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Corrections to nonlinear evolution equations

In this chapter we describe developments at the very forefront of research on nonlinear
evolution equations. We first outline the calculation of running-coupling corrections to the
BFKL, BK, and JIMWLK evolution equations. Such corrections slow down the growth of
the saturation scale with energy, putting the predictions of saturation physics more in line
with the experimental data. We then discuss the next-to-leading order (NLO) corrections
to the BFKL and BK evolutions, which resum the subleading logarithms of energy, i.e.,
powers of α2

s Y . The NLO BFKL corrections are rather large numerically; we present a
proposal for resumming these large corrections to all orders that results in a reduction in
their net effect on the LO calculation. Owing to the highly technical nature of many of
the results presented, in most topics considered in this chapter we will merely outline the
main points of the derivation. Interested readers can find the calculational details in the
references supplied.

6.1 Why we need higher-order corrections

There are several reasons to study higher-order corrections to the BFKL, BK, and JIMWLK
evolution equations presented in the previous chapters. Some reasons are theoretical, some
are phenomenological, and some are both.

On the phenomenological side, the LO BFKL approach encounters a very simple prob-
lem. The BFKL pomeron intercept given by Eq. (3.86) is

αP − 1 ≈ 2.77ᾱs , (6.1)

which, for a phenomenologically reasonable value of the strong coupling αs, say 0.3, gives
αP − 1 ≈ 0.79, which is too large to describe any existing data in DIS, proton–proton, or
nuclear collisions. One would therefore hope that higher-order corrections would lower this
result, pushing the theory closer to the data.

On the more theoretical side we note that the BFKL, BK, and JIMWLK equations were
derived in earlier chapters for fixed coupling constant. A question arises concerning the
value of the coupling constant that should be used; this is important, since the validity of
the whole saturation approach depends on whether the coupling is small. Theoretically we
cannot answer this question from fixed-coupling calculations; one has to perform higher-
order calculations to fix the scale of the running-coupling constant. This question about the
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6.2 Running-coupling corrections to the BFKL, BK, and JIMWLK evolutions 229

scale of the coupling also has phenomenological importance, since one has to know which
values of the coupling to use in comparing the small-x evolution with experiment.

The BK equation derived earlier contains powers of αsNcY resummed through large-Nc

LLA evolution along with powers of α2
s A

1/3 resummed by the GGM initial conditions.
Generalizing BK to JIMWLK relaxes the large-Nc approximation: the JIMWLK equation
resums powers of αsY and α2

s A
1/3. Both the LO BK and LO JIMWLK evolutions are

valid as long as the NLO corrections are small, i.e., for α2
s Y � 1, which means Y �

1/α2
s . Therefore, the problem of calculating the NLO correction to the BFKL, BK, and

JIMWLK kernels is very important for understanding the region of applicability of the
high density QCD theory in the form that has been developed above and for further
extension of this region. Corrections to the initial conditions for the evolution equations
(for instance, terms containing powers of α4

s A
1/3) are also important, both theoretically

and phenomenologically; however, attempts to calculate those have not reached the level
required for coherent presentation in a book and will not be described here.

From a purely theoretical standpoint it is also important to understand whether the
expansion in logarithms of 1/x is stable, that is, whether one can calculate corrections to
the LO result and whether such corrections are finite (after all the standard field-theoretical
divergences have been taken into consideration). Again, this question is, in the end, related
to the first, purely phenomenological, one: what are the size and the sign of the NLO
corrections?

The presentation below attempts to answer many of the above questions.

6.2 Running-coupling corrections to the BFKL, BK, and
JIMWLK evolutions

We begin by calculating the scale of the running-coupling constant in the BFKL, BK,
and JIMWLK evolution equations. The running-coupling corrections to small-x evolution
are calculated following the Brodsky–Lepage–Mackenzie (BLM) scale-setting procedure
(Brodsky, Lepage, and Mackenzie 1983). Working in the setting we used for the derivation
of the JIMWLK and BK evolutions, below we will first resum the contributions of all
quark-loop corrections to the LLA kernel. Each quark-loop correction brings in a power of
αμNf , with Nf the number of quark flavors (see Sec. 1.5) and αμ = αs(μ2) the physical
coupling at some arbitrary renormalization scale μ. Inspired by Abelian gauge theories,
Brodsky, Lepage, and Mackenzie (1983) argued that the powers of αμNf come mainly
from the powers of the one-loop QCD beta function, that is, from the powers of αμβ2,
where β2 is given in Eq. (1.89). Following the BLM prescription, we will then complete
Nf to the full coefficient of the one-loop beta function by means of the replacement

Nf → −6πβ2 (6.2)

in the expression obtained by including quark-loop corrections in the BK and JIMWLK
kernels. After this, the powers of αμβ2 should combine to give the physical running coupling
αs(Q2) defined in Eq. (1.88) at the various momentum scales Q that would follow from
this calculation.
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Fig. 6.1. Diagrams with quark-loop corrections to the BK and JIMWLK evolution kernels.
The iteration of quark-loop insertions to all orders is implied in each graph on the right.

The original BLM prescription did not address the diagrams with gluon–gluon interac-
tions. Here we will assume that the prescription is still valid for diagrams with triple-gluon
vertices. This statement has not been rigorously proven, though in small-x physics it was
explicitly verified in the NLO BK calculation by Balitsky and Chirilli (2008). A com-
plementary way of thinking about a running-coupling calculation is by defining it as a
resummation of αsNf -corrections to the LO BFKL, BK, and JIMWLK kernels, the com-
pletion of Nf to the full beta function using (6.2) being an intelligent guess at the size of
the gluon contribution, explicitly confirmed at NLO.

6.2.1 An outline of the running-coupling calculation

The main types of diagrams containing quark-loop corrections to the LO BK and JIMWLK
evolution kernels are shown in Fig. 6.1 using the notation of Figs. 5.8, 5.9, and 5.10. The
vertical dashed line again denotes the interaction with the target (or the subsequent evolution
along with the interaction with the target). On the left of Fig. 6.1 we show one virtual (A)
and one real (B) diagram contributing to one step of the LO BK or JIMWLK evolutions (cf.
Fig. 5.9). All other real and virtual diagrams in the evolution kernel generated by connecting
the gluon line to the quark and antiquark lines in all possible ways (see Figs. 5.9 and 5.10)
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should be included in the calculation; they are not shown explicitly. For LCPT diagrams,
instantaneous terms like those shown in Fig. 4.14 need to be included as well.

The running-coupling corrections for the BK and JIMWLK kernels are obtained by
inserting all-order quark bubbles into the gluon propagator in all possible ways. On the
right of Fig. 6.1 we show the quark-loop-corrected diagrams corresponding to the fixed-
coupling graphs on the left. The virtual correction (in the upper-left panel, labeled A) gives
rise only to one class of diagrams, with quark loops iterated on the gluon propagator to all
orders, shown in panel C. Working in momentum space, it is clear that the quark bubbles
in this case form a geometric series, which is resummed to give

αs(q
2
⊥) = αμ

1 + αμβ2 ln(q2
⊥/μ2)

, (6.3)

where we have used the replacement (6.2) to complete Nf to the full beta function, and
the factor αμ in the numerator comes from the coupling of the gluon to the parent dipole.
We see how physical running coupling emerges for the virtual diagrams. The coupling runs
with the transverse momentum of the gluon line q⊥; this can be found by calculating the
diagram in panel C of Fig. 6.1 in, say, LCPT (Kovchegov and Weigert 2007a).

