on each step towards oc.

We put H(T,z) for the group (and right G(K.)-module) of maps
0. Y(T) — 7 that satisfy

(i) ¢le)+p(e)=0, ecY(T) (p dternating)
(i) > ¢le)=0, veX(T) (¢ harmonic). (1.6)

e€Y (T)

o(e)=v

H(T,z) is called the module of integral-valued harmonic cochains or currents.
Both 2 and 7" are analogues of the complex upper half-plane; they arerelated by a
G (K )-equivariant map A: Q@ — T (R) (= points of the realization of R) that we
will briefly describe. Recall [11] that 7 (R) may be canonically identified with the
set of equivalence classes of norms on the two-dimensional K . -vector space K2 ..
Then A(z) corresponds to the norm v,, where v, ((u,v)) := |uz + v|. Themap A
is onto the rational points 7/(Q) of 7. We havein Q c P(C):

A~ L(vertex) = PL(C) — (¢ + 1) digoint balls,
Al (edge m'”“5> =~ pL(C) — two digjoint balls.

end points
For example,
A 1(v(0,0)) ={zeC | |z <L |z—¢c| > 1,
Ve € Fy}
_zeC | ol =ltli=1 ad A7
A~1(e(0,0) — endpoints) = {z € C | 1< |z| < q}.
Therelationship between the functions|.|, |.|; on C and the functions s, 7, « on T

is as follows.

1.8LEMMA. Let z € Q besuchthat A(z) = v € X(T), and let e be the unique
positive edge with o(e) = v. Then

log |z|; = —k(e) and log |z| = —7(e).
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Proof. Straightforward from (1.7), the G(K  )-equivariance of \, and the for-
mula

yzli = lez + d| % det 9| |2;
fory = (“) € G(Ku). O

1.9COROLLARY. For z € Q,theconditions(i) |z| = |z|; and (ii) A(z) € A(0, o)
are equivalent.

Proof. Without restriction, \(z) € X(7) sinceboth log |z| and log |z|; factor
through A and are linear on edges of 7. Then the assertion is clear from the lemma
and (1.5). O

The following construction, due to Marius van der Put, is fundamental for the
study of modular forms. Let O = Oq be the structure sheaf of the analytic space
Q2 and O(Q)* the units of its global sections. Then there is a canonical short exact
sequence of G( K, )-modules (trivia action on C*):

0—C* = 0)* 5 H(T,Z)— 0. (1.10)

It is related with the logarithmic derivative through the commutative diagram

F O(Q)* H(T,z)
I J reduction mod p (1.11)
17 o) . H(T,C),

where the lower horizontal map isres: g(z) — resg(z) dz, (resw)(e) = residue
of the differential form w in the oriented annulus A~ (e). The definition of r is as
follows:

- 1 £ x=1te))
£ 1x-2(o(e))”

where || f|| -1, denotes the spectral norm of f € O(Q)* on A *(v), ie,
sup{|f(2)| | z € A7)} = |f(2)| (= € A"(v)) since f isinvertible. The fact
that r is well-defined (i.e., takes its values in H(7,%)) and has the stated
properties is proved in [2] and [10]. In particular, we have for f € O(Q)*,
v1,v2 € X(T), 21, 22 € Q with A(z;) = v;:

f(22)
f(z1)

r(f)(e) =1 (1.12)

_ / " () (e) de. (L13)

1

log ‘
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(Recall that ‘log’="log,’. The integral is the sum of r(f) along the unique path
from vy to v,.) In view of (1.10) to (1.13), we like to view r as a substitute for
the logarithmic derivative map f — f’/f in the classical theory. The next result
calculates r( f) for the most elementary functions f € O(Q2)*.

1.14 PROPOSITION. Leta # b € PY(K,) and f,, be a rational function on
PY(C) with a simple zero at a, a simple pole at b and no further zeroes and poles.
Let further A(a,b) bethe unique pathin 7 fromthe end o to the end b, and define
Pap € E(Ta Z) by

1 eonA(a,b)
Pap(€) =4 =1 eonA(a,b)
1 otherwise.

