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Abstract. Ray tracing techniques have been used to investigate numerical effects on the prop-
agation of acoustic waves in a non-hydrostatic dynamical core discretised using an Arakawa
C-grid horizontal staggering of variables (Arakawa & Lamb 1977) and a Charney-Phillips verti-
cal staggering of variables (Charney & Phillips 1953) with a semi-implicit timestepping scheme.
It is found that the space discretisation places limits on resolvable wavenumbers and redirects
the group velocity of waves towards the vertical. Wave amplitudes grow exponentially with
height due to the decrease in the background density, which can cause instabilities in whole-
atmosphere models. However, the inclusion of molecular viscosity and diffusion acts to damp the
exponential growth of waves above about 150 km. This study aims to demonstrate the extent to
which numerical wave propagation causes instabilities at high altitudes in atmosphere models,
and how processes that damp the waves can improve these model’s stability.
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1. Introduction
There is a current need for whole-atmosphere models to be developed as tools for space

weather forecasting. The Met Office Unified Model dynamical core (Wood et al. 2014)
is to be extended into a whole-atmosphere model, but initial attempts to raise the top
boundary of this model give rise to instabilities, due to a combination of numerical effects
and missing physical processes (Griffin & Thuburn 2018). The intended outcome of this
study is to determine the effect of numerical wave propagation on the dynamical core,
and to consider how the model’s stability might be improved.

For propagation in a two-dimensional vertical cross section of the atmosphere, a wave
packet with wavevector k = (k,m) and frequency ω approximately satisfies the local
dispersion relation ω = Ω(k,m;x, z, t), where the dependence on position x = (x, z) and
time t can arise through variations in the background wind, temperature or stratification.
In this work, any dependence on x or t is neglected. The wave packet then propagates
along a space-time trajectory (a ray) at the group velocity cg that depends on k and
temperature T and the wave vector also evolves according to the ray tracing equations:

Dcg

Dt
(x) = cg (k, T ) = ∇kΩ,

Dcg

Dt
(k) = −∇xΩ, (1.1)

(Lighthill 1978). The derivative operator Dcg
/Dt = ∂/∂t + cg · ∇x represents the rate

of change of a variable with time at a position moving with the group velocity cg . These
equations are solved using a forward Euler timestep to describe the evolution of the
position and wavevector of a wave packet. The wave energy conservation law:

Dcg

Dt
(log W ) + ∇x · cg +

2
τ

= 0, (1.2)
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Figure 1. left: A comparison of ray plots of acoustic waves with a total wavenumber
of 4 × 10−5 rad m−1 initiated with a range of wavevector angles measured from the horizon-
tal, from 0 to π/2 (above: the analytical wave equation, and below: the spatially-discrete wave
equation with Δx = 100 km, Δz = 1 km).Right: Illustrations of the directions of analytical group
velocities cg and spatially-discrete group velocities ĉg of acoustic waves for varying wavevectors
k (left: k = 0: the wavevector, analytical and numerical group velocities go in the same direction,
and right: k = π/Δx: the largest k that can be considered for the wave to be resolved: cg goes
in the same direction as k, but ĉg is still vertical).

(Lighthill 1978) describes the evolution of the rate of growth of wave amplitudes,
where W represents the wave energy per unit volume, and τ represents the timescale
of any processes that act to damp the waves.

From the Navier-Stokes governing equations, a wave equation, and a dispersion rela-
tion ω̂ = ̂Ω(̂k, m̂;x, z) (where the ‘hats’ denote the effective wavenumbers and frequency
as seen by the continuous dispersion relation) and group velocity cg can be found. The
‘hat’ variables and their derivatives change depending on whether the continuous equa-
tions or the spatially- and/ or temporally-discrete equations are being considered. How-
ever, the same ray tracing equations are used in all cases, so the analytical and numerical
wave propagation can be directly compared.

2. Overview
The main effects of the space discretisation on wave propagation are twofold. Firstly,

the coarse horizontal resolution (Δx ∼ 100 km) compared with the finer vertical grid
spacing (Δz ∼ 10 km) means that waves are less well resolved in the horizontal direction
than in the vertical. This prevents waves from propagating far horizontally, as demon-
strated by Figure 1.

Secondly: there is a limit on horizontal wavenumbers k that may be used for waves to
be resolved: k < π/Δx. For k ∼ π/Δx, where the wavevector angle is low, the analytical
group velocity points in the same direction, but the spatially-discrete group velocity
points straight up, as seen in Figure 2. This causes excessive amounts of wave energy to
be channelled upwards into the thermosphere in atmospheric models.

The time discretisation has the effect of slowing wave propagation, but maintaining
the trajectory of the wave packet, as shown by Figure 3. This effect is much greater on
high frequency acoustic waves than on gravity waves.

The wave amplitude grows exponentially with height due to the decrease in the back-
ground density, and varies with temperature. Molecular viscosity is a real physical pro-
cess that reduces the growth of wave amplitudes in the thermosphere above ∼ 130 km, as
shown by Figure 4. Off-centering the semi-implicit timesteps can also artificially damp
wave amplitudes throughout the whole atmosphere.
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Figure 2. Ray plot of acoustic waves with a total wavenumber of 1×10−3 rad m−1 , initiated at
an angle 0.3π using either the analytical wave equation or the temporally-discrete wave equation
with a centred-in-time timestep of 3 seconds. The dots represent one-minute intervals and the
simulation was run for 30 minutes.

Figure 3. A comparison of the wave energy at each height for a vertically propagating acoustic
wave with a total wavenumber of 1 × 10−4 rad m−1 for the cases with and without molecular
viscosity and diffusion.

The improvement of the Met Office Unified Model dynamical core’s stability with the
inclusion of molecular viscosity and diffusion has been confirmed by experiments with a
one-dimensional column version of the dynamical core. A small amount of off-centering is
required in order to extend the top boundary up from 100km to the molecularly diffused
region above 150km, whereupon molecular viscosity acts to regulate wave growth, keeping
the model stable up to altitudes of 600km at the top of the thermosphere.
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