The real-emission diagram B generates two classes of quark-loop corrections, as shown
in the lower two panels on the right of Fig. 6.1, labeled D and E. The first class of corrections,
shown in panel D, corresponds to the case when it is the gluon that interacts with the target.
This is to be compared to the other class of corrections, where the gluon fluctuates into a
qq̄ pair, which is still in the wave function at the time it enters the nucleus, so that now
the quark and antiquark in the pair interact with the nucleons, as depicted in panel E of
Fig. 6.1.

The momenta of the gluon line to the left and to the right of the interaction with the
target are different in general: we label them q and q ′ respectively, as shown in panel
B of Fig. 6.1. Note that the running-coupling corrections to the interaction of the gluon
(and now qq̄) cascade with the target factorize from the running-coupling corrections to
the small-x evolution and are included separately (Balitsky 2007, Kovchegov and Weigert
2007b). Concentrating on the evolution, we see that the quark bubbles in the diagrams like
that in panel D of Fig. 6.1 give us two separate geometric series, one to the left and one to
the right of the interaction with the target. We thus get

αμ[
1 + αμβ2 ln(q2

⊥/μ2)
] [

1 + αμβ2 ln(q ′ 2
⊥ /μ2)

] = αs(q2
⊥) αs(q ′ 2

⊥ )

αμ

, (6.4)

where again we have used Eq. (6.2) to complete Nf to the full beta function and the factor
αμ stems from the coupling of the gluon to the dipole. We can see a problem with Eq. (6.4):
using Eq. (1.88) we cannot rewrite it as a product of powers of the running coupling only,
as we did in Eq. (6.3). One factor αμ would still remain, as shown on the right of Eq. (6.4).
Hence diagrams in the class represented by panel D cannot be expressed in terms of the
running couplings only.

To resolve the issue we have to include the diagram in panel E as well. At first glance,
the diagrams in this class, just as in the panel D class, would seem to have two geometric
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232 Corrections to nonlinear evolution equations

series but now with a factor of α2
μ in the numerator; the extra coupling arises from the

coupling of gluons to the quark bubble that interacts with the target (which is slightly larger
than the other bubbles in panel E). This would give

α2
μ[

1 + αμβ2 ln(q2
⊥/μ2)

] [
1 + αμβ2 ln(q ′ 2

⊥ /μ2)
] = αs(q

2
⊥) αs(q

′ 2
⊥ ). (6.5)

However, this cannot be the complete answer. For one thing, it seems absurd that one
power of the fixed coupling, corresponding to the gluon emission and absorption, has been
replaced by two powers of the running coupling, making the evolution kernel contribution
of order α2

s . Analyzing the matter further, one realizes that the quark loop that interacts with
the target also brings in a factor Nf that should be completed to β2 and, more importantly,
that the integration over momentum in the loop leads to a UV divergence, i.e., generates
a ln μ2 term. Keeping this logarithmically divergent term, we write the contribution of
diagram E in Fig. 6.1 to the running of the coupling as

α2
μβ2 ln(Q2/μ2)[

1 + αμβ2 ln(q2
⊥/μ2)

] [
1 + αμβ2 ln(q ′ 2

⊥ /μ2)
] ; (6.6)

the scale Q is determined by an explicit calculation. Adding Eqs. (6.4) and (6.6) we see
that diagrams D and E combine to give

αμ

[
1 + αμβ2 ln(Q2/μ2)

][
1 + αμβ2 ln(q2

⊥/μ2)
] [

1 + αμβ2 ln(q ′ 2
⊥ /μ2)

] = αs(q2
⊥) αs(q ′ 2

⊥ )

αs(Q2)
. (6.7)

We see that now the answer for the real graphs is expressible in term of factors of the
running coupling only. Note the unexpected structure of the result (6.7): in the BK and
JIMWLK evolution kernels, one factor of the fixed coupling αs in the LO evolution kernel
is replaced by three running couplings, two in the numerator and one in the denominator,

αμ −→ αs(q2
⊥) αs(q ′ 2

⊥ )

αs(Q2)
, (6.8)

so that the answer is still order αs . This structure is sometimes referred to as a triumvirate
of couplings. It was first postulated for the running-coupling corrections to the BFKL
evolution by Braun (1995) and Levin (1995). It was explicitly derived for the BFKL, BK,
and JIMWLK evolution equations by Balitsky (2007) and by Kovchegov and Weigert
(2007a).

The detailed calculation of the scale Q with explicit demonstrations that q⊥ and q ′
⊥

set the scales for the other two couplings in (6.7), along with the Fourier transform of the
answer into transverse coordinate space, are too technically involved to be presented here
in any detail. We refer the interested reader to the papers Balitsky (2007), Kovchegov and
Weigert (2007a, b), and Gardi et al. (2007). We simply quote here the final answer for the
running-coupling BK equation.
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Writing the BK evolution equation (4.137) as

∂Y S(�x1⊥, �x0⊥, Y ) =
∫

d2x2 K(�x1⊥, �x0⊥, �x2⊥)

× [S(�x1⊥, �x2⊥, Y ) S(�x2⊥, �x0⊥, Y ) − S(�x1⊥, �x0⊥, Y )
]
, (6.9)

we note that the LO dipole kernel is

KLO(�x1⊥, �x0⊥, �x2⊥) = αsNc

2π2

x2
10

x2
20x

2
21

. (6.10)

The form of the running-coupling kernel depends on how one extracts the scale Q shown
in Eqs. (6.6)–(6.8); while ln μ2 in ln(Q2/μ2) is identified unambiguously, it is less clear
how to define uniquely the scale Q2. The problem originates in the fact that the contribution
to the evolution kernel coming from diagram E in Fig. 6.1 cannot even be cast into the
form (6.9). In the large-Nc limit this diagram has two dipoles interacting with the target:
the dipole 13, consisting of the original quark and antiquark of the qq̄ pair fluctuation of
the gluon, and the dipole 40, consisting of the quark in the pair and the antiquark in the
parent dipole (the coordinates are defined in Fig. 6.1E). The two dipoles do not have a
common transverse coordinate, therefore their contribution is not of the form (6.9) and
actually includes integrals over both �x3⊥ and �x4⊥, with the kernel dependent on four points
in the transverse plane, �x1⊥, �x0⊥, �x3⊥, �x4⊥. The UV divergence that we need stems from
the region between �x3⊥ and �x4⊥, and can be extracted either by integrating over �x3⊥ while
keeping �x4⊥ fixed (the Balitsky (2007) prescription) or by integrating over �x3⊥ and �x4⊥
keeping the gluon position �x2⊥ (see Fig. 6.1E) fixed (the Kovchegov and Weigert (2007a)
prescription). The gluon position is related to �x3⊥ and �x4⊥ via the following expression (cf.
Eq. (1.87) along with the discussion after it, as well as Fig. 1.4):

�x2⊥ = z3 �x3⊥ + (1 − z3)�x4⊥ (6.11)

with z3 the fraction of the gluon’s light cone momentum carried by quark 3. (Indeed, other
extractions of the UV divergence are also possible but calculations have been done only for
the two cases mentioned.)