Then T(fa,b) = Pa,b-

Proof. In view of the G (K )-equivariance of r, it sufficesto consider the case
(a,b) = (0,0), i.e, f(z) = z the identity function. Let z €  be such that
Az) =v =o0(e) € X(T)withsomee € Y*(T), e € YT(T) thefirst edge on
the path from v to oo lying on the axis A(0, o), v' = o(e'). Supposethat e # €.
The picture looks:

TOO e = e(k, *)
e = e(t,0)
t=17(e)
| k —t = a(e) = distance (v, v')
e’ =e(t,0)
'U(t, 0) — ,Ul -~ € D

By (1.8), || is constant on the path from v to ', thus by
(1.13), 7(f)(e) = 0. On the other hand, it is clear (again
from (1.8)) that log |z| increases by one for each step on
lO A(0, 00) towards oo, thusr(f)(e’) = +1. O

Next, we associate Fourier coefficients to ' -invariant elements ¢ of H(T,C).
In view of (1.4) and (1.6)(i), each ¢ € H(T,C) is uniquely determined by its
restrictionto Y (7)) = B(Kx)/(I N B(Kw))Z (Ko ). We may thusregard ¢ €
H(T,C)'>~ asafunctionon Y+ (Ts \ 7) = T'se \ Y (7)), the positive edges of
thequotient ', \ 7 by I'o = I'N B, and apply the machinery of Fourier analysis.
Thefollowing is an adaption of [19] Ch. Il to our situation. Details are carried out
in[8], Sections2 and 3.
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Let Div(K) be the multiplicative group of divisors on K and Divt (K) —
Div(K) the monoid of positive divisors. Each m € Div(K) may uniquely be
written as a power oo® of the infinite prime oo times afinite divisor my (i.e, 00 &
supp(my)). Weidentify finite positive divisorswith idealsof A = F,[T']. Thenorm
|m| of m € Div(K) is ¢ ™, The principal divisor div(m) of m € K* is aways
understood with its infinity part, so that its degreeis zero. For v = Su;n? € Ko,
put v(u) = g — 1if ug = 0and v(u) = —1 otherwise. Then we define for each
¢ € H(T,C)" > two functions

co(p, ) + KX — C (theconstant Fourier coefficient of ¢)
c(p,+) 1 Divt(K) — C (the nonconstant Fourier coefficient of )

by

cole,z) = ¢ D ple(k,u) ki=ve(z) > 1
ue(m)/ (x*) (1.15)

= ¢(e(k,0)) k<1,

c(p,m) = ¢ 1! Z o(e(2+1,u))v(—mu) + p(e(2+1,0))

O#ue(n)/(n2tl)
monic

if m = div(m) - co! with somem € A.

The T -invariance of ¢ impliesthat the summands appearing on the right hand
sides only depend on the respective residue classes of u € (7) = 7O4,. Some
u € K ismonic if its lowest order coefficient in 7 is one. Again from the I' -
invariance, we could replace the sum over the nonzero monicsin (r)/(w?*!) by
the sum over the nonzero u € [(r)/(x?*")]/F;. The Fourier coefficients satisfy

() oy, ) = ¢ ">eo(p, 1) = 7= p(e(0,0));

(i) clp,my-o00®) = gFe(p,my) (k€ No);

(iii) p(e(k,u)) = colp,7") (1.16)
+ Z - (i, div(m) - 0ok =2 v (mu).

Properties (i) and (ii) reflect the harmonicity of ¢ asafunctionon Y+ (7), and (iii)
istheinversionformula. In (iii) and similar expressions, ¢(p, m) = Oif m failsto be
positive. Conversely, given functions cg and ¢ that satisfy (i) and (ii), the function
¢ defined by (iii) liesin H(T,C)"'~.

https://doi.org/10.1023/A:1000169607214 Published online by Cambridge University Press


https://doi.org/10.1023/A:1000169607214

ON THE DRINFELD DISCRIMINANT FUNCTION 189

We finally introduce Hecke operators. For a function ¢ on Y*(7) =
B(K)/(Z N B(Kw))Z(K) and apositive finite divisor m, we put

Top(z) =3 <<g Z) x) (z € B(Kx)), (1.17)

where the sum isover a, b, d € A suchthat a,d are monic, (ad) = mand deg b <
deg d. Then T, isagain afunctionon Y+ (7)) (i.e, right (Z N B(K))Z (K )-
invariant as a function on B(K.)) and evenin H(7,C)'> if ¢ is. The T}, have
the usual properties, which may be looked up in[19] Ch. VI. Wejust point out that
we can read off from its Fourier coefficientsthat ¢ € H(7,C) > isan eigenform
(loc. cit. p. 44).

