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1. Introduction. The statement of the problem. In this paper, we consider a
dynamical system with configuration space M ⊂ �m = {x = (x1, . . . , xm)T } being a
bounded domain.

The system is described by the Lagrangian

L(x, ẋ) = T(x, ẋ) − V (x), T = 1
2

gij(x)ẋiẋj = 1
2

ẋT G(x)ẋ, x ∈ M

and (possibly non-holonomic) constraints

a(x)ẋ = ak
l (x)ẋl = 0, k = 1, . . . , n < m, rang a(x) = n. (1)

1.1. Here and below use the Einstein summation convention. We also use the
notation c, c1, c2 . . . for inessential positive constants.

The function T is the kinetic energy of the system; it is a positive definite quadric
in the variables ẋ. The matrix G is positive definite and determines a Riemann metric
in M. The function V is a potential.

We watch the motion of this system on the time interval Iτ = [0, τ ].
In the classical situation, all these functions are smooth in M and the dynamics of

the system is described by the Lagrange-d’Alembert principle:

( d
dt

∂L
∂ẋj

− ∂L
∂xj

)
ψ j = 0. (2)
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By definition, the function x(t) is a motion of the system iff it satisfies (1) and for
any functions {ψ j(t)} such that ak

l (x(t))ψ l(t) = 0 it satisfies (2).
To present systems (1) and (2) in the resolved with respect to the highest derivatives

form, one must rewrite this system using Lagrange multipliers:

d
dt

∂L
∂ẋ

− ∂L
∂x

= �(x, ẋ)a(x), �(x, ẋ) = (λ1, . . . , λn)(x, ẋ). (3)

To express the Lagrange multipliers λ, one should take time derivative from the both
sides of (1) and substitute there ẍ from (3).

After these transformations, one obtains

�T (x, ẋ) =
(

a(x)G−1(x)aT (x)
)−1

w
( ∂a
∂x

,
∂G
∂x

, a, G, x, ẋ
)
. (4)

The function w is smooth in x ∈ M, and in the other arguments w is smooth in the
whole space. Correspondingly, (1) is the equation of an invariant manifold to system (3).

Assume that

G, a ∈ H1,∞(M). (5)

This particularly implies G(x), a(x) ∈ C(M).
This situation, for example, takes place when the Chaplygin sleigh [7] moves on

a very irregular surface, say z = f (x, y) and the function f is constructed as follows.
Let ϕ(x) be a smooth function with compact support and such that ϕ(x) = 1 for
x ∈ (−δ, δ). Then, we let

f (x, y) =
∞∑

k=1

1
2k

ϕ(x − xk)(x − xk)4 cos
( 1

x − xk

)
(6)

and the sequence {xk}k∈� runs over all rationals �.
Actually, the function f depends only upon x and as a function of single variable,

it belongs to H2,∞(�) and in the same sense ∂f
∂x ∈ H1,∞(�) ⊂ C(�).

Indeed, in this problem,

T = m
2

(
ẋ2 + ẏ2 +

( ∂f
∂x

(x, y)ẋ
)2)

+ 1
2
〈J �ω, �ω〉

and in the differential form the constraint (6) looks as follows:

ż − ∂f
∂x

(x, y)ẋ = 0.

In such a case, the Lagrange multipliers (4) cannot be defined correctly because
the function

∂2f
∂x2

belongs just to L∞(M) and even it is not clear what the expression

∂2f
∂x2

(x(t), y(t))

means. Therefore, equation (3) also becomes impossible.
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These difficulties are overcame by introducing a concept of weak solutions to
the Lagrange-d’Alambert equations, see Definition 1. The point is that this definition
does not require to have second-order derivatives of f but simultaneously in smooth
(classical) case, it is reduced to the classical solutions. This effect is very specific
to the Lagrange-d’Alembert equations because their deep connection to variational
problems. (Although the non-holonomic mechanics does not enjoy the variational
principle of Hamilton.)

One should not expect the same effects in general systems of ODE.
In this paper, we propose a definition of weak solutions to the Lagrange-

d’Alembert equations. This definition allows us to overcome the described problem
and prove an existence theorem for the weak solutions. Nevertheless, the question on
the uniqueness remains open.