The kernel of the running-coupling BK evolution (rcBK) in the Balitsky prescription is
(Balitsky 2007)

KBal
rc (�x1⊥, �x0⊥, �x2⊥) = Nc αs(x2

10)

2π2

[
x2

10

x2
20 x2

21

+ 1

x2
20

(
αs(x2

20)

αs(x2
21)

− 1

)

+ 1

x2
21

(
αs(x2

21)

αs(x2
20)

− 1

)]
, (6.12)

where we have used the abbreviated notation

αs(x
2
⊥) = αs

(
4e−5/3−2γE

x2
⊥

)
(6.13)

and the coupling on the right is defined by Eq. (1.88) in the MS renormalization scheme.
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234 Corrections to nonlinear evolution equations

In the Kovchegov–Weigert prescription the rcBK kernel is (Kovchegov and Weigert
2007a)

KKW
rc (�x1⊥, �x0⊥, �x2⊥)

= Nc

2π2

[
αs(x

2
20)

1

x2
20

− 2
αs(x2

20) αs(x2
21)

αs(R2)

�x20 · �x21

x2
20 x2

21

+ αs(x
2
21)

1

x2
21

]
, (6.14)

with the scale R2 given by

R2 = x20 x21

(
x21

x20

)�

, (6.15)

where

� = x2
20 + x2

21

x2
20 − x2

21

− 2
x2

20 x2
21

�x20 · �x21

1

x2
20 − x2

21

.

The two prescriptions (6.12) and (6.15) neglect different contributions of the diagram in
Fig. 6.1E; as was shown by Albacete and Kovchegov (2007b), when the neglected terms
are put back in, the two calculations agree with each other. It was also shown by an explicit
numerical evaluation that the Balitsky prescription, when used in the BK evolution, gives
a result that is closer to the full answer obtained by using the full diagram in Fig. 6.1E
in the kernel of the small-x evolution (Albacete and Kovchegov 2007b). This is probably
related to the fact that in the Balitsky prescription one obtains the linear (BFKL) part of the
equation exactly: it gives the contribution correctly when only one dipole in Fig. 6.1E (either
13 or 40) interacts with the target. In Sec. 4.5.1 we saw that a good approximation to the
solution of the fixed-coupling BK equation can be constructed by solving the linear BFKL
equation with a saturation boundary in the IR (Gribov, Levin, and Ryskin 1983, Mueller
and Triantafyllopoulos 2002). Most probably the same is true in the running-coupling case
(see Gribov, Levin, and Ryskin (1983), Section 2.3.2), justifying the fact that the Balitsky
prescription gives the full answer more accurately.

The evolution kernel of the running-coupling JIMWLK (rcJIMWLK) equation has been
calculated only using the Kovchegov–Weigert prescription and can be found in Kovchegov
and Weigert (2007a).

Once one has the running-coupling corrections to the nonlinear evolution equations, it is
possible to obtain the running-coupling version of the BFKL equation. We first define the
unintegrated gluon distribution φ(k⊥, Y ), using the dipole amplitude N, by (cf. Eqs. (3.92),
(4.98)) ∫

d2b N (�x⊥, �b⊥, Y ) = 2π

Nc

∫
d2k⊥

(
1 − ei�k⊥·�x⊥

) αs(k2
⊥)

k2
⊥

φ(k⊥, Y ) (6.16)

(Levin and Ryskin 1987). This connection between φ and N follows from the two-gluon
exchange depicted in Fig. 6.2 (in the notation of Fig. 4.3), and, while its validity in the
nonlinear saturation regime may be questioned, it is valid in the linear regime in which we
want to apply it.
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Fig. 6.2. The lowest-order diagram contributing to the relation between the dipole amplitude
N and the unintegrated gluon distribution φ.

Using Eq. (6.16) in Eq. (6.9) with the kernel given by Balitsky prescription Eq. (6.12)
(for which, in momentum space, Q2 = k2

⊥), linearizing the result, and Fourier-transforming
it into momentum space, one obtains the running-coupling BFKL (rcBFKL) equation for
the unintegrated gluon distribution (Kovchegov and Weigert 2007b):

∂Y φ(k⊥, Y ) = Nc

π2

∫
d2q

(�k⊥ − �q⊥)2

×
⎡
⎣αs

(
(�k⊥ − �q⊥)2

)
φ(q⊥, Y ) − k2

⊥
2q2

⊥

αs

(
q2

⊥
)
αs

(
(�k⊥ − �q⊥)2

)
αs

(
k2
⊥
) φ(k⊥, Y )

⎤
⎦ .

(6.17)

This equation was originally conjectured by Braun (1995) and Levin (1995) by requiring
that the bootstrap property of BFKL is preserved after running-coupling corrections are
included. Equation (6.17) can be compared with the fixed-coupling BFKL evolution of
Eq. (3.94). One sees that, for the real term (the first term on the right-hand side of Eq. (6.17)),
the coupling constant runs with the momentum in the rung (the s-channel gluon) of the
BFKL ladder while in the virtual term (the second term on the right) a triumvirate structure
arises for the three momenta involved in the color-octet gluon reggeization diagrams (see
e.g. Fig. 3.11).

6.2.2 Impact of running coupling on small-x evolution

The effects of the running-coupling corrections on the small-x evolution can be summarized
as follows.

(i) They slow down the evolution, by reducing the growth rates of the amplitude N (x⊥, Y )
and of the saturation scale Qs(Y ) with energy or rapidity.

(ii) They preserve geometric scaling in the vicinity of the saturation scale (x⊥ ∼ 1/Qs(Y ))
while changing the profile of the dipole amplitude N (x⊥, Y ) as a function of x⊥Qs(Y ).

(iii) They make the saturation scale Qs independent of the atomic number A at very
small x, thus eliminating the nuclear enhancement that we saw in the GGM model
(Eq. (4.52)) and in the fixed-coupling small-x evolution (Eq. (4.156)).

These properties can be derived from a numerical solution of the rcBK equation or
by analytical methods. The numerical solution of the rcBK equation with the kernel from
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Fig. 6.3. The dipole amplitude N (x⊥, Y ) as a function of the dipole size x⊥, plotted for
several rapidities Y generated by fixed-coupling BK evolution with αs = 0.4 (solid lines)
and by running-coupling evolution (dashed lines) for the same initial condition (thick
dashed line). (We thank Javier Albacete for providing us with this figure.) A color version
of this figure is available online at www.cambridge.org/9780521112574.)