2. Thelogarithmic derivative of the discriminant

We now calculatethe current (A) and derive some consequences. The functional
equation

2 a b
A(yz) = (cz + d)T A(2) <’y = (c d) € F)
trandatesto
r(A)(ve) = (¢° — Deple) +r(A)(e),
whereby (1.13), o € H(T,Z)equasy_ /. if c # 0and ¢ = 0 otherwise. Now

c d

ple) #0< c#0 and <0 1

>(e) € A(0, ),

in which case ¢(e) = sgn(e). We therefore define
. a b\ .
S(v,e) = sgn(e), ify= < d> withc # 0
C

and (8 ‘i) (¢) € A(0, 00) 1)

0 otherwise.

22LEMMA. (i) S(,e) = 0 < sgn(e) = sgn(ve).
(i) S(vé,e) = S(v,de) + S(d,e),v,6 €I
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Proof. (i) [8] (4.5) + (4.6). (ii) Straightforward calculation. O
Using S(v, e), we may thus expressthe behavior of »(A) under T' by thefunctional
equation

r(A)(ve) = (¢® = D)S(v,e) +r(A)(e). (23

On the other hand, it is clear that (2.3) characterizesr(A): If ¢ is another element
of H(T,Z) subject to the same transformation rule, the difference r(A) — ¢ is
T-invariant. But it is well-known that the quotient I" \ 7" is ahalf-line

'\T=e———0¢———0e———9--. (2.9

represented by the vertices v(k,0), £ < 0 (eg. [17] p. 111), and therefore
H(T,z)' =0andr(A) = o.

Letnow E € H(T,C) >~ bethe current defined through its Fourier coefficients
co(.) = co(E, ), c(.) = ¢(E,.):

(i) co(n?) = —F4a7";
(i) coisEulerian ([19] p. 10) at co with Euler factor (1 — ¢~ 1X)1;
(iii)) ¢o isEulerian at finite placesp of K with (2.5)

Euler factor (1 — (1 + [p| 1) X + p|71X?)~L;
(iv) ¢((1)) =1.
As can be read off from the Fourier coefficients, F is an eigenform for the Hecke
operator T}, with eigenvaluee, = 1+ |p|. The next result is proved in [8] Theorem
6.1, Corollary 6.2, Proposition 5.8:

2.6 THEOREM. (i) For eachy € T, F satisfies the functional equation

E(ye) = q%sw, ¢) + Ele).

1
(i)
q2 k
E(e(k,0) = — - k<1
(e(k,0) = ~a <
k+1_ 2
q —q —q
=2 k>1
¢>—1 ~

(iii) The set of values (up to sign) of £ on Y (7) iscontained in the set of values
on A(0, co) described by (ii). In particular, its values are rational with bounded
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denominator (¢% — 1). O

2.7 Remark. E may also be represented, up to a scalar factor, as an improper (=
only conditionally convergent) Eisenstein series - .\ ¢(ve), Where p(e) =
sgn(e)q—*(¢), and where the summation has to be taken in afixed order (loc. cit.).

Comparing the constants in the respective functional equations, we have the
immediate corollaries.

2.8 COROLLARY.
2 _ _
r(A) = (@ -1lg-1),
q
and
2
-1
r(h) = E O
(h) .
2.9 COROLLARY.
r(A)(e(k,0)) = —¢ (g 1) k<l
= -—q-1D(@-1) k=1
and this gives (up to sign) all the values of (A) on Y (7). O

2.10 COROLLARY. Let r bethelargest number such that there exists an rth root
of AinO(N)*. Thenr = ¢ — 1.
Proof. gcd{valuesof r(A)} = ¢ — 1. O

2.11 COROLLARY. Letp = (f) C A beaprime, f monic. The function 4 (and
hence A = —h?1) satisfies the functional equation

hfz) [ h (z ;f b) = L),

beA
deg b<deg p

Proof. Let h be the left hand side. Then (k) = T,r(h) = (|p| + 1)r(h),
where the first equation is immediate from the definition of Hecke operators, and
the second one results from (2.5) and (2.8). Hence h(z) = const. hPI*1(z), and
the constant is determined to 1 using the expansion of h around the cusp oo ([7]
Theorem 9.1). O

2.12 Remark. The above formula may be written more suggestively as

h(z) h(%2)
h(z)

beA
deg b<deg p
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i.e., asadistribution relation. It isthen similar to the distribution relations satisfied
by the classical discriminant A and related functions (see[15, 16]). Clearly, we can
write down relations analogous to (2.11) for not necessarily primeideadsm C A,
exploiting the fact that (k) is an eigenform for 7.