For general dynamical systems ẋ = f (t, x) with non-Lipschitz f , there are a lot
of works devoted to investigating different types of uniqueness conditions in case. As
far as the author knows this activity has been started from Kamke [5] and Levy [6].
Their results have been generalized in different directions. See, for example, [8, 2] and
references therein.

The case when f belongs to Sobolev spaces (at least H1,1) has been studied in [3] in
connection with the Navier–Stokes equation. In that paper, the equations which have
good invariant measure are mainly considered. The existence and uniqueness theorems
for the flow are given in terms of the corresponding transport equation.

In this paper, we consider individual solutions to the Cauchy problem for general
non-holonomic systems; such systems need not necessarily possess a good invariant
measure.

Collisions in holonomic Lagrangian systems have been considered in [4]. Collisions
provide a source of another type of singularities and generalized solutions in
dynamics.

2. Main theorem. Let ‖ · ‖ stand for the l2-norm in �m. We introduce the
following subspace of the Sobolev space H1(Iτ ):

H1
0 (Iτ ) = {u ∈ H1(Iτ ) | u(0) = 0}.

In the sequel by c, c1, c2 . . ., we denote positive constants.
Give a precise description of our functions: V ∈ C2(M) and the functions gij are

such that for almost all x ∈ M, the conditions

gij(x) = gji(x), c1‖ξ‖2 ≤ gij(x)ξ iξ j ≤ c2‖ξ‖2, ξ ∈ �m

hold.
We also suppose that for some constant h, a domain

Dh = {x ∈ M | V (x) < h}

is non-void and Dh ⊂ M.
A non-degeneracy condition is also applied:

A(x) = (
ak

l (x)
)

k,l=1,...,n, det A(x) �= 0, x ∈ M. (7)

We introduce the energy of the system H(x, ẋ) = T(x, ẋ) + V (x).
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Integrating (2) by parts, one obtains the Lagrange-d’Alembert principle in the
integral form [1]. This justifies the following definition.

DEFINITION 1. We shall say that a function x(t) ∈ H1(Iτ ) is a weak solution to
the system of Lagrange-d’Alembert equations and the equations of constraint iff the
equation

∫
Iτ

(∂L
∂x

(x(t), ẋ(t))ψ(t) + ∂L
∂ẋ

(x(t), ẋ(t))ψ̇(t)
)

dt

− ∂L
∂ẋ

(x(τ ), ẋ(τ ))ψ(τ ) = 0 (8)

holds for any ψ(t) = (ψ1, . . . , ψm)T (t) ∈ H1
0 (Iτ ) that satisfies

a(x(t))ψ(t) = 0, (9)

and equation (1) holds for almost all t ∈ Iτ that is, a(x(t))ẋ(t) = 0.

Observe that due to compact embedding H1(Iτ ) ⊂ C(Iτ ), this definition implies
x(t) ∈ C(Iτ ).

THEOREM 2.1. For any positive constant τ and for any initial conditions x0, v such
that

a(x0)v = 0

and

H(x0, v) = h′ < h, (10)

there exists a weak solution x(t), x(0) = x0, ẋ(0) = v to the Lagrange-d’Alembert
equations and the equations of constraint (1).

Moreover, H(x(t), ẋ(t)) = h′ ∀ t ∈ Iτ and x ∈ C1,α(Iτ ) for any α ∈ (0, 1).

THEOREM 2.2. Let x(t) be a solution to the system of Lagrange-d’Alembert equations
in the sense of Definition 1.

Then, there exists a function γ (t) = (γ1, . . . , γn)(t) ∈ L2(Iτ ) such that the equation
∫

Iτ

(∂L
∂x

(x(t), ẋ(t))ψ(t) + ∂L
∂ẋ

(x(t), ẋ(t))ψ̇(t)
)

dt

− ∂L
∂ẋ

(x(τ ), ẋ(τ ))ψ(τ ) =
∫

Iτ

γ (t)a(x(t))ψ(t) dt (11)

holds for any ψ ∈ H1
0 (Iτ ).