Eq. (6.12) (and with the strong coupling “frozen” in the IR at αs = 1) is shown in Fig. 6.3 by
the dashed lines. It may be compared with the fixed-coupling BK evolution with αs = 0.4
(the solid lines) for the same initial condition from Eq. (4.205). The figure depicts the
dipole scattering amplitude N plotted as a function of the dipole size x⊥ for several
different rapidities. It is clear that the fixed-coupling evolution, shown by the solid lines, is
faster than the running-coupling evolution, shown by the dashed lines: the fixed-coupling
curves grow faster with rapidity and the saturation scale corresponding to the fixed-coupling
curves is clearly larger than that for the running coupling. Thus Fig. 6.3 illustrates property
(i) in the above list.

Property (ii) is partially demonstrated in Fig. 4.32, where one can see that the two
geometric scaling functions, for running and for fixed coupling, are in fact different in
shape. Property (iii) is derived analytically below along with properties (i) and (ii).

Many qualitative and some quantitative features of the solution for rcBK evolution
can be obtained analytically using an approximation in which a simple running of the
coupling with the parent-dipole size, αs(x2

10), is used in the kernel (6.10) instead of the
more complicated exact results seen in Eqs. (6.12) and (6.14). In an impact-parameter-
independent approximation we can write the BK equation, by analogy with Eq. (4.175),
as

∂Y Ñ (ρ, Y ) = ᾱs(ρ)χ (−∂ρ)Ñ(ρ, Y ) − ᾱsÑ
2(ρ, Y ), (6.18)
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where now

ρ = ln
k2
⊥

�2
QCD

(6.19)

and

ᾱs(ρ) = αs(ρ)Nc

π
= Nc

πβ2ρ
= Nc

πβ2 ln(k2
⊥/�2

QCD)
. (6.20)

Let us analyze Eq. (6.18) using the semiclassical approximation of Sec. 4.5.3. Writing
Ñ = e� and neglecting the derivatives of � of second order and higher, we rewrite Eq. (6.18)
as (cf. Eq. (4.178))

∂Y � = ᾱs(ρ)χ (−∂ρ�) − ᾱse
�. (6.21)

Defining −γ ≡ �ρ and ω ≡ �Y we get

F ≡ ω − ᾱs(ρ)χ (γ ) + ᾱs(ρ)e� = 0. (6.22)

The equations for the characteristics are:

dρ

dt
= F−γ = ᾱs(ρ)

dχ (γ )

dγ
, (6.23a)

dY

dt
= Fω = 1, (6.23b)

dγ

dt
= −Fρ − (−γ )F� = dᾱs(ρ)

dρ
χ (γ ) +

[
ᾱs(ρ)γ − dᾱs(ρ)

dρ

]
e�, (6.23c)

dω

dt
= −FY − ωF� = −ᾱs(ρ) ω e�, (6.23d)

d�

dt
= (−γ )F−γ + ωFω = −ᾱs(ρ)γ

dχ (γ )

dγ
+ ω. (6.23e)

Again, Y = t results from Eq. (6.23b). Eliminating ω using Eq. (6.22) and noticing that
dᾱs(ρ)/dρ = −ᾱs(ρ)/ρ yields

dρ

dY
= ᾱs(ρ)

dχ (γ )

dγ
, (6.24a)

dγ

dY
= − ᾱs(ρ)

ρ
χ (γ ) + ᾱs(ρ)

(
γ + 1

ρ

)
e�, (6.24b)

d�

dY
= ᾱs(ρ)

[
χ (γ ) − γ

dχ (γ )

dγ
− e�

]
. (6.24c)

Working in the linearized regime, we can neglect e� in Eq. (6.24c) and obtain the critical
trajectory along which � ≈ const, with the critical value of the anomalous dimension γ
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specified by

χ (γcr ) = γcr

dχ (γcr )

dγcr

, (6.25)

so that γcr ≈ 0.6275, just as in the fixed-coupling case.
Solving Eq. (6.24a) along the critical (saturation) trajectory yields

ρ2
s (Y ) = ρ2

0 + 2Nc

πβ2

χ (γcr )

γcr

Y, (6.26)

where we have imposed the initial condition

ρs(Y = 0) = ln
Q2

s0

�2
QCD

≡ ρ0. (6.27)

Since ρs(Y ) = ln(Q2
s (Y )/�2

QCD), we obtain the saturation scale in the running-coupling
case (Gribov, Levin, and Ryskin 1983):

Q2
s (Y ) = �2

QCD exp

{√
2Nc

πβ2

χ (γcr )

γcr

Y + ln2 Q2
s0

�2
QCD

}
. (6.28)

Comparing this result with the fixed-coupling saturation scale in Eq. (4.156) we see that
the saturation scale in the running-coupling case grows more slowly with rapidity Y ,
confirming property (i) above stating that the running-coupling corrections slow down
small-x evolution. This property of the running-coupling solution is very important: as the
reader may remember, the fixed-coupling BFKL intercept (6.1) is too large to describe
any data. The slower growth of the running-coupling solution makes phenomenological
applications of rcBK and rcJIMWLK much more successful.

Equation (6.28) has another important property: at very large rapidity we can neglect the
rapidity-independent logarithm squared under the square root, since it eventually becomes
small compared with the term linear in Y . This gives

Q2
s (Y ) ≈ �2

QCD exp

{√
2 Nc

πβ2

χ (γcr )

γcr

Y

}
. (6.29)

We see that all the Qs0-dependence has disappeared. Since the dependence of the saturation
scale on the atomic number A comes in only through Q2

s0 ∼ A1/3, we conclude that at very
large rapidity the running-coupling saturation scale becomes independent of A (Levin
and Ryskin 1987, Mueller 2003). This demonstrates property (iii) above. Therefore, at
extremely high energies the parton densities in the proton and in the nucleus will be the
same. While this conclusion may be somewhat disappointing, note that our analysis applies
to asymptotic energies: for the energies available in modern experiments the nuclei still
provide a strong enhancement of the saturation scale.
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A more careful evaluation of the high energy asymptotics of the saturation scale in the
running-coupling case yields

Q2
s (Y ) = �2

QCD exp

{√
2 Nc

πβ2

χ (γcr )

γcr

Y + 3

4
ξ1

[
Nc

2πβ2

χ ′′(γcr )

γcrχ (γcr )
Y

]1/6

+ const + O
(
Y−1/6

) }
, (6.30)

where ξ1 ≈ −2.338 is the first zero of the Airy function Ai(ξ ). The first term in the
exponent of Eq. (6.30) was calculated by Gribov, Levin, and Ryskin (1983) (see also Iancu,
Itakura, and McLerran (2002) and Mueller and Triantafyllopoulos (2002)), while the second
term was found by Mueller and Triantafyllopoulos (2002) and by Munier and Peschanski
(2004a). All the terms shown explicitly in Eq. (6.30) are universal (except for the constant):
they do not depend on the initial conditions for the evolution. Several new higher-order
universal terms in the expansion (6.30) were found recently by Beuf (2010).