2.13 THEOREM. Let z, € Q be such that A(z;) = v(k,0) € X (7). Then
|A(2r)| = ¢"* with

ng = ¢ +q—qg+*k
= ¢®>+q+k(¢®— 1) — ¢gtt*

Proof. Let zo € © be any element of F. — F,. As follows from (1.8), A(z0)
equalsthevertexv(0, 0). Now A+ Az = F2[T] =: A®, which by the Weierstrass
correspondence between lattices and Drinfeld modules corresponds to a rank-one
Drinfeld A®@-module ®. Multiplying A® with some constant 7@ of logarithmic
absolutevalue qzqi 7 (cf.[12]) yieldsthelattice7? A correspondingto the Carlitz
A®@-module p®), defined by the operator polynomial p\?(X) = TX + X
(notations as in [7] Section 4). But p(® may be regarded as a rank-two Drinfeld
A-module with complex multiplication, which yields the discriminant

Az) = A(AQ) = (7(2))q2*1A(f(2)A(2))
= (F@)P-1A(p?) = (7@)*-1

k<1
k>1

A\YARW/AN

of logarithmic absolute value log|A(z0)| = ¢2. Now the formula comes out by
inserting (2.9) into (1.13) and integrating. O

2.14 Remarks. (i) Since r(A) islinear on edges, we now know |A(z)| for z €
A~1(A(0, 00)). Referring to [8] 6.5, we may determine |A(z)| for arbitrary z € Q,
provided the coordinates of \(z) on T (see (1.5)) are specified.

(ii) Theinfinite product for A(z) givenin [4] doesn’t sufficeto calculate |A(z)]
sinceit convergesonly for |z|; large, i.e., in the relatively uninteresting case where
A(z) is‘closeto infinity’.

Next, let j = 9‘21 be the Drinfeld j-invariant. It is ['-invariant and yields an

identification '\ @ —» C. We have j(z) = 0 & z € ['(F. — F,), and all
these roots are ¢ + 1-fold (roots of g are easily verified to be simple: e.g. [7]
5.15). In particular, j is invertible on Q' = Q — A~1(T'v(0,0)). Applying the
Definition (1.12) of the map r to j yields somefunctionr(j): Y (7) — Z whichis
aternating, T'-invariant and harmonic (1.6(ii)) at those verticesv € X (7") which
are not I'-equivalent to v (0, 0).

2.15CLAIM. Atv € T'v(0, 0) we have
Y r()(e) = (g+Dqglg - 1),

e€Y (T)

o(e)=v
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and therefore r(j)(e) = ¢(q — 1) for such e, since they are all I'-equivalent. It
suffices to verify this for v = ©(0,0). In A~1(v), we have the ¢(¢ — 1) zeroes
z € Fpe — I, of j, each with multiplicity (¢ + 1), and no other zeroes. Then the
claim follows from the way r(j) has been constructed, i.e., the residue theorem,
see[2] and [10] p. 95. Now recall (2.4) that

P\T =283 ..
where vy, isthe class of v(—k, 0), e, the class of e(—k, 0). Further, for £ > 0, the
q positive edges of 7 meeting v(—k — 1,0) and different from e(—%k — 1,0) are
identified under I with ¢;,. Together, thisimplies

r(7)(ex) = ¢ g — 1) (2.16)
Let 2z, € Q beasin (2.13),i.e., A\(zx) = v(k,0).

2.17 THEOREM. For 0 # k € Z we have

log|;(zx)| = ¢*I ™.