3. Proof of Theorem 2.1. Introduce matrices

Q(x) = (
ak

l (x)
)
, l = n + 1, . . . , m, k = 1, . . . , n,

B(x) = −A−1(x)Q(x).
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PROPOSITION 1. Suppose that for some x0 ∈ M and v ∈ �m, one has a(x0)v = 0.
Then, there is a sequence Gi(x), ai(x) ∈ C∞(M) (this notation implies that all the
components of matrices Gi, ai belong to C∞(M)) such that

‖Gi − G‖L∞(M), ‖ai − a‖L∞ (M) → 0 as i → ∞, (12)

and ai(x0)v = 0,

∥∥∥∂Gi

∂x

∥∥∥
L∞(M)

,

∥∥∥∂ai

∂x

∥∥∥
L∞(M)

≤ c.

Proof. First, let us recall a standard fact.
There is a sequence a∗

i (x) ∈ C∞(M) such that

‖a∗
i − a‖L∞ (M) → 0 as i → ∞,

and
∥∥∥∂a∗

i

∂x

∥∥∥
L∞(M)

≤ c.

The constant c does not depend on i. This follows from real analysis and formula (5).
Thus, if we find a sequence {bi} such that

‖bi‖ → 0, biv = −a∗
i (x0)v

and put ai(x) = a∗
i (x) + bi, then the Proposition is proved.

Let v = (v1, . . . , vm)T and v1 �= 0 furthermore,

bi = (br
ij), a∗

i (x0) = (wk
il)

and observe that wk
ilv

l → 0, i → ∞.
It remains to take br

ij = 0, j > 1 and

bk
i1 = −wk

ilv
l

v1
.

The Proposition is proved. �
Let us approximate our initial problem by the smooth problems:

d
dt

∂Li

∂ẋ
− ∂Li

∂x
= �i(x, ẋ)ai(x), �i(x, ẋ) = (λi1, . . . , λin)(x, ẋ), (13)

ai(x)ẋ = 0, Li = 1
2

ẋT Gi(x)ẋ − V (x). (14)

To express the Lagrange multipliers λ, one should take time derivative from the both
sides of (14) and substitute there ẍ from (13).

After these transformations, one obtains

�T
i (x, ẋ) =

(
ai(x)G−1

i (x)aT
i (x)

)−1
w

(∂ai

∂x
,
∂Gi

∂x
, ai, Gi, x, ẋ

)
. (15)
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The function w is smooth in x ∈ M, and in the other arguments w is smooth in the
whole space.

Meanwhile system (13) with formula (15) takes the form

ẍ = φi(x, ẋ), (16)

where φi ∈ C∞(M × �m). Equation (14) determines an invariant manifold to
system (16).

Recall that Proposition 1 implies ai(x0)v = 0.
The key point of our argument is as follows: systems (13) and (14) possesses the

energy integral H, thus the function H is also the first integral for system (16).
Summarize the above argument as a lemma.

LEMMA 3.1. For the constant τ > 0 and for the initial conditions

xi(0) = x0, ẋi(0) = v,

system (16) has a solution xi(t) ∈ C2(Iτ ) such that

H(xi(t), ẋi(t)) = h′ (17)

and ai(xi(t))ẋi(t) = 0, ∀t ∈ Iτ .

COROLLARY 1. The sequence {xi(t)} contains a subsequence that is convergent in
C1,α(Iτ ).

For this subsequence, we use the same notation, that is

‖xi − x‖C1,α (Iτ ) → 0.

Indeed, combining Proposition 1 and formulas (17), (15), (13), one has

‖φi(xi(s, vi), ẋi(s, vi))‖ ≤ K. (18)

The constant K is independent of t ∈ (Iτ ) and i. Then, from Lemma 3.1 and formulas
(16) and (18), one concludes that the sequence {ẍi(t)} is uniformly bounded in (Iτ ).

LEMMA 3.2. The function x(t) from Corollary 1 satisfies (1).

Proof. Follows directly from Proposition 1 and Corollary 1. �
Introduce matrices

Ai(x) = (
ak

il(x)
)

k,l=1,...,n.

LEMMA 3.3. The following estimate holds

sup
i

∥∥∥∂A−1
i (x)
∂x

∥∥∥
L∞(Dh)

< c3.

