
COMPOSITIO MATHEMATICA

Kähler groups, real hyperbolic spaces and

the Cremona group. With an appendix by

Serge Cantat

Thomas Delzant, Pierre Py and Serge Cantat

Compositio Math. 148 (2012), 153–184.

doi:10.1112/S0010437X11007068

FOUNDATION 

COMPOSITIO 

MATHEMATICA

https://doi.org/10.1112/S0010437X11007068 Published online by Cambridge University Press

http://dx.doi.org/10.1112/S0010437X11007068
https://doi.org/10.1112/S0010437X11007068


Compositio Math. 148 (2012) 153–184
doi:10.1112/S0010437X11007068

Kähler groups, real hyperbolic spaces and

the Cremona group

Thomas Delzant and Pierre Py

With an appendix by Serge Cantat

Abstract

Generalizing a classical theorem of Carlson and Toledo, we prove that any Zariski dense
isometric action of a Kähler group on the real hyperbolic space of dimension at least
three factors through a homomorphism onto a cocompact discrete subgroup of PSL2(R).
We also study actions of Kähler groups on infinite-dimensional real hyperbolic spaces,
describe some exotic actions of PSL2(R) on these spaces, and give an application to the
study of the Cremona group.
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1. Introduction

1.1 Kähler groups and real hyperbolic spaces

In this text, we study actions of fundamental groups of compact Kähler manifolds (referred to
as Kähler groups) on finite or infinite-dimensional real hyperbolic spaces. For an introduction
to the study of Kähler groups, the reader can consult [ABCKT96] as well as [Bur10, CS08,
KKM11, Kli10, NR08, Rez02] for more recent developments.

Throughout the text, we denote by X a compact Kähler manifold and by Γ its fundamental
group.
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Firstly, it is a classical result of Carlson and Toledo [CT89] that a cocompact lattice of the
group Isom(Hn) of isometries of the real hyperbolic space Hn of dimension n> 3 cannot be
isomorphic to a Kähler group (see also [ABCKT96, § 6.4], for a proof in the non-uniform case,
as well as [JY91, YiH00, YiH02]). Their result is actually more precise. Let us first make the
following classical definitions.

Definition 1. A hyperbolic 2-orbifold Σ is a quotient of the unit disc ∆ in C by a discrete
cocompact subgroup (denoted by πorb

1 (Σ)) of PSL2(R). A map from a complex manifold X to Σ
is holomorphic if it lifts to a holomorphic map from the universal cover of X to the unit disc.

Note that we could have given an equivalent definition of a hyperbolic 2-orbifold in terms of
Riemann surfaces with marked points (see [Delz08]); however, Definition 1 will be sufficient for
our purpose.

Definition 2. A fibration of a compact complex manifold X onto a hyperbolic 2-orbifold Σ is
a holomorphic surjective map f :X → Σ with connected fibers.

We say that a linear representation ρ : Γ→GLN(C) factors through a fibration f :X → Σ
onto a hyperbolic 2-orbifold if there exists a linear representation

ρ̂ : πorb
1 (Σ)→GLN(C)

such that ρ= ρ̂ ◦ f∗, where f∗ : Γ→ πorb
1 (Σ) is the homomorphism induced by f . In [CT89],

Carlson and Toledo, relying on a result of Sampson [Sam86], proved that any homomorphism
from a Kähler group onto a cocompact lattice in Isom(Hn) (n> 3) factors through a fibration
as above. Note that Carlson and Toledo’s proof still applies and yields the same result for
homomorphisms Γ→ Isom(Hn) with Zariski dense and discrete image. We will prove that the
same result remains true for any homomorphism into Isom(Hn) (n> 3) with Zariski dense image,
discrete or not.

We now want to study isometric actions of Γ on infinite-dimensional real hyperbolic spaces.
For an introduction to these spaces, see [Gro93, § 6], and [BIM05]. Let H be a real Hilbert space
with scalar product 〈·, ·〉. We always assume that H is separable. Let u be a unit vector in H ,
and define a quadratic form B on H by

B(v1 + t1u, v2 + t2u) = t1t2 − 〈v1, v2〉,

where the vi are orthogonal to u and ti ∈ R. Copying the construction of finite-dimensional
hyperbolic spaces, one defines the hyperbolic space H∞ associated to H by

H∞ := {v ∈H , B(v, v) = 1, B(v, u)> 0}.

The formula

cosh(d(x, y)) =B(x, y) (x, y ∈H∞),

defines a distance on H∞, which turns it into a complete CAT(−1) metric space. We denote by
Isom(H∞) the group of isometries of H∞ and by ∂H∞ its boundary. We say that an isometric
action of a finitely generated group on H∞ is elementary if it fixes a geodesic in H∞ or a point
in H∞ ∪ ∂H∞; non-elementary otherwise. On the other hand we say that a group of isometries
of H∞ is elliptic if it fixes a point in H∞. We can then prove the following theorem.
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Theorem 1. Let Γ be a Kähler group. Let ρ : Γ→ Isom(H∞) be a non-elementary action of Γ
on H∞. Assume that ρ is minimal, i.e. that H∞ contains no non-trivial closed ρ-invariant totally
geodesic subspace. Then, one of the following two cases happens.

(i) The representation ρ factors through a fibration onto a hyperbolic 2-orbifold.

(ii) The representation ρ can be written as ρ= Ψ ◦ θ, where θ is a homomorphism from Γ to
PSL2(R) with dense image and Ψ : PSL2(R)→ Isom(H∞) is a continuous homomorphism.

Let us make some comments about this result. First, according to [BIM05, Proposition 4.3],
if ρ : Γ→ Isom(H∞) is a non-elementary homomorphism, there exists a unique closed totally
geodesic subspace H∞ρ of H∞ which is Γ-invariant and minimal with respect to this property.
Hence, if ρ is non-minimal, one can always apply the previous theorem to the induced action on
H∞ρ .

Secondly, it will be clear from the proof that Theorem 1 remains true when H∞ is replaced
by a finite-dimensional hyperbolic space Hn. However, the second possibility in Theorem 1 never
occurs for finite-dimensional spaces (and if n> 3). This is a consequence of the fact that any
continuous action of PSL2(R) on Hn has to preserve a totally geodesic plane (see [GP91, p. 122],
as well as [Kar53, Mos55]), and therefore cannot be minimal. Hence, we obtain the following
corollary.

Corollary 1. If n> 3, any homomorphism Γ→ Isom(Hn) with Zariski dense image factors
through a fibration onto a hyperbolic 2-orbifold.

Thirdly, let us recall that in [CS08], Corlette and Simpson classified Zariski dense
representations of Kähler groups into PSL2(C) (see [Delz08] for the non-Zariski dense case):
any such representation either factors through a fibration onto a hyperbolic 2-orbifold or factors
through a holomorphic map to a compact manifold whose universal cover is a product of discs.
Observe also that when n= 3 the group Isom(H3) is isomorphic to PSL2(C) (up to a 2-sheeted
cover), and the corollary above contains only one case, as opposed to the result of [CS08]. This
is because we ask that the real Zariski closure of ρ is PSL2(C), instead of merely asking that
its complex Zariski closure is PSL2(C). Observe also that when the second case of Theorem 1
occurs, we can apply the result of Corlette and Simpson to the representation θ.

The key fact we just used (namely, that any action of PSL2(R) on a finite-dimensional
hyperbolic space preserves a totally geodesic plane) is not true for actions on H∞: there exist
irreducible continuous linear representations of PSL2(R) on a Hilbert space, which are not unitary
but which preserve a quadratic form of signature (∞, 1). The associated actions on H∞ are
minimal, and hence do not have an invariant totally geodesic plane. As a consequence, the
second possibility from Theorem 1 actually occurs in some examples. Although this might be
well known to experts in representation theory, we will describe these representations in § 2.
There, we will prove the following theorem.

Theorem 2. There exists a one parameter family of representations

ρt : PSL2(R)→ Isom(H∞)

where t ∈ (0, 1) with the following properties.

(i) The action ρt is non-elementary and has no non-trivial closed totally geodesic invariant
subspace.

(ii) There exists a ρt-equivariant harmonic map ft : ∆→H∞ whose image is a minimal
surface with curvature −2/(t(t+ 1)).
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1.2 Cremona group and Picard–Manin space
The main example of a group acting on an infinite-dimensional hyperbolic space comes from
algebraic geometry. Recall that the Cremona group, denoted by Bir(P2), is the group of birational
transformations of the complex projective plane P2. A birational transformation of P2 is a
transformation of the form

[x : y : z] 7→ [P (x, y, z) :Q(x, y, z) :R(x, y, z)],

where P, Q, R are three homogeneous polynomials of the same degree, and which admits an
inverse of the same form. It was proved by Noether that Bir(P2) is generated by the standard
quadratic involution

σ : [x : y : z] 7→
[

1
x

:
1
y

:
1
z

]
= [yz : xz : xy],

and the group PGL(3, C) of automorphisms of P2. This group was studied a lot by algebraic
geometers, and we refer the reader to [Can11] for some references. Recently, Cantat and Deserti
started the study of infinite finitely generated subgroups of Bir(P2), using ideas from geometric
group theory; see [Can11, CL10, Des06, Des07] as well as [Fav10]. In particular, using ideas of
Zariski and Manin, Cantat recently proved that the group Bir(P2) can be embedded into the
isometry group of an infinite-dimensional hyperbolic space HP2 , called the Picard–Manin space.
We will briefly recall its construction in § 5. Using this embedding he proved the following result:
any homomorphism with infinite image from a discrete Kazhdan group into the Cremona group
Bir(P2) is conjugated to a homomorphism into PGL(3, C). In particular, this result applies to
any lattice Λ in a connected simple Lie group with property T. This left open the problem of
classifying homomorphisms from lattices in the groups SO(n, 1) and SU(n, 1) into the Cremona
group. Note that this discussion is motivated by the fact that (for some values of n) there exist
injective homomorphisms from lattices in SO(n, 1) to the Cremona group (see [CL10, DZ01] and
the references there).