For the constant γ = γcr to be a solution of Eq. (6.24b) we need to require that the
right-hand side of this equation is zero, which gives

e�cr = χ (γcr )

ρs(Y )γcr + 1
≈ χ (γcr )

ρs(Y )γcr

. (6.31)

This is indeed a small quantity at high energy, when ρs(Y ) is large, justifying the linearized
approximation used in deriving the above results. Since ρs(Y ) ∼ √

Y we see that e�cr is a
slowly varying function of Y , validating our treatment of it as a constant.

Finally, just as we did to obtain Eq. (4.187), we can expand � near the saturation
trajectory keeping Y fixed, to get

� ≈ �cr + �ρs
(ρ − ρs) = �cr − γcr (ρ − ρs) (6.32)

so that

Ñ (ρ, Y ) = e� ∝ e−γcr (ρ−ρs ) =
(

Q2
s (Y )

k2
⊥

)γcr

, (6.33)

where now Q2
s (Y ) is given by Eq. (6.28). We see that the geometric scaling property of the

solution persists when running-coupling corrections are included. This affirms part of the
claim in property (ii) above. The anomalous dimension γcr obtained in the semiclassical
approximation for the running-coupling coupling case is the same as for the fixed-coupling
evolution: hence the dependence of Ñ on k⊥ in Eq. (6.33) is the same as in Eq. (4.188). This
appears to contradict the difference in k⊥-dependence of the running- and fixed-coupling
BK evolution observed in the numerical simulation in Fig. 4.32. (This discrepancy was
first observed by Albacete et al. (2005).) We believe that the accuracy of the semiclassical
approximation is insufficient to detect this difference. Presumably more precise analytical
solution techniques are needed to explain the difference.
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6.2.3 Nonperturbative effects and renormalons∗

Nonperturbative effects in the framework of perturbative QCD stem from the asymptotic
nature of the perturbation series ∑

n

Cnα
n
s (6.34)

and from the fact that the coefficients Cn of this series increase as n! for large n. To date
there are three known sources of this n! behavior of the perturbation-series coefficients in
QCD: infrared (IR) and ultraviolet (UV) renormalons and instantons (see the review ’t Hooft
(1979) and the paper Mueller (1992)). A running QCD coupling generates renormalons.
Since we now know how to include a running coupling in the BFKL, BK, and JIMWLK
equations, we should be able to find the renormalon contribution to small-x evolution
and estimate the contribution of nonperturbative QCD to small-x physics. Clearly the
nonperturbative contribution stems from the IR renormalons, since the long distances (low
momenta) corresponding to this case determine the nonperturbative corrections. Therefore
we will concentrate on the IR renormalons in this section.

Since it is in line with the goal of this chapter to keep the calculations simple, let
us illustrate the role of IR renormalons in saturation physics by the following toy-model
example. We start with the relation between the dipole amplitude N and the unintegrated
gluon distribution φ in Eq. (6.16). Assume that it is valid in the saturation region, where one
can show that φ ∝ k2

⊥/Q2
s . Then the contribution of dipole amplitude in the saturation region

with k⊥ < Qs to the dipole amplitude outside the saturation region, i.e., for x⊥ � 1/Qs ,
is proportional to

Q2
s∫
d2k⊥
k2
⊥

(
1 − ei�k⊥·�x⊥

)
αs(k

2
⊥)

k2
⊥

Q2
s

. (6.35)

In the k⊥ < Qs , x⊥ � 1/Qs regime we have k⊥ x⊥ � 1, and the exponential in Eq. (6.35)
can be expanded to yield after angular integration

x2
⊥

Q2
s

Q2
s∫

0

dk2
⊥ k2

⊥αs(k
2
⊥), (6.36)

where, for simplicity, we ignore overall constants.
Writing

αs(k
2
⊥) = αμ

1 + αμβ2 ln(k2
⊥/μ2)

, (6.37)

we substitute this into Eq. (6.36) and expand in powers of αμ, obtaining

x2
⊥

Q2
s

αμ

∞∑
n=0

(−αμβ2)n
Q2

s∫
0

dk2
⊥k2

⊥ lnn k2
⊥

μ2
. (6.38)
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Defining ζ = ln(μ2/k2
⊥) we rewrite Eq. (6.38) as

x2
⊥

Q2
s

μ4αμ

∞∑
n=0

(αμβ2)n
∞∫

ln(μ2/Q2
s )

dζζ ne−2ζ . (6.39)

For large enough n, the integral in Eq. (6.39) is dominated by ζ ≈ n/2, so that its lower
limit becomes irrelevant and can be set equal to zero. After that the ζ -integration can be
easily performed, yielding

x2
⊥

2Q2
s

μ4αμ

∞∑
n�1

(
αμβ2

2

)n

n!, (6.40)

which is a divergent perturbation series with coefficients proportional to n!. This is the
effect of the IR QCD renormalons. If we define the applicability of the perturbation theory
by the order n at which the (n + 1)th term in the series is comparable with the nth term,
we can conclude that perturbation theory breaks down for n ≈ n0 = 2/(αμβ2). Thus the
series (6.40) but terminating at n = n0 would be perturbation theory’s best guess at the
exact answer.

We can also try to evaluate the series in Eq. (6.40) using the Borel resummation proce-
dure. Namely, we rewrite the series as

x2
⊥

2Q2
s

μ4

∞∫
0

dbe−b/αμ

∞∑
n�1

(
β2b

2

)n

, (6.41)

where b is a dummy integration variable. Assuming that the series starts at n = 0, we resum
it to obtain

− 2

β2

x2
⊥

2Q2
s

μ4

∞∫
0

dbe−b/αμ
1

b − 2/β2
. (6.42)

The pole at b = 2/β2 is known as the IR renormalon pole in the complex-b Borel plane. The
b-integral in Eq. (6.42) is divergent because of this renormalon pole along the integration
contour: the series is not Borel-summable. While different ±iε regularizations of the
pole can be proposed, it is not clear which such regularization would be correct. Instead
the consensus in the community is that the difference between the various regularization
prescriptions gives us an estimate of the uncertainty due to the renormalon singularity.
Therefore, to evaluate the size of this uncertainty we simply need to take the residue of the
renormalon pole, which gives

∼ x2
⊥

Q2
s

μ4e−2/(αμβ2) = x2
⊥

Q2
s

�4
QCD. (6.43)

The fact that the result is proportional to �4
QCD indicates the nonperturbative origin of

the uncertainty. The physical meaning of this phenomenon is well known (see Mueller
(1985) and Zakharov (1992)). Indeed, the typical value of the momentum in the integral in
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Eq. (6.38) is

k2
⊥ ∼ μ2e−n/2 (6.44)

and, regardless of the value of the renormalization scale μ, at sufficiently large n this
momentum will become very small, so small that we would not be able to use perturbative
QCD in our calculations (k⊥ ≈ �QCD). Of course we cannot trust our calculation for the low
momenta of Eq. (6.44): instead we consider this equation as an indication that perturbation
theory is breaking down and we should examine nonperturbative contributions to the
observable.