Proof. Differentiate the A−1
i Ai = I by xs:

∂A−1
i

∂xs
= −A−1

i
∂Ai

∂xs
A−1

i .
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Now, the assertion follows from Proposition 1 and assumption (7):

∥∥∥∂A−1
i

∂xs

∥∥∥
L∞(Dh)

≤
∥∥∥A−1

i

∥∥∥2

L∞(Dh)
·
∥∥∥∂Ai

∂xs

∥∥∥
L∞(Dh)

.

The Lemma is proved. �
Observe also that since Ai is uniformly closed to A and det A(x) ≥ c3 > 0, x ∈ Dh

one obtains ‖A−1
i (x)‖L∞(Dh) ≤ c4 for some c4 > 0 if only i is sufficiently large.

Consider spaces

Ei = {ψ ∈ H1
0 (Iτ ) | ai(xi(t))ψ(t) = 0}.

LEMMA 3.4. For any ψ ∈ E, there exist a sequence {ψi}, ψi ∈ Ei such that ψi → ψ

weakly in H1
0 (Iτ ) and strongly in C(Iτ ).

Proof. Introduce matrices

Qi(x) = (
ak

il(x)
)
, l = n + 1, . . . , m, k = 1, . . . , n.

Fix an arbitrary function

ψ̂ = (ψ̂n+1, . . . , ψ̂m)T ∈ H1
0 (Iτ ).

Consider a sequence

ψ̃i(t) = −A−1
i (xi(t))Qi(xi(t))ψ̂(t).

This sequence is bounded in C[0, 1]. By Lemma 3.3, the sequence

d
dt

ψ̃i(t) = −∂A−1
i (xi(t))
∂xl

ẋl(t)Qi(xi(t))ψ̂(t)

− A−1
i (xi(t))ẋl(t)

∂Qi(xi(t))
∂xl

ẋl(t)ψ̂(t)

− A−1
i (xi(t))Qi(xi(t))

d
dt

ψ̂(t)

is bounded in L2(Iτ ).
So, using the same notation for subsequences, we have ψ̃i(t) → ψ̃(t) weakly in

H1(Iτ ). Convergence in C(Iτ ) follows from compact embedding H1(Iτ ) ⊂ C(Iτ ).
We want to pass to the limit as i → ∞ in the equality

Ai(xi(t))ψ̃i(t) + Qi(xi(t))ψ̂(t) = 0.

Since H1(Iτ ) is compactly embedded in C[0, 1], the sequence ψ̃i converges to ψ̃(t) in
C(Iτ ). Thus, we have

A(x(t))ψ̃(t) + Q(x(t))ψ̂(t) = 0.

Thus, the sequence we are looking for is

ψi = (ψ̃1
i , . . . , ψ̃n

i , ψ̂n+1, . . . , ψ̂m)T .
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The Lemma is proved. �
Let us observe another evident fact.

LEMMA 3.5. Suppose that a sequence {ui} ∈ L2(Iτ ) converges weakly to u ∈ L2(Iτ ).
We also have a sequence of functions {fi} ⊂ C(Iτ ). This sequence converges uniformly to
f ∈ C(Iτ ).

Then,

(fi, ui)L2(Iτ ) → (f, u)L2(Iτ ).

Proof. Indeed, one has

(fi, ui)L2(Iτ ) = (fi − f, ui)L2(Iτ ) + (f, ui)L2(Iτ )

and since the sequence {ui} is bounded in L2(Iτ ) [10], it follows that

|(fi − f, ui)L2(Iτ )| ≤ ‖fi − f ‖C(Iτ )‖ui‖L2(Iτ ) → 0.

The Lemma is proved. �
LEMMA 3.6. Take any ψ ∈ E and choose the sequence ψi in accordance with Lemma

3.4. Then,
∫

Iτ

∂L
∂ẋ

(
xi(t), ẋi(t)

)
ψ̇i(t) dt →

∫
Iτ

∂L
∂ẋ

(
x(t), ẋ(t)

)
ψ̇(t) dt, (19)

∫
Iτ

∂L
∂x

(
xi(t), ẋi(t)

)
ψi(t)dt →

∫
Iτ

∂L
∂x

(
x(t), ẋ(t)

)
ψ(t) dt. (20)

Proof. Limit (20) is trivial. Let us prove formula (19). Since
∫

Iτ

∂L
∂ẋ

(
x(t), ẋ(t)

)
ψ̇(t) dt = (

ẋT (·)G(x(·)), ψ̇(·))L2(Iτ ),∫
Iτ

∂L
∂ẋ

(
xi(t), ẋi(t)

)
ψ̇i(t) dt = (

ẋT
i (·)G(xi(·)), ψ̇i(·)

)
L2(Iτ ),

the assertion of the Lemma follows from Lemma 3.5.
The Lemma is proved. �
It remains to observe that the existence in Theorem 2.1 follows directly from

Lemma 3.6.
The Theorem is proved.