Remark 1. We will see that the space HP2 is not separable; however, any finitely generated group
acting on it preserves a closed, separable, totally geodesic subspace.

In the following, we say that a homomorphism from a finitely generated group into the group
Bir(P2) is non-elementary if the associated action on HP2 is non-elementary. In the same way, we
say that a subgroup of the Cremona group is elliptic if it fixes a point in the space HP2 . Using
our previous theorem, and the fact that the action of Bir(P2) on HP2 is, in some sense, discrete,
we can prove the following theorem.

Theorem 3. Let Γ be the fundamental group of a compact Kähler manifold X. Let

ρ : Γ→ Bir(P2)

be a non-elementary homomorphism. Then there exists a fibration X → Σ onto a hyperbolic
2-orbifold such that the kernel H of the map Γ→ πorb

1 (Σ) has the following property. The group
ρ(H) fixes pointwise a closed totally geodesic subspace of HP2 of dimension at least two.

Observe that if the group ρ(H) appearing in the theorem above is not trivial, it provides an
example of an elliptic subgroup of the Cremona group for which the action of the normalizer is
non-elementary (since the action of Γ itself is non-elementary). To study further homomorphisms
from Kähler groups to the Cremona group, one is thus led to study elliptic subgroups of the
Cremona group whose normalizer is large enough. Such an elliptic subgroup can be infinite as
the following example shows.
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Example 1. In P2, with the homogeneous coordinates [x : y : z], consider the complement of the
union of the three lines {x= 0}, {y = 0} and {z = 0}. This is an open set O isomorphic to
C∗ × C∗. Thinking of O as a group, we get an action of the group C∗ × C∗ on O by translation.
On the other hand, the group GL(2, Z) acts on O by monomial transformations: the matrix(

a b
c d

)
acts by the transformation (x, y) 7→ (xayb, xcyd). One obtains in this way an injective
homomorphism of the group (C∗ × C∗) o GL(2, Z) into the Cremona group. We will denote
by Gtoric its image. One can see that the group C∗ × C∗ fixes pointwise an infinite-dimensional
totally geodesic subspace of HP2 . We will explain this in § 5, after constructing the space HP2 .

This is essentially the only example of an elliptic subgroup of Bir(P2) with large normalizer
as shown by the following theorem proved by Serge Cantat in the appendix.

Theorem 4. Let N be a subgroup of the Cremona group Bir(P2). Assume that there exists a
short exact sequence

1→A→N →B→ 1

where N contains at least one hyperbolic element, and A is infinite elliptic. Then N is conjugate
to a subgroup of the group Gtoric of automorphisms of (C∗)2.

Note that, as in the finite-dimensional case, isometries of infinite-dimensional hyperbolic
spaces fall into three types: elliptic, hyperbolic and parabolic (see [BIM05]). The word hyperbolic
in the theorem above refers to the type of the action of a birational map on the space HP2 .

Combining Theorem 3 with Cantat’s theorem, we obtain a more precise description of non-
elementary homomorphisms from Kähler groups to the Cremona group.

Corollary 2. Let ρ : Γ→ Bir(P2) be a non-elementary homomorphism. One of the following
two cases occurs.

(i) The homomorphism ρ is conjugated to a homomorphism with values in the group Gtoric.

(ii) After passing to a finite index subgroup of Γ (equivalently, after taking a finite cover
of X), ρ factors through a fibration onto a hyperbolic 2-orbifold.

Proof. We keep the notation of Theorem 3. If the group ρ(H) is infinite, Cantat’s theorem implies
that ρ(Γ) is conjugated to a subgroup of the group Gtoric. If ρ(H) is finite, we argue as follows. We
consider the homomorphism Γ→Aut(ρ(H)) given by the action of Γ on ρ(H) by conjugation.
Let Γ1 be its kernel, H1 be the intersection of Γ1 with H and Λ1 be the image of Γ1 in πorb

1 (Σ).
Up to replacing Γ1 by another finite index subgroup we also assume that Λ1 is torsion free, and
hence a surface group.

Let V = ρ(H1); this is a finite abelian subgroup of the Cremona group, and the central
extension

1→ V → ρ(Γ1)→ ρ(Γ1)/V → 1

determines a class in H2(ρ(Γ1)/V, V ). Let e be the pull-back of this class in H2(Λ1, V ). The
class e becomes trivial on a finite index subgroup Λ2 of Λ1. Let Γ2 be the inverse image of Λ2

in Γ1. The fact that the class e is trivial on Λ2 says that the homomorphism ρ : Γ2→ Bir(P2)
factors through a homomorphism to the direct product Λ2 × V . Hence, up to taking once again
a finite index subgroup, it factors through the projection on Λ2. 2
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The following corollary answers partially a question raised by Cantat [Can11].

Corollary 3. Let Γ1 be a cocompact lattice in the group SU(n, 1) with n> 2. If

ρ : Γ1→ Bir(P2)

is an injective homomorphism, then one of the following two possibilities holds.

(i) The group ρ(Γ1) fixes a point in the Picard–Manin space HP2 .

(ii) The group ρ(Γ1) fixes a unique point in the boundary of the Picard–Manin space HP2 .

The proof of Corollary 3 will be given in § 5.
A natural problem left open by this work is the study of homomorphisms from Kähler groups

to the group Gtoric as well as homomorphisms into the Cremona group for which the associated
action on HP2 has a unique fixed point at infinity (see [Can11] for an interpretation of these
morphisms in terms of algebraic geometry). It might also be possible to extend these results
to non-cocompact lattices in SU(n, 1) (or more generally fundamental groups of quasiprojective
varieties) using techniques similar to the ones used in [CS08, KM08], but we have not tried to
establish such results.

1.3 About the proofs
We now briefly discuss the (classical) strategy of the proof of Theorem 1. We denote by X̃
the universal cover of X. We use the fact that there is an equivariant harmonic map f from
X̃ to H∞; this is due to Korevaar and Schoen [KS97]. It is well known [Sam86] (at least
in the finite-dimensional case) that this map has real rank at most two. This is the main
reason why actions of Kähler groups on real hyperbolic spaces are so constrained. We can
then prove a factorization theorem in the spirit of many factorization theorems in the literature
(see [CT89, GS92, JY91, JZ00]. . . ), i.e. we prove that f can be written as the composition
of a holomorphic map from X̃ to the unit disc ∆⊂ C and a harmonic map from ∆ to H∞.
A similar result appears in [JY91]; however, we give a detailed account of the proof here. This
decomposition gives rise to a homomorphism θ from Γ to PSL2(R). Our main observation,
inspired by the reading of [GS92] and which is essentially the only new remark in the proof, is
that if the group θ(Γ)⊂ PSL2(R) is not discrete the natural action of θ(Γ) on H∞ extends to a
continuous action of PSL2(R). This allows to prove easily Theorem 1.

Remark 2. The same arguments show that a Zariski dense representation of a Kähler group Γ
in a non-compact simple Lie group G (with trivial center and not isomorphic to PSL2(R)) will
factor through a fibration onto a hyperbolic 2-orbifold as soon as the associated harmonic map f
to the symmetric space of G has the following property: the complex linear part df1,0 of the
differential of f has complex rank one (see the end of § 4.2).

The text is organized as follows. Section 2 contains the description of exotic actions of
PSL2(R) on H∞ and the proof of Theorem 2. In § 3, we recall a few facts concerning harmonic
maps, for the reader interested in the application to the Cremona group and not familiar with
these techniques. We also check that classical results (such as the Bochner–Siu–Sampson formula)
still apply when the target of the harmonic map is an infinite-dimensional hyperbolic space. In § 4,
we prove Theorem 1. The application to the Cremona group is described in § 5. In § 6, we check
that the classical Koszul–Malgrange theorem concerning integrability of certain almost complex
structures on complex vector bundles can be adapted to the infinite-dimensional setting. This is
needed in § 4. Finally, § 7 contains the proof of a technical proposition needed in § 3.
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2. Exotic actions of PSL2(R)

In this section we describe some infinite-dimensional linear representations of PSL2(R) which
lead to a family of exotic actions of PSL2(R) on the infinite-dimensional real hyperbolic space.
This will lead to the proof of Theorem 2.

2.1 A glimpse at the representation theory of PSL2(R)

Let ∆ be the unit disc in C. We will consider the usual action of PSL2(R) on ∆ obtained
by conjugating the homographic action of PSL2(R) on the upper half plane by the map
z 7→ (z − i)/(z + i). All along this section, we will denote by HC the Hilbert space of complex-
valued square integrable functions on S1 = ∂∆, endowed with the angular measure dθ and for
n ∈ Z by en the function z 7→ zn on the circle. For each real number s, we define a representation
πs of PSL2(R) on HC by

πs(g) · f = Jac(g−1)
1
2
+sf ◦ g−1 (g ∈ PSL2(R), f ∈HC).

Here Jac(g) is the Jacobian of an element g with respect to the measure dθ on the circle. For each
g ∈ PSL2(R), the operator πs(g) : HC→HC is a bounded linear operator (although not unitary
in general). This defines a continuous representation of PSL2(R) on HC. It is well known that
the representation πs is irreducible if and only if s /∈ 1

2 + Z (see [Kna01] or [Wal71] for instance).

Remark 3. Note that the formula above still defines a representation when s is a complex
number. When s is purely imaginary the representation is unitary and one obtains the so-
called principal series of unitary representations of PSL2(R) (although our description of these
representations might differ from the usual one by a translation in the parameter s).

If f1, f2 ∈HC, we will write (f1, f2) :=
∫
S1 f1f2 dθ. From the definition of the Jacobian, we

obtain

(πs(g)(f1), π−s(g)(f2)) = (f1, f2) (f1, f2 ∈HC, g ∈ PSL2(R)).