The uncertainty (6.43) of our perturbative estimate should be compared with the per-
turbative estimate itself. If we forget the contribution of the Landau pole at k⊥ = �QCD in
Eq. (6.36) (since, effectively, we have estimated the size of that contribution in Eq. (6.43)),
the rest of the integral is clearly dominated by the upper limit of integration, giving an
answer proportional to

∼x2
⊥Q2

s αs(Q
2
s ). (6.45)

Comparing Eq. (6.43) with Eq. (6.45) we see that the relative contribution of the nonper-
turbative IR renormalon corrections is of order

�4
QCD

Q4
s

� 1. (6.46)

We conclude that saturation effects tend to suppress the renormalon contribution. Equa-
tion (6.46) is analogous to the conclusion by Mueller (1985) and Zakharov (1992) that the
renormalon contribution in e+e− annihilation is of order �4

QCD/Q4, i.e., it is a higher-twist
effect. In our case IR renormalons are also higher twist and, importantly, they are not
enhanced by powers of A1/3 or powers of 1/x and are therefore subleading compared with
the perturbative saturation effects.

The qualitative conclusions of our toy model presented above are substantiated by more
detailed calculations. The interested reader is referred to the papers by Levin (1995) and
by Gardi et al. (2007) for much more detailed analytical and numerical investigations on
the subject.

6.3 The next-to-leading order BFKL and BK equations

The NLO (order-α2
s ) corrections to the kernels of the BFKL and BK equations are now

known. The NLO BFKL kernel was found by Fadin and Lipatov (1998) and Ciafaloni and
Camici (1998), while the NLO BK equation was constructed by Balitsky and Chirilli (2008).
Here we will briefly outline the calculational strategy and the main physical conclusions
stemming from these calculations.
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A B C

Fig. 6.4. Examples of diagrams contributing next-to-leading order corrections to the BFKL
kernel. The bold lines denote reggeized gluons, and the circles denote regular QCD vertices.
The vertical solid straight lines represent cuts.

6.3.1 Short summary of NLO calculations

It took almost a decade from the first papers on the subject (Fadin and Lipatov 1989,
Ciafaloni 1988) to the last (Fadin and Lipatov 1998, Ciafaloni and Camici 1998) to solve
the problem of finding the NLO BFKL kernel. As discussed above, the LO BFKL is a
sum of ladder diagrams with Lipatov effective vertices and with reggeized gluons in the
t-channel. The NLO corrections to this ladder include the running-coupling corrections
to the vertices in the ladder (see for example Fig. 6.4C) and also processes involving
the emission of two gluons with comparable rapidities in a single rung (see Fig. 6.4A).
One also needs to calculate the quark–antiquark pair production (see Fig. 6.4B) and to
find the reggeized gluon trajectory in the NLO approximation. (Of course one also has to
prove that we can still use the reggeized gluon in the NLO approximation: this turns out
to be the case.) The relative simplicity of the LO BFKL equation originates in part from
the fact that in the LLA one can easily separate the longitudinal and transverse degrees of
freedom. In the NLO approximation one has to take into account the fact that the limits of
integration over longitudinal momenta depend also on the transverse momenta. The large
number of extra diagrams, a tiny subset of which is shown in Fig. 6.4, along with the more
sophisticated diagram evaluation required in a beyond-LLA approximation, are the two
main reasons why it took so long to find the NLO BFKL kernel.

The exact NLO BFKL kernel is too cumbersome to be presented here. It can be found
in the papers of Fadin and Lipatov (1998) and Ciafaloni and Camici (1998). The results
of these calculations yielded some new features and new questions. The NLO corrections
to the LO BFKL intercept turned out to be negative. Such negative corrections had been
expected, since the LO BFKL intercept given in Eq. (6.1) is too large: this is why the LO
BFKL evolution overestimates the rise of the DIS structure functions with energy as well
as the size of the Bjorken scaling violation dF2/d ln Q2 in comparison with the HERA
experimental data. However, the size of the negative NLO corrections turned out to be too
large. The BFKL pomeron intercept in the saddle point approximation for the LO and NLO
orders is equal to (cf. the LO BFKL intercept in Eq. (3.86))

αP − 1 ≈ 4 ᾱs ln 2 (1 − 6.7ᾱs) . (6.47)
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A B C

Fig. 6.5. Examples of diagrams contributing NLO corrections to the BK and JIMWLK
kernels.

Equation (6.47) leads to a negative intercept for ᾱs > 1/6.7 ≈ 0.15, which means that the
NLO BFKL pomeron leads to structure functions that fall off with energy at all virtualities
up to Q2 ≈ 103 GeV2. This result points toward an instability of the NLO BFKL pomeron,
and this is confirmed by the oscillatory behavior of the resulting NLO gluon density. (The
reader is also referred to Ross (1998), where it is shown that, in the cross section mediated
by NLO BFKL pomeron exchange in the diffusion approximation, the logarithm squared
term in the exponent (see Eq. (3.85)) enters with a plus sign, indicating an instability of the
solution due to the enhancement of transverse momentum fluctuations.)

The NLO BFKL kernel appears to lead to a number of serious questions, which may
be resolved by the calculation of the higher-order corrections. Unfortunately, owing to the
apparent complexity of the NNLO calculations, it looks unreasonable to expect the result
soon. Fortunately, it turns out that the most numerically essential contribution in the NLO
BFKL kernel comes from collinear singularities, which are resummed by the DGLAP
evolution. The resummation of collinear corrections to the BFKL kernel appears to cure
the instability of the NLO BFKL pomeron, as we will discuss in the next section.

It is also possible that some problems of NLO BFKL would be cured by a consideration
of saturation effects. To check this, one has to study the nonlinear BK and JIMWLK
evolution equations at NLO. The NLO BK equation was calculated by Balitsky and Chirilli
(2008) (see also Balitsky and Belitsky (2002) for a calculation of part of the kernel). A
small subset of the diagrams that one has to calculate in order to find the NLO BK kernel is
shown in Fig. 6.5. In one step of NLO evolution one has to emit two s-channel gluons with
comparable rapidities. The diagrams can be classified by the number of gluons interacting
with the target: there may be zero, one, or two gluons, as shown in Figs. 6.5C, B, A
respectively. Indeed, one should also include one-loop quark corrections, illustrated by the
lowest-order (one-loop) case of the diagrams in Fig. 6.1. Note that, in the large-Nc limit,
diagrams of the type shown in Fig. 6.5A imply that the parent dipole will split into three
daughter dipoles, resulting in an evolution equation which is cubic in N (or S) (Balitsky
and Belitsky 2002). Hence the quadratic structure of the LO BK evolution does not survive
at higher orders.