Proof. Let z € A 1(v(0,0)) = {z € C | |2| = |z|; = 1} AII the terms in
E@ V() =y, Ware< Linabsolutevalue, hence|| E( V|| ,-1(,(0,0)) <
1,andthevaluelisattainede.g.for z € F s —F,. Consequently,log||g||A 0(0,0)) =
log |7 — T'| = ¢, and from (2.13), log ||g||A 0,0) = ¢- Now for k < O

. v(k,0) . .
l0g [j(21)| = [ " r(7)(e) de +10g [lilh-xu(00)
v(0,0)

(formula (1.13) is not essentially affected from the defect of harmonicity of r(5)
inv(0,0))

= ¢ " 1py (2.16).
Fork >0, |j(zx)| = |j(#_x)| Sincev(—k,0) and v(k, 0) are T-equivalent. O
2.18 COROLLARY. With the same notation as above,

-1
1

log |g(zk)| = q

k<
=q+k(g—1) k>

Proof. log |g(zk)| = il(log |A(z)| +10g |j(z)]), whichyieldstheresult. O

2.19 Remark. Asfor j,log |g(z)| only dependson A(z) and islinear on edges, as
longas \(z) & I'v(0, 0). The asserted values may be determined directly: The first
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caselog |g(z)| = qfork < —1reflectsthat g = (77 —T)E~ Y isnon-zero at the
cusp co withlog |g(co)| = g+log |E@=Y (c0)| = ¢, and the second could be seen
by inspecting the sum for E(4=1(z,). But the crucial point isthat log |g(z)| may
be expressed through the corresponding data of A and j evenif A(z) ¢ A(0, o0),
in which case adirect evaluation of E(¢~1) seems difficult.

3. Roots of modular units

Letn € A bemonicof degreed > 0, andletTg(n) = {(gs) €l | c=0mod n}
be the nth Hecke congruence subgroup. An elementary calculation yields that
A/A,, andits (¢ — 1)throot h/h,, aremodular functions (i.e., invariant) for I'p(n).
Correspondingly, r(A) — r(A,,) isalo(n)-invariant current on 7. Here of course
A, (z) = A(nz), hp(2z) = h(nz). Incasen isprime, we determined in [5] Section
4 to what extent roots may be extracted out of A/A,, in the function field of the
modular curve Xo(n) = I'g(n) \ © U {cusps}. Here we generalize this resullt,
alowing n € A arbitrary, and also considering rootsin O()*.

Let o € H(T,Z)" >~ be given by its Fourier coefficients cp and ¢, and let
on = o (3Y) € H(T,z) = beits shift by the matrix (33).

3.1LEMMA. ¢, hasthe Fourier coefficients cp, ¢ given by

co(m*) = ¢’ co(")

¢ (m - 0oF) = ¢(m - div(n) 7t - ook)

(m a positive finite divisor).
Proof. The first formula is immediate from (1.16(i)). The second one results
from (1.15) and a change of variables. O

Next, lete,, €3, e, betheedgese, = e(2,7), e, = €(2,0), e = e(1,0) of 7. The
pictureon T, \ 7 looks

N

€a (3.2

Y
8

€b €c

AN .
>
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where al the e(2,tr) (t € F,) are identified mod ', with e,. Thus for ¢ €
H(T,z)",

(g — Dplea) +plen) = plec).

On the other hand, some of the Fourier coefficients of ¢ may directly be evaluated

from (1.15):
co(n?) = q:i((q — Dplea) + @len)) = g Xp(ec), (3.17)
c((1)) = g “(—pleq) + plep)).

Combining (3.1), (3.3) with (2.6)—(2.9) and solving for the values on the edges
eq, €p, € yieldsthefollowing table for the functions o = r(A), r(A), = r(Ay),
r(A) —r(Ay).

3.4TABLE. (6 :=degn > 0)

r(A) r(An) r(A) —r(An)
e((1)) (qz—lé(q—n 0 (@®=1)(g=1)
() —(g—1q —(¢-1¢"" (¢—Da@’ - 1)
plea) —(a—1)g —(g-D¢" " (¢g-Dg(¢?-1)
eler) (@-q-Dg-1) —(@-1 ' @-H@ '+ —-q-1)
plec) —(g—1) -(¢-1¢ (-1 -1

3.5 COROLLARY. Let r bethe largest integer such that there exists an rth root
of A/A, in O(Q)*. Then r divides (¢ — 1) if § = deg n is odd, and divides
(¢ —1)(¢*> — 1) if s iseven.