Hence, if one can construct a continuous operator As from HC to itself which intertwines the
representations πs and π−s (i.e. satisfies π−s(g) ◦As =As ◦ πs(g)), this will imply that there is a
hermitian pairing on HC, invariant by the representation πs. It turns out that such an operator
exists (for the right values of s) and has been much studied in the literature on representation
theory; see for instance [Kna01, Sal67, Sal70], as well as [JW77, KS71] for a study of intertwining
operators for representations of more general simple Lie groups than PSL2(R). Since this material
might not be so well known outside the representation theory community, we will include a brief
exposition of the case of interest to us. Namely, we will prove the following proposition.

Proposition 1. Let s > 0 and let As : HC→HC be the operator which maps en to λnen, where
λn is given by λ0 = 1 and, for n 6= 0,

λn =
|n|−1∏
i=0

i+ 1
2 − s

i+ 1
2 + s

.

Then As defines a bounded linear operator from HC to HC which satisfies π−s(g) ◦As =
As ◦ πs(g) for all g ∈ PSL2(R).

The reader will notice that the formula for As given above does not define a bounded linear
operator on HC if s < 0. Indeed if As was bounded for some negative s not in 1

2 + Z, there would
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exist a constant C > 0 such that ∣∣∣∣|n|−1∏
i=0

i+ 1
2 − s

i+ 1
2 + s

∣∣∣∣6 C.

This would imply the convergence of the series∑
i>0

log
(

1 +
−2s

i+ 1
2 + s

)
,

which is a contradiction. This implies that, for s > 0 and s /∈ 1
2 + Z, As has a dense, non-closed

image: if As was surjective, it would be an isomorphism by the open mapping theorem. Its inverse
A−1
s =A−s would then be bounded.

Once the above proposition is known we can define, for f1, f2 ∈HC,

〈f1, f2〉s =
∫
S1

f1As(f2) dθ.

The bilinear form 〈·, ·〉s on HC is invariant by the representation πs. If s ∈ (0, 1
2), it is positive

definite. This implies that the representations (πs)0<s< 1
2

are unitary (although the invariant inner
product is not the standard one on HC). This is the so-called complementary series which arises
in the classification of irreducible unitary representations of PSL2(R). For s > 1

2 , the pairing 〈·, ·〉s
is not positive definite anymore, but this does not make it less interesting! If s ∈ (p− 1

2 , p+ 1
2)

where p> 1 is an integer, it is easily checked that the bilinear form 〈·, ·〉s has index p (here index
should be understood as the dimension of a maximal isotropic subspace).

– If s ∈ (p− 1
2 , p+ 1

2) and p is odd, p of the coefficients (λn)n∈Z are positive, all the others
being negative.

– If s ∈ (p− 1
2 , p+ 1

2) and p is even, p of the coefficients (λn)n∈Z are negative, all the others
being positive.

In particular, for each s ∈ (1
2 ,

3
2), we can look at the restriction of the representation πs to the

subspace HR ⊂HC of real-valued functions. However, we are not yet in the situation described
in the introduction to construct the space H∞. Indeed, the space of functions with zero mean,
endowed with the scalar product −〈·, ·〉s, is not complete. This follows from the fact that the
sequence (λn)n>0 which appears in Proposition 1 above tends to zero as n goes to +∞.

If f ∈HR, we will denote by f0 the function

f − 1
2π

∫
S1

f dθ,

and by m(f) the number
∫
S1 f dθ. Let HR be the completion of the space HR for the scalar

product associated to the norm

‖f‖=

√(∫
S1

f dθ

)2

− 〈f0, f0〉s.

The bilinear form 〈·, ·〉s extends to HR and its extension is still denoted by the same symbol.
We then have the following proposition.

Proposition 2. The action of PSL2(R) on HR extends to a continuous, irreducible, linear
representation πs on HR. The action of PSL2(R) on HR preserves the extended quadratic
form 〈·, ·〉s.
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Proof. Let g be in PSL2(R). We first look for a constant C such that

‖πs(g)(f)‖6 C‖f‖,

for f ∈HR. Write πs(g)(f0) = c+ u0 where c is constant and u0 is a function with zero mean.
We have

|c|= |〈πs(g)(f0), (2π)−1〉s|= |〈f0, πs(g−1)((2π)−1)〉s|6 ‖f0‖ · C1 6 ‖f‖ · C1,

where C1 = ‖(πs(g−1)((2π)−1))0‖. Since πs(g) preserves 〈·, ·〉s, we have

−〈u0, u0〉s = c2 − 〈f0, f0〉s 6 c2 + ‖f‖2 6 (1 + C2
1 )‖f‖2.

Finally we have
‖πs(g)(f)‖6 ‖πs(g)(m(f))‖+ ‖c‖+ ‖u0‖6 C‖f‖,

for C = ‖πs(g)(1)‖+ C1 +
√

1 + C2
1 . This implies that πs(g) extends to a bounded operator

πs(g) : HR→HR.

One deduces easily from this that πs is continuous and preserves the (extension of the) form
〈·, ·〉s on HR. As for the irreducibility of πs, we argue as follows. Let V ⊂HR be a non-zero
closed PSL2(R)-invariant subspace. It is, in particular, invariant under the group SO(2), which
preserves the norm ‖ · ‖. Hence V is a direct sum of one-dimensional subspaces invariant by
SO(2). From this, one sees that V must contain a non-zero vector in HR. The irreducibility of
πs then implies that V contains HR. Hence V = HR since it is closed. 2

As a consequence of the previous proposition, for each s ∈ (1
2 ,

3
2), the representation πs

defines a non-elementary action of PSL2(R) on the hyperbolic space H∞, with no non-trivial
closed invariant totally geodesic subspace. When the parameter s if greater than 3

2 , one obtains
similarly actions of PSL2(R) on the infinite-dimensional symmetric spaces associated to the
(naturally defined) groups O(p,∞) (see [Gro93, § 6] for a description of these spaces).

Remark 4. The article [JW77] contains similar results for all classical simple Lie groups of
rank one (namely SO(n, 1), SU(n, 1) and Sp(n, 1)). For SO(n, 1) (n> 3) one obtains invariant
quadratic forms of finite index on certain representations, the index depending on the dimensions
of the space of spherical harmonics of degree k. Note that the index 1 can be obtained. For
SU(n, 1) and Sp(n, 1), however, the quadratic forms that one obtains are of infinite index (when
they are not unitary); see the formulas in [JW77, p. 156].

Proof of Proposition 1. To prove the proposition, we use a different model for the
representation πs, which we now describe. Let ξ = 1 ∈ ∂∆ be the unique point fixed by the
affine group of matrices of the form (

∗ ∗′
0 ∗−1

)
.

We will use the fact that any element g ∈ SL2(R) can be written uniquely as

g = kaλnt,

where k ∈ SO(2), aλ =
(
λ 0
0 λ−1

)
and nt = (1 t

0 1). Let Xs be the space of measurable functions
F : SL2(R)→ C which satisfy the following properties.

– The function F descends to PSL2(R): F (−g) = F (g).
– The restriction of F to SO(2) is square integrable.
– Induction rule: F (gaλnt) = F (g)λ−1−2s.
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In the following, we identify SO(2)/± Id to ∂∆ via the map k 7→ k(ξ). Now, if F ∈Xs, its
restriction to SO(2) defines an element of HC, and conversely, if f ∈HC, one can extend it
to a function F ∈Xs by declaring that F (kaλnt) = f(k(ξ))λ−1−2s. One verifies that under the
previous identification of Xs with HC the action of πs(g) becomes simply the precomposition
with the left translation by g−1. Consider now the operator F 7→ LF defined by

LF (x) =
∫
R
F (xwn(u)) du,

where nu = (1 0
u 1) and w =

(
0 −1
1 0

)
. It is easy to check that if F ∈Xs is continuous the previous

integral is well defined and defines a continuous function on SL2(R). We will check that
LF ∈X−s. Observe that one has the following identity:

xaλntwn(u) = xwn(λ2(u− t))aλ−1 ;

hence

F (xaλntwn(u)) = F (xwn(λ2(u− t)))λ1+2s,

and a change of variable gives LF (xaλnt) = LF (x)λ−(1−2s). To finish the proof of the proposition,
we thus have to check that the operator L extends continuously to all of Xs and coincides (up to
a scalar factor) with the operator As defined by the formula in the statement of the proposition.
Note that, by its very definition, the operator L intertwines the actions of SL(2,R) on Xs and
X−s. Let kθ ∈ SO(2) be the rotation of angle θ. A simple calculation shows that

wn(u) = kθua
√

1+u2nu/(1+u2)

where the angle θu is defined by the relation eiθu = (i− u)/
√

1 + u2. From this we deduce that
ek(kθwn(u)) = ek(kθ)((i− u)/

√
1 + u2)2k(1 + u2)−(1/2)−s. This implies that Lek = λkek, where

λk is given by

λk =
∫
R

(
i− u√
1 + u2

)2k du

(1 + u2)
1
2
+s

=
∫
R

(i− u)2k du

(1 + u2)k+
1
2
+s
.

All λk having modulus bounded by
∫
R du/(1 + u2)(1/2)+s, L extends continuously to Xs. Since

λk = λ−k it is now enough to check the equality λk+1 = (k + 1
2 − s)/(k + 1

2 + s)λk for k > 0. Up
to dividing by λ0, this will show that the operator L has the form given in the statement of the
proposition. We check this equality in the next lemma. 2

Lemma 3. For any positive integer k, one has λk+1 = ((k + 1
2 − s)/(k + 1

2 + s))λk.

Proof. We start from the equality λk =
∫
R((i− u)2k/(1 + u2)k+(1/2)+s) du and integrate by parts

(integrating (i− u)2k) to obtain

λk =
2(k + 1

2 + s)
2k + 1

(
λk+1 −

∫
R

(i+ u)(i− u)2k+1

(1 + u2)k+
3
2
+s

du+
∫
R

u(i− u)2k+1

(1 + u2)k+
3
2
+s

du

)
.