As in the BFKL case, the calculation of the NLO BK evolution is too technically involved
to be presented here; we refer the reader to the paper by Balitsky and Chirilli (2008) for
details. In the linearized limit, the NLO BK evolution indeed reduces to the NLO BFKL
evolution. Unfortunately, at this time the physical implications of NLO BK evolution are
not completely understood.
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6.3.2 Renormalization-group-improved NLO approach∗

Let us now present a strategy to cure the problems of the NLO BFKL kernel by performing
the resummation of collinear singularities to all orders. This procedure was suggested in
the works of Salam (1998, 1999) and Ciafaloni, Colferai, and Salam (1999a). The key
idea is based on the observation that the large NLO corrections to the BFKL kernel stem
mostly from collinearly enhanced physical contributions. At the same time we know that
the collinear singularities can be resummed with the help of the renormalization group
(RG) and have been taken into account in the DGLAP evolution. The idea of finding a
combined description that includes the BFKL anomalous dimension with the anomalous
dimension of the DGLAP evolution equation has a history ranging from the first attempt by
Gribov, Levin, and Ryskin, where the DGLAP anomalous dimension was simply added to
the BFKL anomalous dimension, to the Catani, Ciafaloni, Fiorani and Marchesini (CCFM)
evolution equation, in which a correct treatment of the coherence effect in the collinear
kinematics was introduced. In the renormalization-group-improved NLO approach this
problem was solved, and we will follow the paper of Ciafaloni, Colferai, and Salam (1999a)
in our discussion of the theoretical approach. We will also present the next-to-leading-order
resummed BFKL kernel in the simple form given in the paper of Khoze et al. (2004) to
illustrate the numerical importance of the corrections that were introduced.

The starting point is the expression for the azimuthally symmetric Green function of
the BFKL pomeron in the double Mellin representation, namely (cf. Eqs. (3.78) and (3.80)
with n = 0)

G (k, k0, Y ) = 1

k2

a+i∞∫
a−i∞

dω

2πi

1/2+i∞∫
1/2−i∞

dγ

2π2i

(
s

kk0

)ω

eγ ξ 1

ω − κ (γ, ω)
, (6.48)

where k and k0 with k > k0 are the transverse momentum scales at the ends of the ladder,
with ξ = ln(k2/k2

0), and the integration contour over ω in Eq. (6.48) lies to the right of
all the singularities of the integrand. We have also replaced the rapidity Y by ln(s/(kk0)).
For the LO BFKL the function κ (γ, ω) reduces to κLO (γ, ω) = ᾱsχ (γ ), with the latter
given by Eq. (4.174). In the LO case, integrating over ω in Eq. (6.48) yields Eq. (3.80) with
n = 0.

It is clear from Eq. (6.48) that the traditional DGLAP moment-space representation (see
Sec. 2.4.5) can be achieved after the integration over γ by closing the contour to pick up
the singularity at γ = γ (ᾱs , ω), which is the solution of the equation

ω = κ(γ, ω) . (6.49)

The result of the calculation of the NLO BFKL equation allows one to write

κ(γ, ω) = ᾱsχ (γ ) + ᾱ2
s χ1(γ, ω) + · · · , (6.50)

where the exact form of the NLO correction χ1(γ, ω) is unimportant for our purposes. We
only need to know that an inspection of the explicit form of χ1(γ, ω) shows that numerically
large contributions stem from the regions γ → 0 and γ → 1, where χ1(γ, ω) ∝ 1/γ 2 and
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1/(1 − γ )2 respectively. These are the regions of γ where the DGLAP equation governs the
energy and transverse momentum evolution of the parton densities, which will be utilized
shortly.

Another large contribution originates from the dependence of the QCD coupling on the
transverse momenta. This contribution can be incorporated in the framework of the RG
approach if we first integrate over γ in Eq. (6.48); then, solving Eq. (6.49) to find the pole
at γ (ᾱs, ω) and, for k > k0, making the replacement

γ (ᾱs(ξ ), ω) ξ −→
ξ∫

0

dξ ′γ
(
ᾱs(ξ

′), ω
)

(6.51)

in the exponent of Eq. (6.48) would give us the answer as a single integral over ω with the
running-coupling corrections included.

Our aim is to find a function κ (γ, ω) that describes both the LO and NLO BFKL
kernels and DGLAP evolution for k2 > k2

0 (or k2
0 > k2). A comparison of Eq. (6.48) with

the DGLAP equation shows that since the latter is written in terms of the distribution
functions, the definition of Bjorken x (and consequently of the rapidity Y = ln 1/x) in the
DGLAP picture is given by x = k2/s for k2 � k2

0 and by x = k2
0/s for k2 � k2

0; these
expressions are different from those for an up–down symmetric (for a vertically drawn
ladder) variable x = e−Y = (k0k)/s used in Eq. (6.48). Indeed, in the LLA small-x evolution
such differences were outside the approximation’s control and were not important: now they
are crucial for matching NLO BFKL onto DGLAP evolution. Changing the momentum
scale in the definition of rapidity and Bjorken x leads to the shift γ → γ ± ω/2:

G (k, k0, Y ) = 1

k2

a+i∞∫
a−i∞

dω

2πi

1/2+i∞∫
1/2−i∞

dγ

2π2i

( s

k2

)ω
e(γ+ω/2)ξ 1

ω − κ(γ, ω)

= 1

k2
0

a+i∞∫
a−i∞

dω

2πi

1/2+i∞∫
1/2−i∞

dγ

2π2i

(
s

k2
0

)ω

e(1−γ+ω/2)ξ0
1

ω − κ(γ, ω)
, (6.52)

where we have defined ξ0 = ln(k2
0/k2) to replace ξ in the case k0 > k. We see that one

effect of DGLAP evolution would be to replace γ by γ + ω/2 near the singularity γ = 0
and γ by γ − ω/2 near the singularity γ = 1.

The LO BFKL kernel has singularities for all integer values of γ , corresponding to
different powers of k2/k2

0 in the Green function G, that is, to different twists. Singling out
the leading-twist singularities at γ = 0 and γ = 1 we write the LO BFKL kernel as a sum
of the leading-twist contribution and the higher-twist terms:

χ (γ ) = 1

γ
+ 1

1 − γ
+ χHT (γ ) (6.53)

where the higher-twist part is given by

χHT (γ ) = 2ψ(1) − ψ(1 + γ ) − ψ(2 − γ ). (6.54)
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The two terms of the leading-twist part of χ (γ ) describe two different branches of the
leading-twist evolution: the 1/γ term corresponds to a DGLAP evolution from low k0 to
high k with ordering in the transverse momenta of emitted partons k0 � k1⊥ � · · · �
ki⊥ � · · · � k, while the 1/(1 − γ ) term leads to an evolution from low k to high k0 with
the opposite ordering, k � · · · � ki⊥ � · · · � k1⊥ � k0. The higher-twist contributions
play a significant role in the LO BFKL evolution: for example, they change the leading-twist
value of the pomeron intercept from [1/γ + 1/(1 − γ )]γ=1/2 = 4 to χ (γ = 1/2) = 4 ln 2 ≈
2.8. However, the DGLAP evolution or, in other words, the anomalous dimensions of the
operators giving rise to the higher-twist contributions are entirely unknown. Fortunately,
on scrutinizing the NLO BFKL kernel one can see that the large problematic contribution
does not come from these higher-twist terms and so we can concentrate on the leading-twist
terms alone.