(We will seein (3.18) that in fact equality holds.)

Proof. As is immediately verified, gcd{¢(e,), ¢(ep), p(ec)}
(¢ —1)(¢® — 1) if 6 isodd, even, respectively, for ¢ = 7(A) — r(A,). O

In order to construct roots of A/A,,, we have to introduce some more material.
(3.6) Let X (n) = TI'(n) \ QU {cusps} be the Drinfeld modular curve of level n,
Tn)={"hHer | (“)=@2 mod n}. The cusps cusps(T'(n)) of X (n)
correspond bijectively to

() \T/Too — T(n) \ PHE) —> [(A/n)3im] /5.,

where (A/n)%im — (A/n)? isthe set of pairs {(¢) | a,c € A/n, (A/n)a +
(A/n)c = A/n}, and the identification is induced from (‘0‘2) — (%) mod n.We
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simply write (%) for the corresponding cusp of X (n). Similarly, the cuspsof Xo(n)
are given by

cusps(To(n)) = To(n) \ T'/Ta {m | a,ce Afn coprime},

where [?] isthe equivalenceclassof (§) mod T'g(n). Let

n= [[ £ (3.7)

1<i<s

be the prime decomposition of n, i.e., the f; € A monic, irreducible, of degreed;,
pairwisedifferent,andput¢; = ¢%. Forz € A/n,weleth(z) = (hi(z), ..., hs(z))
beits height, where h;(z) = ordy, (z) € {0,1,...,r;} isthetruncated f;-adic val-
uation. In particular, 7;(0) = r;. For (%) € cusps(I'(n)) we put 2(%) = h(c) and
p(5) = 1,if thereisan i with 0 < h;(c) < ry, and p(%) = ¢ — 1 otherwise. Note
that 1 (%) and p(%) only depend on the class of (%) mod I'g(n) and therefore are
defined on cusps(T'o(n)). The next lemma (whose proof we omit) follows from

calculating the I'g(n)-orbits on cusps(I'(n)).

3.8 LEMMA. The ramification index ram(() of the cusp (%) of X (n) over the
cusp [ ] of Xo(n) isgiven by

G a inf{2h;,r;
ram<c>:p<c> qun{ r}‘
1<i<s

In particular, it dependsonly on (%) = (ha, ..., hs). O

3.9EXAMPLE. Let n beprime of degree §. Thereare (¢® — 1) /(g — 1) cusps(?)
on X (n) and two cusps[é] and [2] on Xo(n). We haveram(j) = (¢ — 1)¢° and
ram(}) = ¢ — 1.

The total ramification index of (%) over the unique cusp ‘oo’ of X (1) equals
(¢ —DIlg;* = (g —1)|n|, asfollowsfrom the description of cusps(T'(n)). Since A
hasasimplezeroat oo € X (1), we get (with zero orders of modular forms defined
asin[6])

g P by = i) (3.10)

—1)in -1
]A:(q )nl _ (g )H

ordr. ~— = -
[ ram(?) — p() i,

Letw,: z — -L bethe Atkin-Lehner involution on Q. Thematrix (°¢) normalizes
I'p(n) and thus induces an involution on Xo(n), which interchanges A and A,,.
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Furthermore: If [%] has height h = (ha,...,h), the cusp w, [§] has height
b = (r1—ha,...,rs — hs). Inview of (3.8), we therefore get

Ol’d[a]An _ (g —1)|n| _4- 1 H q?"i—inf{2(ri—hi),n}. (3.12)

rarn(wn ((Z)) p(i) 1§i§s '
For any pair (u,v) € A x A —nA xnA,welete,,: Q2 — C bethe holomorphic
function defined in [3] p. 99, i.e.,

. uz +v
eun(z) =ep ( ) ,

n
where A is the A-lattice Az + A C C and e, its exponentia function. For the
moment we areinterested initsfollowing properties (loc. cit., in particular Korollar
2.2 and Section 3):

(3.12) (i) ey, hasneither zeroes nor poleson €2 and depends only on the residue
classof (u,v) mod n.