The second term in the parenthesis above equals λk; the third term is proportional to λk (by an
integration by parts which is inverse to the one we just performed). Hence we get

λk =
2(k + 1

2 + s)
2k + 1

(
λk+1 + λk −

2k + 1
2(k + 1

2 + s)
λk

)
.

The proof is now finished by a simple calculation. 2
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2.2 Some properties of actions of PSL2(R) on H∞

In this section we prove a proposition which describes how the family (πs)s∈( 1
2
, 3
2
) of actions of

PSL2(R) on H∞ varies with s. This will complete the proof of Theorem 2 (setting t= s− 1
2 , one

recovers the notation of the theorem).

We denote here by H∞s the hyperbolic space constructed from the pair (HR, 〈·, ·〉s), where
1
2 < s < 3

2 (all these spaces are isometric but we will keep this convenient notation). Observe that
the group SO(2) has a unique fixed point in H∞s ; hence there exists a unique πs-equivariant map
fs : ∆→H∞s . This map is automatically harmonic: indeed if the tension field of fs was non-zero
at a point ξ ∈∆ the stabilizer of ξ in PSL2(R) would fix the geodesic going through fs(ξ) and
tangent to the tension field there, which is a contradiction. For the definition of the tension field
of a map, or of its harmonicity, we refer the reader to paragraph 3.1.

Proposition 4. If ghyp denotes the hyperbolic metric with curvature −1 both on H∞s and on
∆, we have f∗s ghyp = csghyp where

cs =
(1 + 2s)(s− 1

2)
4

.

As a consequence of this proposition, the image of fs is a minimal surface in H∞s with
curvature −c−1

s (which goes to −∞ or −1 as s goes to 1
2 or 3

2 respectively).

Proof. Since there is only one PSL2(R)-invariant metric on the unit disc, up to a scalar, we
can write f∗s ghyp = csghyp, for some constant cs. We want to compute the value of cs. It will be
convenient to identify PSL2(R) with SU(1, 1) (up to a 2-sheeted cover). So let gt : ∆→∆ be the
isometry induced by the matrix (

ch(t) sh(t)
sh(t) ch(t)

)
.

We will also denote by o the origin of the disc. We will prove the following estimate:

dH∞s (fs(gt(o)), fs(o)) =
√

(1 + 2s)(s− 1
2)t+ o(t). (∗)

This allows us to draw a conclusion easily. Denote by v the derivative of the curve gt · o (which
is nothing other than 1 ∈ C). Since the hyperbolic metric on the disc is 4dzdz/(1− |z|2)2 we
have ghyp(v, v) = 4. On the other hand, the equality above says that ghyp(Dfs(v), Dfs(v)) =
(1 + 2s)(s− 1

2). Hence cs = (1 + 2s)(s− 1
2)/4.

We now prove the equality (∗). Observe that the constant function equal to 1/
√

2π is the
unique fixed point of the group SO(2) in H∞s ; hence fs(o) = 1/

√
2π and fs(gt(o)) is

the function sending a point eiθ to (2π)−
1
2 |sh(t)ei(θ+π) + ch(t)|−1−2s. Define

u(s, t) := 〈πs(gt)(1), 1〉s =
1

2π

∫ 2π

0

dθ

|sh(t)eiθ + ch(t)|1+2s
.

A calculation shows that

1
|sh(t)eiθ + ch(t)|1+2s

= 1−
(

1
2

+ s

)
2t cos(θ)

+
(

(1 + 2s)
(

3
2

+ s

)
cos2(θ)− (1 + 2s)

)
t2 + o(t2)
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and then that

u(s, t) = 1 + (1 + 2s)
(
s

2
− 1

4

)
t2 + o(t2).

Remembering that u(s, t) = ch(d(πs(gt) · 1, 1)), one easily deduces the formula (∗). 2

3. Preliminaries on harmonic maps

3.1 The classical case

We start by recalling a few properties of harmonic maps. Some references for a more detailed
presentation of the material in this section are [CMP03, GS92, KS93, Nis02].

A map f :M →N between two Riemannian manifolds is harmonic if it is a critical point of
the energy functional E(f) :=

∫
M e(f)(x) dx, where dx is the Riemannian measure on M and

where e(f)(x) = 1
2‖dfx‖

2 is the energy density of f . The tension field of a map f :M →N is the
vector field along the image of f defined as follows. Let ∇ be the connection on the vector bundle
T∗M ⊗ f∗TN constructed from the Levi-Civita connections of M and N . The differential df of
f can be thought of as a section of the bundle T∗M ⊗ f∗TN , and the tension field τ(f) of f is
the trace of the 2-tensor ∇ df :

τ(f) =
m∑
i=1

∇df(ei, ei),

where (ei)16i6m is a local orthonormal frame of TM . One can show that the harmonicity of f is
equivalent to the vanishing of the tension field τ(f) of f (see for instance [Nis02]).

A more general context for studying harmonic maps is the following. Assume we are given
an isometric action of the fundamental group π1(M) of M on a Riemannian manifold Ñ (which
plays the role of the universal cover of N in the previous discussion):

ρ : π1(M)→ Isom(Ñ),

where Isom(Ñ) is the isometry group of Ñ . One can consider maps f : M̃ → Ñ which are
equivariant with respect to the natural action of π1(M) on M̃ and the action ρ on Ñ (here
M̃ is the universal cover of M). Such maps exist when Ñ is non-positively curved and simply
connected. The energy density

e(f) : M̃ → R
of such an f is invariant under the action of π1(M), and can be thought of as a function on M .
Hence one can still define the energy of f , and once again f is said to be harmonic if it is a
critical point of the energy functional. If Ñ =G/K is a symmetric space of non-compact type,
it is known that a harmonic equivariant map exists when the Zariski closure of the image of ρ is
a reductive subgroup of G. This is due to Corlette; see [ABCKT96, CMP03].

When M is Kähler, one can say a lot more about harmonic maps (this is the content of the
so-called non-abelian Hodge theory). In this context the equation of harmonic maps takes the
following form. Let ω be the Kähler form on M . The Hodge star operator applied to the tension
field gives rise to a 2n-form ∗τ(f) on M (n= dimC(M)) with values in the bundle f∗TÑ which
has the following expression:

∗τ(f) =
−1

(n− 1)!
ωn−1 ∧ d∇(df ◦ i),
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where d∇ is the natural operator on f∗TÑ -valued differential forms induced by the pull-back of
the Levi-Civita connection of Ñ (see [CMP03, § 14.2, p. 363] for a proof). Hence the harmonicity
of f is equivalent to the equation

ωn−1 ∧ d∇(df ◦ i) = 0.

We now denote again by X a compact Kähler manifold, with fundamental group Γ. We
fix a Zariski dense representation ρ : Γ→ Isom(Hn). According to the previous discussion, there
exists a map f : X̃ →Hn which is Γ-equivariant and harmonic. Moreover, f satisfies the following
properties.

(i) It is pluriharmonic, i.e. it satisfies d∇(df ◦ i) = 0.
(ii) The (0, 1) part of d∇, denoted by d0,1

∇ , satisfies

(d0,1
∇ )2 = 0.

According to the Koszul–Malgrange integrability theorem [KM58], this implies that there exists
a holomorphic structure on the bundle f∗THn ⊗ C for which ∂ = d0,1

∇ .
(iii) The complex linear part α := df1,0 of the differential of f is a holomorphic 1-form with

values in f∗THn ⊗ C (for the previous holomorphic structure).
(iv) The complex rank of α is everywhere less than or equal to 1, and consequently the real

rank of f is everywhere less than or equal to 2.

The first three results are proved using the classical Bochner–Siu–Sampson formula
(see [ABCKT96] or [CMP03]). The last one is due to Sampson [Sam86]. Note that the first
three results hold more generally when the real hyperbolic space is replaced by any symmetric
space of non-compact type. The last one, on the other hand, is very specific to Hn.

All the notions that we have just described still make sense when the representation
ρ : Γ→ Isom(Hn) is replaced by a non-elementary action of Γ on the space H∞ and f is an
equivariant map from X̃ to H∞. The existence of a harmonic map in this case is a result of
Korevaar and Schoen [KS93, KS97]. In the next two subsections, we will describe this result and
explain why the four properties listed above still hold in this context.

3.2 Korevaar and Schoen’s harmonic map
We start with a remark. We need to do some differential geometric calculations in H∞. To this
end, observe that the Levi-Civita connection of H∞ can be defined in the usual way as the unique
torsion-free connection on the tangent bundle TH∞ of H∞, which is compatible with the metric.
When we use the Poincaré ball model for H∞, i.e. we identify H∞ with the unit ball B ⊂H ,
endowed with the metric 4〈·, ·〉/(1− |x|2)2, we see easily that if X : B→H is a smooth map
thought of as a vector field on H∞ then

∇X = dX +A(X),

where A is a smooth 1-form with values in the space of endomorphisms of H . One can compute
easily the precise expression of A in terms of the function 4/(1− |x|2)2 and of its gradient, but
we will not need it. In the following, if v is a vector in TH∞, we will write Av for the value of
the 1-form A on v, so that Av : H →H is a continuous linear map.

We now fix a non-elementary homomorphism ρ : Γ→ Isom(H∞), and we want to study ρ via
an associated harmonic map. The existence of an equivariant harmonic map in this context is
a consequence of the work of Korevaar and Schoen [KS93, KS97]; see [KS97, Theorem 2.3.1].
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The minimizing map constructed by Korevaar and Schoen is Lipschitz and belongs to a certain
Sobolev space defined in metric terms; see [KS93] for the definition. Since in our case the target
is an infinite-dimensional manifold, we will see that the harmonic map is in fact smooth. It is well
known that harmonic maps are smooth once we know their continuity (see for instance [BG80]
for a proof for maps from the Euclidean space into the sphere, as well as [SU87] for a discussion of
the regularity of harmonic maps). In our case the stronger fact that f is Lipschitz was established
in [KS97]; deducing the smoothness from this is easy. Since we were not able to find a reference
for this in the literature, we now prove this fact.