The next step is to replace the residue 1 in the first term in Eq. (6.53) by the full DGLAP
gluon–gluon anomalous dimension γGG(ω) from Eq. (2.121d), in order to incorporate the
DGLAP effects at finite ω:

ᾱs

γ
−→ ᾱs

2Nc

ωγGG(ω)

γ
. (6.55)

Performing the same replacement for the term 1/(1 − γ ) in Eq. (6.53) and using the shifts
in γ incorporated into Eq. (6.52), we obtain the RG-improved BFKL kernel (Ciafaloni,
Colferai, and Salam 1999a):

κRG (γ, ω) = ᾱs

2Nc

[
ωγGG(ω)

γ + ω/2
+ ωγGG(ω)

1 − γ + ω/2

]
+ ᾱsχ

HT (γ ) + · · · , (6.56)

where the ellipsis stand for order-α2
s terms that are nonsingular at γ = 0 and γ = 1. The

expansion of Eq. (6.56) in powers of ω would give us the correct collinear singularities
(1/γ 2 and 1/(1 − γ )2 terms) at the NLO at order ω, while higher orders in ω capture the
collinear singularities of the higher-order BFKL kernels.

The kernel in Eq. (6.56) contains the full LO and NLO BFKL kernels, with the leading-
twist parts of the LO BFKL kernel enhanced by DGLAP evolution, which resums all the
leading (transverse) logarithmic collinear singularities to all orders.

To impose energy conservation one has to make sure that the kernel (6.56) vanishes
at ω = 1 (see Exercise 2.3). This can be achieved in a crude way by simply multiplying
χHT (γ ) and other terms in Eq. (6.56) that are a priori nonvanishing at ω = 1 by 1 − ω

(Ellis, Kunszt, and Levin 1994). The expression that results from this procedure, after the
terms denoted by the ellipses in Eq. (6.56) have been discarded,

κRG(γ, ω) = ᾱs

2Nc

[
ωγGG(ω)

γ + ω/2
+ ωγGG(ω)

1 − γ + ω/2

]
+ (1 − ω) ᾱsχ

HT (γ ), (6.57)

was used by Khoze et al. (2004), who showed that Eq. (6.57) describes the full RG-
resummed NLO BFKL kernel (6.56) within 7% accuracy. The most interesting aspect of the
result is that even such a simple modification of the NLO BFKL kernel leads to a stable result
for the Green function, and for the resulting amplitudes and cross sections, and considerably
reduces the value of the NLO corrections. The kernel (6.56) has a minimum at γ = 1/2, at
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248 Corrections to nonlinear evolution equations

which the value of the BFKL pomeron intercept is about 0.25 for ᾱs = 0.15. The diffusion
logarithm squared term (similar to Eq. (3.85)) again has a negative coefficient, so that the
instability of transverse momentum fluctuations is now avoided. In the region γ < 1/2
the NLO kernel (6.57) is very close to the DGLAP kernel. For a detailed comparison of
the modified BFKL kernel with the experimental data as well as with other approaches we
recommend the paper Ciafaloni (2005).

We have demonstrated that our knowledge of DGLAP evolution allows us to understand
the sources of the large NLO contributions to the BFKL equation and allows us to formulate
a more stable approach to higher-order corrections for small-x evolution.

The effect of the NLO corrections on the value of the saturation scale was considered by
Gotsman et al. (2005); not unexpectedly, their conclusion was that the NLO corrections,
while lowering the value of the BFKL intercept, also slow down the growth in the saturation
scale with energy, leading to lower values of the saturation scale than those given by the
fixed-coupling evolution.

Further reading

The first attempts to include the running QCD coupling in the BFKL equation by resumming
powers of αsNf were made by Braun (1995) and Levin (1995) and were based on the
bootstrap equation (see Sec. 3.3.5) at next-to-leading order, obtaining the triumvirate of
running couplings for the first time. Their original conjecture was proved at NLO by Fadin
and Fiore (1998). The direct calculations in the BK/JIMWLK formalism discussed above
were performed by Balitsky (2007) and by Kovchegov and Weigert (2007a).

For more information on the nonperturbative corrections to BFKL, BK, and JIMWLK
evolution coming from the IR renormalons, we refer the reader to Gardi et al. (2007) and
Levin (1995). Some aspects of the nonperturbative effects due to instantons in the CGC
were studied by Kharzeev, Kovchegov, and Levin (2002). The possibility that the BFKL
pomeron could reach the nonperturbative region of small momenta through “tunneling”
was suggested by Ciafaloni et al. (2003b). Whether the nonlinear evolution can withstand
this type of nonperturbative correction and remain perturbative is still an open question.

The NLO BFKL kernel has been calculated by two groups: Fadin, Lipatov, and their
collaborators and Camici, Ciafaloni, and their collaborators. All references for these works
can be found in the papers with the final results: Fadin and Lipatov (1998) and Ciafaloni
and Camici (1998). The NLO BK equation was found by Balitsky and Chirilli (2008).

In our presentation of the RG-improved BFKL kernel we described the key ideas pro-
posed by Salam (1998, 1999) and by Ciafaloni, Colferai, and Salam (1999a). We dis-
cussed the simplest possible example of a resummed kernel, that from the paper of Khoze
et al. (2004). More recent developments in this area can be found in the papers by Ciafaloni
et al. (2003a) and by Altarelli, Ball, and Forte (2006). We need to remember that we have no
information on the anomalous dimensions of the higher-twist contributions and, therefore,
the NLO corrections to the part of the BFKL kernel that is responsible for the higher-
twist corrections cannot be improved on the basis of the existing renormalization group.
This problem is not for further reading but rather for further research. Alternatives to the
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RG-improved BFKL kernel can be found in the papers by Brodsky et al. (1999) and by
Schmidt (1999). For a description of the experimental DIS data in the NLO BFKL approx-
imation we refer the reader to the papers White and Thorne (2007), Ciafaloni (2005), and
Peschanski, Royon, and Schoeffel (2005). The effect of the NLO BFKL kernel on the
saturation scale was studied by Khoze et al. (2004). The impact of NLO corrections on the
solution of the BK equation was studied by Gotsman et al. (2004). The large contribution
of the NLO correction to the saturation scale possibly calls for a generalization of the
nonlinear equation and could be a good subject for further investigations.

Exercises

6.1 Using Eq. (6.56) (dropping the ellipses) with the gluon–gluon splitting function γGG

given by Eq. (2.121d), calculate the correction to the intercept of the BFKL pomeron,
as follows.
(a) Solve

ω = κRG(γ, ω) (6.58)

for ω by assuming that ω = O(ᾱs) and expanding the right-hand side to the
quadratic order in ω.

(b) Find the saddle point of the resulting expression for ω(γ ); the value of ω(γ ) at the
saddle point yields the new BFKL pomeron intercept.

(c) Find the Green function (6.48) in the diffusion approximation using the results
of parts (a) and (b). Show that the diffusion term is negative and, therefore, the
solution is stable.

6.2 Consider the analogue of the series from Eq. (6.40) in QED:

∞∑
n=0

(
−αEM

6π

)n
n!. (6.59)

Resum the series using the Borel resummation procedure outlined in Sec. 6.2.3. Com-
ment on the analyticity of the function of αEM that is obtained.
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