4. Proof of the Theorem 2.2. Introduce the following spaces:

X = {ψ = (ψ1, . . . , ψm)T | ψk ∈ H1
0 (Iτ )}, ‖ · ‖X = ‖ · ‖L2(Iτ ),

Y = {ϕ = (ϕ1, . . . , ϕn)T | ϕk ∈ L2(Iτ )}, ‖ · ‖Y = ‖ · ‖L2(Iτ ).

Note that the space X is not a Banach space.
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Let S : X → Y stand for the operator ψ(t) �→ a(x(t))ψ(t). F : X → � stands for
the linear functional

ψ �→
∫

Iτ

(∂L
∂x

(x(t), ẋ(t))ψ(t) + ∂L
∂ẋ

(x(t), ẋ(t))ψ̇(t)
)

dt

− ∂L
∂ẋ

(x(τ ), ẋ(τ ))ψ(τ ).

We know that ker S ⊆ ker F , let us check inequality (21).
For a vector y = (y1, . . . , ym)T ∈ �m introduce operations

ỹ = (y1, . . . , yn)T , ŷ = (yn+1, . . . , ym)T .

Let ψ ∈ X , then put

ψ̃o(t) = B(x(τ ))ψ̂(t), ψo(t) = (ψ̃T
o (t), ψ̂(t)T )T , ψ†(t) = ψ(t) − ψo(t)

so as

ψo ∈ ker S, ψ = ψo + ψ†, ψ̂† = 0.

So, we have

‖S(x(·))ψ(·)‖2
L2(Iτ ) = ‖A(x(·))ψ̃†(·)‖2

L2(Iτ ) ≥ c8‖ψ†(·)‖2
L2(Iτ )

for some c8 > 0 and finally one yields

‖ψ†(·)‖2
L2(Iτ ) ≥ inf

ν∈ker S
‖ψ(·) + ν(·)‖2

L2(Iτ ).

By Lemma 5.1, we have a bounded functional

� : S(X) → �, F = �S, ‖�‖ ≤ 1
c8

‖F‖.

Using the Hahn–Banach theorem, we extend this functional to a bounded functional
�1 : Y → �.

By the Riesz Representation Theorem, one can find a function γ (τ ) =
(γ1, . . . , γn)(τ ), γk ∈ L2(Iτ ) such that

�1ϕ = (γ, ϕ)L2(Iτ ), ‖γ ‖L2(Iτ ) ≤ 1
c8

‖F‖.

The Theorem is proved.

5. A lemma from functional analysis. The following lemma is well known. We
bring its proof just for completeness of exposition.

Let X, Y, Z be normed spaces and linear operators

F : X → Z, S : X → Y

be bounded.
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LEMMA 5.1. Suppose that ker S ⊆ ker F and

inf
u∈ker S

‖z + u‖X ≤ C‖Sz‖Y , (21)

for some C > 0.
Then, there is a bounded operator � : S(X) → Z such that

F = �S, ‖�‖ ≤ C‖F‖.

Proof. Let

πS : X → V = X/ ker S, πF : X → U = X/ ker F, π : V → U

be natural projections.
The spaces U, V are normed spaces with norms

‖u‖U = inf
w∈ker F

‖[u] + w‖X , ‖v‖V = inf
w∈ker S

‖[v] + w‖X ,

where [u] ∈ X is the element that generates corresponding class u that is u = ker F + [u].
From [9], we know that F = F1πF , S = S1πS and the bounded operators F1 :

U → F(X), S1 : V → S(X) are one-to-one.
Hence, we have � = F1πS−1

1 . By formula (21), the operator S−1
1 is bounded.

The Lemma is proved. �
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