In the following, B will be a closed ball in X̃ contained in some coordinate chart, g will
denote the Riemannian metric on X̃ and ∆g the Laplacian associated to g. We will need to
deal with various Lebesgue and Sobolev spaces of maps with values in the real separable Hilbert
space H . One defines the space Lp(B,H ) (for p> 1), which we will simply denote by Lp, as the
space of all measurable maps u :B→H such that

∫
B ‖u(x)‖p dx <+∞ (where dx stands for the

Riemannian measure associated to g and ‖ · ‖ is the norm on H ). We define the Sobolev spaces
W k,p(B,H ) (or W k,p for short) in the usual way, using the scalar product on H . Finally, we
will write u ∈ Lploc (or u ∈W 1,p

loc or u ∈W 2,p
loc . . .) if the restriction of u to any closed ball contained

in the interior of B is in Lp. See [DU77] for a detailed study of Lebesgue spaces of vector-valued
functions. Note that in the present case, since we are dealing with functions with values in a
Hilbert space, the integral of a measurable map u :B→H such that

∫
B ‖u‖ dx <+∞ can be

defined easily by duality.
We start with an easy proposition.

Proposition 5. Assume that the measurable map u :B→H is in W k,2 for any integer k.
Then u is of class C∞.

Proof. Writing (ui)i>0 for the coordinates of u in a Hilbert basis of H , the hypothesis implies
that each ui is in the usual Sobolev space W k,2 and for each fixed k, the series

∑
i |ui|2Wk,2 is

convergent. Using the classical regularity theorems, each ui is smooth, and for each r, and each k
large enough compared to r, there exists a constant Dr,k such that |ui|Cr 6Dr,k|ui|Wk,2 . Thus,
the series

∑
i |ui|2Cr is convergent, which implies that u is C∞. 2

The following proposition is classical, at least for real-valued functions. We will briefly recall
its proof in § 7, to explain why it extends to the case of vector-valued maps.

Proposition 6. If a map u is in W 1,p
loc for all p and if ∆gu is in Lploc for all p, then u is in W 2,p

loc

for all p.

We are now ready to prove the following proposition.

Proposition 7. The harmonic map f : X̃ →H∞ is of class C∞.

Proof. We fix a point x0 ∈ X̃ and work in a ball B around x0. We denote by x1, . . . , x2n the
coordinates on B. We also use the Poincaré ball model for H∞, i.e. we identify H∞ with
the unit ball B of H endowed with the metric 〈·, ·〉hyp := 4〈·, ·〉/(1− |x|2)2. Since f is continuous,
we can assume, by shrinking B if necessary, that f(B) is contained in a small ball of H∞ where
the hyperbolic and the flat metric are comparable. This implies that f (restricted to B) is in the
Sobolev space defined by Korevaar and Schoen for any of the two metrics. However, for the flat
metric on H , Korevaar and Schoen’s Sobolev space coincides with the usual space W 1,2 defined
above. This is [KS93, Theorem 1.6.2] (that theorem deals with real-valued functions but can be
adapted easily to the case where the target is a Hilbert space).
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Observe that, since f is Lipschitz, the partial derivatives of order one of f are in fact L∞.
As in [BG80], we are going to show that for any integer k and any multiindex I = {α1, . . . , αk}
of length k, the partial derivative ∂If := ∂α1 · · · ∂αk

f is in Lploc for any p > 1. Together with
Proposition 5, this will prove the proposition.

First observe that the fact that f minimizes energy implies (as in the smooth case) that for
any smooth compactly supported map V :B→H (thought of as a vector field along f) one has∫

〈∇V, df〉hyp dx= 0.

Here the symbol dx represents the integration on B with respect to the volume form induced
by g, and the scalar product of the two 1-forms is defined in the usual way. When f is smooth this
last integral equals −

∫
〈V, τ(f)〉hyp dx where τ(f) is the tension field of f (see [Nis02, p. 102]).

Remembering that ∇V = dV +A(V ), it is easy to deduce from the previous equality that f
satisfies (in the sense of distributions) the equation

∆gf +
2n∑
i,j=1

gijA∂f/∂xi

(
∂f

∂xj

)
= 0. (∗)

We now prove by induction on k that ∂If ∈ Lp for any p and for any multiindex I of length k.
This is true for k = 1. Assuming it is true for a certain integer k > 1 we prove it for k + 1. Let I
be a multi-index of length k − 1. According to (∗), the function ∆g∂If is a linear combination
of products of partial derivatives of length at most k of Ai(f), gij and f and of the term
∆g∂If − ∂I∆gf . This last term involves derivatives of f up to the order k. By induction, all
these terms are in Lp for any p, and hence by the Hölder inequality ∆g∂If is in Lp for any p.
By Proposition 6, ∂If ∈W 2,p, and hence f ∈W k+1,p. 2

Once f is known to be smooth, we can define, as before, the operator d∇ acting on differential
forms with values in the bundle f∗TH∞→ X̃, and one checks, as in the finite-dimensional case,
that the harmonicity of f is equivalent to the usual equation

ωn−1 ∧ d∇(df ◦ i) = 0.

3.3 The Bochner–Siu–Sampson formula
The next step is to check that the usual Bochner–Siu–Sampson formula still holds in this context,
showing that f is pluriharmonic and that the curvature (d∇)2 is purely of type (1, 1).

Proposition 8. The following hold.

(i) The map f is pluriharmonic, i.e. d∇(df ◦ i) = 0.

(ii) The pull-back of the curvature of H∞ (thought of as a 2-form with values in End(TH∞))
is of type (1, 1), which implies that D := d1,0

∇ satisfies D2 = 0.

(iii) The 1-form df1,0 satisfies D(d1,0f) = 0.

Proof. The proof of this proposition in the finite-dimensional case is an application of the classical
Bochner–Siu–Sampson formula; see [ABCKT96] or [CMP03, § 14.2]. Here we only remind the
reader of the strategy of the proof and explain why it goes through without changes when
the target is an infinite-dimensional hyperbolic space.

We first introduce the following notation. If β and δ are differential forms on X̃ with
values in the bundle f∗TH∞ ⊗ C, one defines naturally the k + l form 〈β ∧ δ〉: if β =

∑
βisi
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and δ =
∑

j δjvj (where the βi and the δj are complex valued forms and the si and the tj are
sections of f∗TH∞ ⊗ C) we define

〈β ∧ δ〉 :=
∑
i,j

βi ∧ δj〈si, tj〉

where 〈si, tj〉 is computed using the natural hermitian metric on f∗TH∞ ⊗ C.
The proof consists in showing that the real-valued 2n-form (which is well defined on X)

〈d2
∇(df ◦ i) ∧ df ◦ i〉 ∧ ωn−2 + 〈d∇(df ◦ i) ∧ d∇(df ◦ i)〉 ∧ ωn−2

is at the same time exact and pointwise non-positive. Stokes’ theorem then implies that
it is identically zero. The exactness of this form is proved as in the finite-dimensional case.
As for the sign, the harmonic equation tells us that for any section s of f∗TH∞, the 2-form
〈d∇(df ◦ i), s〉 ∧ ωn−1 is primitive. This implies that the second term in the formula above is
non-positive and vanishes only if d∇(df ◦ i) = 0 identically. The first term is also non-positive
and vanishes precisely if the curvature d2

∇ is of type (1, 1). The proof of this fact goes through
exactly as in the finite-dimensional case; see [ABCKT96, p. 74].

The proof of the third point of the proposition is now easy. The 1-form

α := df1,0 = df − i df ◦ i

is d∇-closed since both df and df ◦ i are. Since α is of type (1, 0), this implies that both d1,0
∇ α

and d0,1
∇ α are 0. 2

In the following, we will continue to denote by α the complex linear part of the differential
of f :

α := df1,0.

Exactly as in [Sam86], the previous proposition implies that the complex rank of α is at most
one. We will briefly summarize the proof of this fact here. See [ABCKT96, ch. 6, p. 77], for more
details. We denote by R the curvature tensor of H∞ and by RC its complex linear extension
to (TH∞ ⊗ C)⊗4. Denoting by 〈·, ·〉 the complex bilinear extension of the Riemannian metric of
H∞ to TH∞ ⊗ C, one has

RC(X, Y, Z, W ) = 〈Y, Z〉〈X,W 〉 − 〈X, Z〉〈Y, W 〉. (∗)

Now, one can show (see [ABCKT96]) that the second item of the previous proposition,
namely, the fact that the pull-back by f of the curvature is of type (1, 1), is equivalent to the
fact that the Hermitian sectional curvature is zero on the image of α: for all X, Y in the image
of α we have

RC(X, Y, X, Y ) = 0.

From the expression (∗) for RC, one sees easily that this implies that the image of α has complex
dimension at most one. This implies that the real rank of f is not greater than two.

The next step is to check that the 1-form α is actually holomorphic for a suitable holomorphic
structure on the bundle f∗TH∞ ⊗ C. To achieve this, we will need an analogue of the Koszul–
Malgrange theorem in this infinite-dimensional context. The statement of this theorem for a
Hilbert space bundle does not present any difficulty. Knowing that the operator D acting on
sections of the bundle f∗TH∞ ⊗ C→ X̃ satisfies D2 = 0, we want to prove that there exist local
trivializations of this bundle in which the operator D becomes the usual ∂ operator. We will
see in § 6 that the proof in the finite-dimensional case can be adapted without difficulty to this
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context. Hence we assume from now on that such trivializations exist. Observe, however, that
around any point x such that αx 6= 0 the image of α is a rank one subbundle of f∗TH∞ which is
stable by the operator D. Therefore, we can apply the classical Koszul–Malgrange theorem to this
rank one bundle around any point where α is not zero. So we only need the infinite-dimensional
version of the theorem to study points where α vanishes.