(i1) eu (72) = (2 +d) Yo (2), 7 = (4) €T

(iii) Theinverse e;j isaholomorphic modular form of weight 1, e,, ,, itself isa
meromorphic modular form of weight —1 for I'(n).

(iv) The zero order of e, % at () € cusps(I'(n)) isgiven by

ord(a)e;% = |au + cvly.
Here|z|, = |zo| if z,z0 € A, z = 2o Mod n, deg zo < deg n.

3.13Remark. Theinversee, ! may also be described as the Eisenstein series

,U

e;j,(z) =E,.(z) = Z' (az + b)_l.

a,be A
(a,b)=(u,v) mod n

Thiswill however not be used in this paper.
We now define the functions on €2
F(z) = H ea’i,

0#£vEA
degv <&

-1

G(z) = || €0.-
v monic
degv <&

(3.14)

Thenclearly F = (—1)°GY~1, and F' is modular of weight |n| — 1 and type O for
I'o(n), asimmediately results from the transformation rule of thee,, ,,. Further, its
orders at the various cusps of Xo(n) are

ord[a]F:ram(‘g)_l > veln. (3.15)
¢ 0£vEA/n
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3.16 THEOREM. Thedivisorsof A, A, and F' on X(n) arerelated by
|n|divA —div A, = (q2 — 1) div F.

Proof. All thedivisorshavetheir supportin cusps(I'g(n)), So wehaveto compare
their orders at the different cusps. Those of A and A,, are given by (3.8), (3.10)
and (3.11). They only depend on the height . = (h1, ..., h,) of the cusp[?], asis
the case for ord[a] F. Thus we may without restriction assume that ¢ is a divisor

c

of n, ¢ = [T1cics fzh For such ¢, we find by an elementary calculation

_ P — e

Z lucln, = ﬁu

Z |U | |7’L|2 :quhZ
n =
0£veA/n +1
Inserting thisinto (3.15) yields the resullt. O

3.17 COROLLARY. Up to constants we have

-1
A_n — Const.m. Od
3.18 COROLLARY. The estimate given in (3.5) for the root number r is sharp.
that is, A/A, has an rth root in O(Q2)*, where r = (¢ — 1)? if 6 is odd and
r=(q—1)(¢°> — 1) if 6 iseven, and r is maximal.

Proof. Recall first that A = —h%~1 and F = const. G¢~* are (¢ — 1)th powers.
Thusr > (¢ — 1)ged{(¢?> — 1), |n| — 1}, which is as stated. O
Thefunction G isamodular form of weight (Jn| —1)/(¢— 1) for I'y(n) = {(*}) €
' a=d=1, ¢=0 mod n} and transforms according to

G(yz) = x(7)(cz + @) M =D/=D G (z) (3.19)

under T'o(n), where x is a character with x?~* = 1, i.e., x:To(n) — F;. We will
next determine x. Recall that n = I1f;* asusual. For 1 < i < s, welet

Ni(A/n)* = (A/f;)* > F,

be the canonical projection followed by the norm.
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3.20 THEOREM. The ‘nebentype’ x of G is given by

x: Fo(n) — F

ab -
(C d) s TINi(d)
Proof. First note that for a € IF;;

eo,av(z) =a- eO,'u(Z)- (1)

Let S ¢ A/n — {0} be the set of monics, which is a set of representatives for
(A/n —{0})/F,, asisdS if d € (A/n)*. Hencefor each v € S there are unique
a, € Fy, v' € S suchthat dv = a, - v', d being fixed. In view of (1) and the
definition of G, we will have

() - e

vES

For each height vector b = (h1,...,hs) <1 = (r1,...,75), Welet (4/n)(h) be
the elements of A/n of height » and S(h) the monicsin (A/n)(h). We calculate
the contribution of S (k) to (2)

Letm = m(h) :=ILf]"" hi Thenthegroup (A/m)* actsfaithfully and simply
transitively on (A/n)(h), that is, for v,v" € (A/n)(h) there exists aunique =z €
(A/m)* suchthat zv = v/, IabeIIed(v ). Then

[T w= I ()= @ mod met/o, €

vES(h) veS(h)

sincedS(h) and S(h) arerepresentativesfor (A/n)(h) /F, . Herep(m) = §(A/m)*,
and the right hand term liesin F;, — (A/m)*. Now