4. Actions on infinite-dimensional real hyperbolic spaces

In this section, we prove Theorem 1. We consider a minimal non-elementary action
Γ→ Isom(H∞) and work with the associated equivariant harmonic map f : X̃ →H∞. First, let
us observe that one can assume that the rank of f equals two on a dense open set. Otherwise
the image of f would be a geodesic or a point (see [Sam78, Theorem 3]; the proof works just as
well in our context) and the representation ρ would be elementary.

4.1 Factorization
The goal of this subsection is to prove the following theorem. It is classical in spirit and similar to
many results in the literature. Although a very similar statement appears in [JY91], we include
a complete proof here.

Theorem 5. There exists a holomorphic map π : X̃ →∆ and a harmonic map u : ∆→H∞ such
that

f = u ◦ π.
Moreover, there exists a homomorphism θ : Γ→ PSL2(R) and a homomorphism

Ψ : Λ := θ(Γ)→ Isom(H∞)

such that ρ= Ψ ◦ θ. The map π is θ-equivariant and the map u is Ψ-equivariant.

To prove this theorem, we follow an idea from [Mok88, § 2.2]. In the course of the proof,
we will use the fact that the map f is real-analytic (as a solution of an elliptic equation with
real-analytic coefficients), as well as the following lemma, whose proof we omit.

Lemma 9. Let O be a manifold and let R⊂O ×O be the graph of an equivalence relation on
O. If R is closed and if the two projections p1, p2 :R→O are open maps (R being endowed
with the topology induced from O ×O), then the quotient space OR is Hausdorff and the map
O→OR is an open map.

Let U be the open set of X̃ where the holomorphic 1-form α is non-zero. Note that its kernel
defines a holomorphic foliation F on U (for instance because the kernel of α coincides with that of
df on a dense open set). The foliation F extends to O := X̃ − Z where Z is an analytic set of codi-
mension at least two in X̃, called the singular set of F . To prove Theorem 5, it is enough to con-
struct a holomorphic equivariant map O→∆, since such a map will automatically extend to X̃.

We define a subset R of O ×O as follows. The pair (x, y) ∈O ×O is in R if we can find two
germs of holomorphic maps ϕx : (C, 0)→ (O, x) and ϕy : (C, 0)→ (O, y) whose images are not
contained in a leaf of F and such that f ◦ ϕx = f ◦ ϕy. Let us make some comments about this
definition.

(i) If one takes coordinates z = (z1, z′) ∈∆(0, ε)×∆(0, δ)⊂ C× Cn−1 and w = (w1, w
′) ∈

∆(0, ε)×∆(0, δ)⊂ C× Cn−1 centered at x and y respectively, and such that F is locally defined
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by the equations dz1 = 0 and dw1 = 0, one sees that R is locally the ‘pull-back’ by the map
(z, w) 7→ (z1, w1) of a subset R0 of ∆(0, ε)×∆(0, ε). Hence, by projecting onto the z1 (or w1)
coordinate we can think of the two maps ϕx and ϕy as maps (C, 0)→ (C, 0). We will always
do this in what follows, and work with R0. Observe also that in such coordinates one has
f(z1, z′) = f(z1) (and similarly f(w1, w

′) = f(w1)).

(ii) We observe that R defines an equivalence relation on O. The only non-trivial point is
the fact that R defines a transitive relation, but this essentially follows from the fact that two
(germs of) ramified covers of (C, 0) share a common cover.

(iii) If (x, y) ∈R, Let t > 0 be such that ϕx and ϕy are both defined on the disc ∆(0, t). Then
the germ of complex analytic set

{(ϕx(z), ϕy(z)), z ∈∆(0, t)} ⊂R0 ⊂ C2

is contained in the real analytic set R1 := {(z, w), f(z) = f(w)} ⊂ C2. Since f is not constant
on any open set, R1 cannot contain a germ of analytic curve whose projection to one of the
two factors of C2 is constant. Hence, we see that R0 is exactly the set of points of R1 which
are contained in a positive dimensional germ A of complex analytic set with A⊂R1. According
to [DM08] this set is closed. Hence the graph R of the equivalence relation we just defined is
closed. The projection maps p1, p2 :R⊂O ×O→O are open. According to the lemma mentioned
above, the quotient OR of O by the equivalence relation R is Hausdorff and the projection map
π :O→OR is open.

We now prove that OR is a Riemann surface. We start with the following proposition.

Proposition 10. For any point p in O, there is a neighborhood U of (p, p) in O ×O such that
R ∩ U is a complex analytic set.

Proof. We choose coordinates (z1, . . . , zn) = (z1, z′) in a polydisc

V = ∆(0, ε)×∆(0, δ)⊂ C× Cn−1

centered at p in such a way that the foliation F is defined on V by the equation dz1 = 0. Let
D be the disc ∆(0, ε)× {0}. In these coordinates, the harmonic map depends on z1 only. After
choosing a trivialization of the bundle f∗TH∞ ⊗ C near p, the form α can be thought of as a 1-
form depending on z1 only, with values in a fixed complex Hilbert space H. Let (x, y) ∈ V × V ∩R
and let ϕx, ϕy : (C, 0)→D be the associated maps as in the definition of R. From the equation
f ◦ ϕx = f ◦ ϕy one gets ϕ∗xα= ϕ∗yα. By choosing a basis (e1, e2, . . .) of H and maybe making a
change of coordinate on z1, we can assume that

α= zk1dz1e1 +
∑
j>2

aj(z1) dz1ej ,

for some integer k. By projecting the equation ϕ∗xα= ϕ∗yα on the first coordinate, we get

ϕkxϕ
′
x = ϕkyϕ

′
y.

Hence the set R0 ⊂D ×D (which was defined to be the image of R by the map (z, w) 7→ (z1, w1))
is contained in the set ⋃

c∈C
Ac,

where Ac := {(z, w) ∈D ×D, zk+1 − wk+1 = c}. We are going to see that, up to replacing D
by a smaller disc, one has R0 ⊂A0. This will prove the proposition. If this is false, there is a
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sequence cn of non-zero complex numbers converging to 0 such that

Acn ∩R0 6= ∅. (∗)

We will prove that this implies that the rank of f equals one on an open set, which is a
contradiction. For n large enough, the set Acn is a connected Riemann surface in D ×D. If
it intersects R0, the two harmonic maps f ◦ p1 and f ◦ p2 (where the pi are the projections
D ×D→D) coincide on an open set of Acn . Hence they are equal on Acn , and Acn is entirely
contained in R0. We thus assume that

Acn ⊂R0 ⊂R1,

for all n. Now, for any point x ∈D one can find a sequence of points xn such that

xk+1 − xk+1
n = cn

and xn→ x. Since Acn ⊂R1 := {(a, b), f(a) = f(b)} we have f(x) = f(xn), and by taking a
limit point of the sequence (x− xn)/|x− xn| one sees that rank dfx 6 1 for x ∈D. This is the
contradiction we were looking for. 2

With the help of the previous proposition, we can complete the proof. The quotient of a
polydisc V , as in the proposition above, naturally has the structure of a Riemann surface. Since
π is an open map, this endows the open set π(V )⊂OR with a complex structure. It is then easy
to check that the various complex structures on the open sets π(V ) (for various choices of V )
are compatible and make the map π holomorphic.

Remark 5. The idea of choosing a complex analytic equivalence relation whose graph is
contained in the real analytic set {(a, b), f(a) = f(b)} is due to Mok; see [Mok88]. However,
we use it in a slightly different way. Note also that we cannot prove immediately that R is
complex analytic everywhere; this is why in Proposition 10 we restrict to a neighborhood of the
diagonal. Indeed, if we start with a point (p, q) ∈R (p 6= q), there is no way to identify (a priori)
the fibers of the bundle f∗TH∞ ⊗ C near p and near q.

From now on we will denote by Σ the Riemann surface OR. At this stage we have a
holomorphic map π : X̃ → Σ and a continuous map u : Σ→H∞ such that f = u ◦ π. We still
have to justify that u is harmonic. However, this is clear in a neighborhood of any point which is
not a critical value of π since f is pluriharmonic. To establish the smoothness and the harmonicity
of u near a critical value of π, we borrow an argument from [Mok92, p. 577]. Let p be a critical
value of π and let x ∈ X̃ be such that π(x) = p. We can assume that x is a regular point of the
foliation defined by the kernel of α. We choose coordinates z = (z1, . . . , zn) centered at x such
that π is locally represented by the map z 7→ zk1 for some integer k. From the equation

f(z) = u(zk1 ),

we want to deduce that u is smooth and harmonic. We will denote by D0 a small disc centered
at the origin in the complex plane (corresponding to the z1 coordinate) and by D its image under
the map z1 7→ zk1 . We also write f(z) = f(z1) in what follows. Let v :D→H∞ be the harmonic
map whose boundary value is equal to u. It exists according to [KS93, Theorem 2.2]. Now
the map ṽ defined on D0 by ṽ(z1) = v(zk1 ) is harmonic and equals f on the boundary of D0.
Hence it must equals f on D0. This implies that u= v on D and proves the result.

We now explain why we can assume that Σ is the unit disc ∆. First, by the maximum
principle, the Riemann surface Σ cannot be compact. Second, we observe that the map π : X̃ → Σ
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is equivariant with respect to a homomorphism θ : Γ→Aut(Σ). The group Aut(Σ) cannot be
solvable as a consequence of the following lemma.

Lemma 11. Let G be a finitely generated solvable subgroup of Isom(H∞). Then either G
stabilizes a geodesic of H∞ or G fixes a point in H∞ ∪ ∂H∞.