(A/m)y = [ A/ "),

i st h;<r;

whichimplies (d mod m)#(™)/(e=1 = 1if m failstobeprimary, i.e., if thereareat
leasttwoiwithh; < r;. Ifm = f{i_hi isprimary, (A/m)* decomposes canonically
into (A/f;)* anditSp Sylow group of order ¢ ~"i~1, and (d mod m)#(m)/(a-1) =

(d mod f;)(@—D/(e=1) = N;(d). Hence
II @« = Ni(d), Fisth <r
veS(h) 4
=1 otherwise.
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Inserting (4) into (2) finishes the proof. O

For § = deg n even (odd), let D,, be the function G - h—(Inl=D/(¢*-1)
(Gatt. p=(nl=D/(a-1) respectively, i.e., A/A, = const. D! withr asin (3.18).

3.21 COROLLARY. The function D,, transforms under I'o(n) according to the
character w,, = x - det’/2 if § iseven and w,, = x2 - det’ if § is odd.
Proof. For § odd,

_ X )
Dy (vz) = det(ry)—(Inl=1/(¢=1) Du(2)
(by the theorem and the definition of D,,)
= x*(7) det()’ Du(2),
since 2 = =1 = § mod ¢ — 1. A similar consideration givesthe result for &
even. O

Let o(w,) be the order of w,. Then D) s the least power of D,, which is
Co(n)-invariant, and r/o(wy,) is the largest number % such that A/A,, has a kth
root in the field of modular functions for I'g(n).

3.22 PROPOSITION.

0((‘)”) - ng(q_:I-a'rla"'77/1575/2)7 o even

_ q—1
B ng(q_ 177'17"'77'876)7 9 odd.

Proof. For any of the characters N, " (see (3.20)), x, det, wy, its order isthe
sizeof itsimage in . E.g. for N; ", it equals W_llr) since N;:To(n) — F,
(gs) — N;(d), issurjective. Theassertion now followsfrom the Chinese remainder
theorem. O

Inthe concluding corollaries, welet ‘0" = m ‘oo’ = [é] be the distinguished cusps
of Xo(n)

3.23 COROLLARY (see[5]). Let n be prime of degree §. The cuspidal divisor
class group C of Xo(n) is cyclic of order (|n| — 1)/(¢?> — 1) if § is even and
(In| —1)/(q — 1) if 6 isodd.

Proof. By (3.9), C isthe group generated by the classof [(0) — (co)]. Thedivisor
of A/A, is (|n| — 1)[(0) — (oc0)], and the character w,, of D,, has exact order
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(g — 1). Hence D4~ but no smaller power of D,, isinvariant under T'p(n), and the
class of [(0) — (o0)] has the asserted order. O

3.24 Remark. In the above situation, let ¢ be the gcd of ¢ — 1 and #C. Then yet

the divisor of DY/ on X (n) comesfrom adivisor on Xo(n), and (¢ — 1)/t is
minimal with that property. Aswe will show in subsequent work, thisimplies that
the kernel of the canonical map from C to the group @, of connected components
of the Néron model / K, of the Jacobian Jac(Xo(n)) isthe subgroup of order ¢ in
C. Hencethe picture differs significantly from the one at the finite place (n), where
the corresponding mapping C — ®,,) isalwaysbijective [5]. This givesanegative
answer to a question raised by J. Teitelbaum ([18] p. 283).

3.25COROLLARY. Letn = f2, f prime. Thedivisor classof [(0) — (c0)] in Xo(n)
hasorder (|n| —1)/(¢> — 1) isq isevenor deg f isodd, and (|n| — 1)/2(¢? — 1)
if gisodd and deg f iseven.

Proof. Besides 0 and oo, thereare (| f| — 1)/(¢ — 1) cusps s = [;ﬁ] of height 1

(u monic of degree < deg f). Now ord; A = ords(A,) = ¢ — 1 for such s, and
thusdiv(A/A,) = (Jn] — 1)[(0) — (o0)]. We conclude with (3.22). O

We believe that an extension of the preceding arguments eventually will lead to
the determination of the cuspidal divisor class groups C of all the curves Xo(n),
X1(n), X(n), where n is a not necessarily prime element of A. A first step has
been carried out in [3], from whose results upper estimates for {C may be derived.
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