Note that this lemma is very general and remains true for groups of isometries of δ-hyperbolic
spaces. A proof in the case of H∞ can be found in [Can11, § 6.3], for instance. It implies that the
universal cover of Σ is isomorphic to the unit disc. Although Σ might not be simply connected at
the beginning, one can always lift the map π (as well as the representation Γ→Aut(Σ)) to the
unit disc. To be also able to lift the map u : Σ→H∞ to a map defined on ∆, it is enough to check
that the lift π̃ : X̃ →∆ of π is surjective. Since the image of π̃ is open we need to check that it
is also closed. If the automorphism group of Σ is discrete, it is easy to see that the image of π̃ is
closed. We finish by observing that the only hyperbolic Riemann surface whose automorphism
group is not discrete and not solvable is the unit disc itself; if Σ = ∆, π̃ = π and we know from
the beginning that this map is surjective. Hence, up to replacing Σ by its universal cover and π
by a lift, we now assume that Σ = ∆.

Before concluding the proof of Theorem 5, we state the following lemma.

Lemma 12. If an isometry g : H∞→H∞ fixes pointwise the image of the map f then g is the
identity.

Proof. Let W be the intersection of all closed totally geodesic subspaces of H∞ containing the
image of f . It is itself a closed totally geodesic subspace of H∞, which is invariant by the action
of Γ. Since we assumed that the action was minimal, we have W = H∞. We complete the proof
by observing that the fixed point set of g contains W . 2

We can now finish. Let Λ be the image of θ. According to Lemma 12, the kernel of θ
is contained in the kernel of ρ. Hence we can write ρ= Ψ ◦ θ, where Ψ : Λ→ Isom(H∞) is a
homomorphism. This completes the proof of Theorem 5.

4.2 Conclusion of the proof of Theorem 1
If the group Λ introduced above is discrete in PSL2(R), the representation factors through
a fibration onto a hyperbolic 2-orbifold. Indeed one gets a map X →∆/Λ, which might not
have connected fibers. However, we can apply the Stein factorization theorem to it to obtain a
fibration of X onto a hyperbolic 2-orbifold. The obvious, but crucial observation, which appears
already in [GS92, Lemma 9.4], is now the following: if Λ is not discrete, it is topologically
dense in PSL2(R). Assuming that Λ is not discrete, we now prove that the homomorphism
Ψ : Λ→ Isom(H∞) extends continuously to PSL2(R). Let (γn) be a sequence in Λ which converges
to g ∈ PSL2(R). We are going to prove that ρ(γn) converges to an isometry of H∞. First observe
the following lemma.

Lemma 13. Let (gn) be a sequence of isometries of H∞. Then the set

{x ∈H∞, (gn(x))is convergent}

is a closed totally geodesic space.

Proof. The fact that this set is closed follows from the completeness of H∞ and the equicontinuity
of the sequence (gn). The fact that it is totally geodesic follows from the fact that the geodesic
ray passing through two given points of H∞ depends continuously on these two points. 2
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The two sequences ρ(γn) and ρ(γn)−1 are pointwise convergent on the image of the harmonic
map. According to the lemma and the fact that the smallest closed totally geodesic subspace
of H∞ containing Image(f) is H∞, they are pointwise convergent on H∞. This proves that
the homomorphism Ψ extends to a continuous homomorphism PSL2(R)→ Isom(H∞). This
completes the proof of Theorem 1: if the representation ρ : Γ→ Isom(H∞) does not factor through
a fibration onto a hyperbolic 2-orbifold, it factors through a continuous homomorphism from
PSL2(R) to Isom(H∞).

As mentioned in Remark 2, the same arguments prove that a Zariski dense representation
of Γ in a non-compact simple Lie group with trivial center and different from PSL2(R) factors
through a hyperbolic 2-orbifold as soon as the associated harmonic map

f : X̃ →G/K

satisfies rankC df
1,0 = 1. Indeed this hypothesis ensures that there is a holomorphic foliation

of codimension 1 on X̃, and we can argue as before. We use the fact that there is no non-
trivial subsymmetric space containing the image of f ; as a consequence any sequence in G which
converges pointwise on the image of f has to converge everywhere.

5. Kähler groups in the Cremona group

Here, we recall the construction of the Picard–Manin space on which the Cremona group acts
faithfully, before proving Theorem 3. For more details on the notions presented here, the reader
can consult [BFJ08, Can11, CL10, Fav10, Man86].

5.1 The Picard–Manin space
We consider the set E of all pairs (X, p) where X is a smooth rational surface and p :X → P2

is a birational morphism. Observe that if (X, p) ∈ E , the map p is a composition of a certain
number k of blow-ups and the intersection form (·, ·)X on the group H2(X, Z) has signature
(1, k) (i.e. H2(X, Z) with its intersection form is isomorphic to Zk+1 with the form x2

1 − x2
2 −

· · · − x2
k+1). Although one can define the ‘action’ f∗ of a birational map f :X 99KX on the

group H2(X, Z) (see [DF01]), the corresponding map f 7→ (f−1)∗ is not a group homomorphism.
To solve this problem, we look at the action of the Cremona group on a suitably defined limit
of all cohomology groups H2(X, Z) for (X, p) ∈ E . The construction of this limit is due to
Manin [Man86].

Formally, one proceeds as follows. If (X, p) and (Y, q) are elements of E , we will say that
a morphism u : Y →X is admissible if q = p ◦ u. Note that there is at most one admissible
morphism between (X, p) and (Y, q). There is one exactly when the birational map p−1 ◦ q is
holomorphic. If u : Y →X is admissible, the map

u∗ : (H2(X, Z), (·, ·)X)→ (H2(Y, Z), (·, ·)Y )

is an isometric embedding. Observe also that given (X, p) and (Y, q) in E , one can always find
a third surface (Z, r) ∈ E for which there exist admissible morphisms Z→X and Z→ Y . This
allows one to define the space

Z(P2) = lim−→H2(X, Z),

which is the inductive limit of the groups H2(X, Z) (for (X, p) ∈ E ) with respect to all admissible
morphisms. The abelian group Z(P2) is endowed with an intersection form (·, ·)P2 . One defines
an action of the group Bir(P2) on Z(P2) as follows. Let f : P2 99K P2 be a birational map.
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If α ∈H2(X, Z) (for some (X, p) ∈ E ) and [α] denotes the image of α in Z(P2), we want to
define f∗([α]). The birational map p−1 ◦ f : P2 99KX can be decomposed as a sequence of blow-
ups and blow-downs. Hence we can choose a rational surface (Y, q) in E such that the rational
map g := p−1 ◦ f ◦ q is a morphism and define f∗([α]) := [g∗α].

Y
g //

��

X

��
P2

f // P2

This defines a linear isometry f∗ : (Z(P2), (·, ·)P2)→ (Z(P2), (·, ·)P2). We then put

f∗ := (f∗)−1

and observe that f 7→ f∗ is a group homomorphism.
We now describe a basis of the space Z(P2). On the union⋃

(X,p)∈E

X

of all rational surfaces in E , we define an equivalence relation as follows: we say that a point x
in (X, p) is equivalent to a point y in (Y, q) if the map q−1 ◦ p is well defined at x, maps x onto
y and is a local isomorphism near x. We denote by Ec(P2) the quotient of

⋃
(X,p)∈E X by this

equivalence relation. If x is a point in a rational surface X dominating P2, we let Xx→X be the
blow-up of X at x and ex ∈H2(Xx, Z) be the class of the exceptional divisor. We still denote by
ex the image of this class in Z(P2) and observe that ex ∈ Z(P2) depends only on the equivalence
class of x in Ec(P2). Hence for each point a ∈ Ec(P2) we have a class ea ∈ Z(P2) associated to a.
We have a natural map from the abelian group

A(P2) := Z⊕
( ⊕
a∈Ec(P2)

Za

)
to Z(P2): it takes the first factor isomorphically to H2(P2, Z) ↪→ Z(P2) and the factor Za to
Zea ⊂ Z(P2). The direct sum above can be endowed with the bilinear form (·, ·) for which the
vector (t, (λa)a∈Ec(P2)) has norm t2 −

∑
a λ

2
a. We then have the following result.

Proposition 14 [Man86]. . The natural map

(A(P2), (·, ·))→ (Z(P2), (·, ·)P2)

is a surjective isometry.

We will use two consequences of this proposition (see [BFJ08, Can11]).

(i) One can complete Z(P2) to obtain a Hilbert space Z (P2) endowed with a bilinear form
(still denoted by (·, ·)P2) of signature (1,∞). Any isometry of Z(P2) extends to an isometry of
Z (P2), and hence we get an action of the group Bir(P2) on Z (P2).

(ii) One can describe the action of a birational map f on Z(P2) in terms of the basis given
by the previous proposition. If x ∈ P2 and if f is defined at x we have

f∗(ex) = ef(x)

(when one identifies x and f(x) to their images in Ec(P2)). If x is a point of a rational surface
X dominating P2, and if the image of x in P2 is not a point of indeterminacy of f , the same
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formula remains true, provided that we define f(x) correctly (see [Can11]). In particular, if f is
an automorphism of P2, f∗ permutes the vectors of the previous basis of Z (P2).

We will denote by u0 ∈ Z(P2) the class of a line in P2. One can finally define the space HP2 . This
is simply the hyperbolic space associated to the space (Z (P2), (·, ·)P2); that is,

HP2 := {u ∈Z (P2), (u, u)P2 = 1, (u, u0)P2 > 0}.

Example 1, continued. We denote by x1, x2, x3 the three points [1 : 0 : 0], [0 : 1 : 0] and [0 : 0 : 1]
in P2. The group A := C∗ × C∗ can be identified with the diagonal subgroup of PGL(3, C).
It fixes the class u0 of a line as well as the three points ex1 , ex2 and ex3 in Z (P2). Hence it fixes
pointwise the intersection of the four-dimensional subspace spanned by u0 and the exi with HP2 ,
which is a copy of the three-dimensional hyperbolic space.

To prove that the space (HP2)A is actually infinite-dimensional, we observe that when we
blow up the three points xi on P2, we obtain a rational surface X on which A acts with six
fixed points. By blowing up these six fixed points and iterating this procedure, we obtain a
sequence of actions of A on some rational surfaces Xn dominating P2, for which the second
Betti numbers b2(Xn) go to infinity. This proves that the space of fixed points of A in HP2 is
infinite-dimensional.

We finish this paragraph with a remark, which will be used below. If q : Y → P2 is a rational
surface dominating P2, one can repeat everything we have said in this paragraph, replacing P2

by Y : one can define the spaces Z(Y ), Z (Y ), and the form (·, ·)Y . One difference is that when
defining the group A(Y ), the first Z factor has to be replaced by the group H2(Y, Z). The spaces
Z(Y ) and Z (Y ) are isomorphic to Z(P2) and Z (P2), and when one identifies Bir(P2) to Bir(Y )
via q, the two actions we get on Z (P2) and Z (Y ) are conjugated. In particular one gets the
following conclusion: if a birational map f : P2 99K P2 lifts to an automorphism of Y which is
isotopic to the identity, there is an orthonormal basis of Z (P2) which is permuted by f∗.

5.2 Proof of Theorem 3

We now prove Theorem 3. Let ρ : Γ→ Bir(P2) be a non-elementary homomorphism. Let Hρ be
the unique minimal closed totally geodesic ρ-invariant subspace of HP2 . We know that the action
of Γ on Hρ factors through a homomorphism θ onto a subgroup Λ of PSL2(R). We need to show
that Λ is discrete.

We assume by contradiction that Λ is dense in PSL2(R). Let Λ0 be a torsion-free finite index
subgroup of Λ. The group Λ0 is still dense in PSL2(R). Since elliptic elements form an open
set of PSL2(R), there exists an element γ0 ∈ Λ0 which is elliptic of infinite order. Let g be an
element of Γ such that θ(g) = γ0. Then the birational transformation ρ(g) has the following
property: there exists a two-dimensional subspace P ⊂Z (P2) on which the form (·, ·)P2 is
positive definite and on which ρ(g)∗ acts as an irrational rotation. Indeed, the harmonic map
f : ∆→Hρ ⊂HP2 is PSL2(R)-equivariant in our situation, and hence has rank two at every point
of ∆. One can thus take P to be the image of the differential of f at the point ξ ∈∆ fixed by γ0.

The next proposition proves that such a behavior does not occur inside the Cremona group.
Hence Λ cannot be dense and has to be discrete. After eventually applying the Stein factorization
theorem, we obtain a fibration of X onto a hyperbolic 2-orbifold Σ, and the kernel H of the
homomorphism Γ→ πorb

1 (Σ) has to fix pointwise the subspace Hρ. Since Hρ contains the image
of f , its dimension is at least two. This concludes the proof of Theorem 3. 2
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Proposition 15. Let h : P2 99K P2 be a birational map such that the isometry h∗ fixes a point
in HP2 . Then there is no h∗-invariant two-dimensional subspace P ⊂Z (P2) on which h∗ acts as
an irrational rotation.

Proof. According to [Can11], and up to replacing h by a power, one can find a birational model
Y of P2 on which h acts by an automorphism isotopic to the identity. The space Z (Y ) is the
direct sum of H2(Y,R) and of `2(Ec(Y )); h∗ acts trivially on the first factor and permutes
the coordinates in the second. The plane P has to be contained in the second factor. Let
ui =

∑
x∈Ec(Y ) λi,xex (i= 1, 2) be a basis of P . We know that there exists an angle α (with

α/π irrational) such that

h∗u1 = cos(α)u1 + sin(α)u2,

h∗u2 = −sin(α)u1 + cos(α)u2.

We fix a point x ∈ Ec(Y ) such that (λ1,x, λ2,x) 6= (0, 0). Looking coordinate by coordinate we
obtain, for each integer n, the equalities

λ1,hn(x) = cos(nα)λ1,x + sin(nα)λ2,x,

λ2,hn(x) = −sin(nα)λ1,x + cos(nα)λ2,x.

Since the sum
∑

y λ
2
i,y is finite, there must exist an integer N such that hN (x) = x. However,

this implies that the vector (λ1,x, λ2,x) ∈R2 is an eigenvector for the rotation of angle Nα in
the plane. This is a contradiction. 2

Theorem 3 only deals with non-elementary homomorphisms into the Cremona group, but the
work of Cantat also gives information about elementary homomorphisms from finitely generated
groups into Bir(P2). In particular we have the following consequence of Theorem 4.

If N is a finitely generated subgroup of the Cremona group which preserves a geodesic γ in
HP2 but is not elliptic, then either N is virtually cyclic or N is conjugated to a subgroup of the
group Gtoric.

Let us explain this fact. Let u :N →R be the ‘translation homomorphism’ induced by the
action of N on γ. It is known that its image is cyclic (see [Can11, Fav10]); this uses the fact that
N is finitely generated. If N is not virtually cyclic, the group A := Ker u is infinite and elliptic,
and we are in the situation of Theorem 4, establishing the above result.

We can now prove Corollary 3.

Proof of Corollary 3. Let ρ : Γ1→ Bir(P2) be an injective homomorphism where Γ1 is a
cocompact lattice in SU(n, 1) (n> 2). Note that if the conclusion of the corollary holds for
a normal subgroup of finite index of Γ1, it holds also for Γ1. Hence we can assume that Γ1 is
torsion-free. We assume by contradiction that ρ is non-elementary, and apply Corollary 2: Γ1 has
no finite index subgroup isomorphic to a surface group, and hence Γ1 must be isomorphic to a
subgroup of the group Gtoric. However, Γ1 has no non-trivial normal abelian subgroup, and hence
its intersection with C∗ × C∗ ⊂Gtoric must be trivial. This implies that Γ1 is isomorphic to a
subgroup of GL(2, Z), which is a contradiction. Hence the homomorphism ρ has to be elementary.
If ρ(Γ1) preserves a geodesic we apply the remark made above. Since Γ1 is not virtually cyclic,
it has to be isomorphic to a subgroup of the group Gtoric, yielding a contradiction again.

Finally, if ρ is elementary but does not preserve a geodesic, it has to fix a point in the space
HP2 or to fix a unique point of the boundary of HP2 . 2
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6. Koszul and Malgrange’s integrability theorem

In this section, we prove the infinite-dimensional version of Koszul and Malgrange’s integrability
theorem.

Let us first remind the content of the proof in the finite-dimensional case. Assume that
E→X is a smooth complex vector bundle over the complex manifold X and that D is a
(0, 1)-connection on E, i.e. a differential operator D :A0(E)→A1(E) (where A0(E) is the space
of smooth sections of E and A1(E) the space of smooth 1-forms on X with values in E) such
that

D(fs) = ∂(f)s+ fDs

whenever f is a smooth function and s is a section of E. The operator D naturally extends to an
operator acting on all differential forms with values in E. The theorem of Koszul and Malgrange
asserts that if D satisfies the integrability condition D2 = 0 one can find a holomorphic structure
on E for which D is the usual ∂ operator. This is a simple particular case of the integrability
criterion of Newlander and Nirenberg. The proof can be described as follows. Let s1, . . . , sn
be any local frame for the bundle E→X, over some open set U ⊂X. We want to prove that,
around any point, one can find a frame made of sections annihilated by D (the transition matrices
between any to such frames will then be holomorphic). We can write

Dsj =
n∑
i=1

aijsi,

where A= (aij) is a matrix of (0, 1)-forms on U . We look for an invertible matrix-valued map
M = (mij) on U for which the sections uj =

∑n
i=1 mijsi would satisfy Duj = 0. In other words

we want to solve (locally) the equation ∂M =−AM , knowing the integrability condition

∂A+A ∧A= 0,

which is equivalent to the condition D2 = 0. The (matrix-valued) 2-form A ∧A is defined by

A ∧A=
∑
j<l

[Aj , Al] dzj ∧ dzl,

where A=
∑k

i=1 Ai dzi. Here (z1, . . . , zk) are coordinates on U and the Ai =Ai(z) are n× n
matrices.

In the infinite-dimensional setting, A=
∑k

i=1 Ai dzi where the Ai are smooth maps with
values in End(H ) (H being a fixed complex Hilbert space), and we look for a smooth map M
with values in the open set GL(H )⊂ End(H ) of invertible endomorphisms of H , solving the
equation above. To solve this problem, we use the following proposition.

Proposition 16. Let C be a smooth map with values in the space End(H ), defined in a
neighborhood of 0 in Ck. Assume that C is holomorphic with respect to z1, . . . , zp for some
integer 0 6 p < k. Then there exists a smooth map h defined in a neighborhood of 0 in Ck, with
values in the space GL(H ) and holomorphic in z1, . . . , zp, such that

h−1 ∂h

∂zp+1
= C.

To deduce the theorem from the proposition, one proceeds exactly as in [KM58]. Note that
it is at this point that we use the integrability condition satisfied by A. Since this part of the
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proof is exactly the same as in the finite-dimensional case, we refer the reader to [KM58, p. 103].
We now turn to the proof of Proposition 16.

We follow the proof explained in [DK90, p. 50]. We denote by B a ball in C, by E a complex
Banach space, and by C l+α(B, E) the usual Hölder space of C l maps from B to E, with α-Hölder
derivatives of order l (0< α < 1). We will use the following result.

Proposition 17. There exists a continuous linear operator P : Cα(B, E)→ C1+α(B, E) such
that

∂

∂z
(Pg) = g,

for all g ∈ Cα(B, E). Moreover, the operator P is continuous from C l+α(B, E) to C l+1+α(B, E)
for every integer l.

Proof. The construction of the operator P is classical in the case of complex-valued functions;
see [Vek62, ch. I, §§ 6, 8, 9] for its construction and continuity between various Hölder and Sobolev
spaces. Here we are dealing with functions with values in a complex Banach space. Observe that
all the integrals of functions with values in a Banach space that we need to consider to define P
are integrals of continuous functions. They can thus be defined by limits of Riemann sums, and
the separability (or not) of the space E plays no role here. We shall indeed apply this proposition
to some non-separable Banach space, namely, the space of endomorphisms of a Hilbert space.

Therefore one sees readily that the proofs given in [Vek62] extend to this context. We only
give the formula defining P and refer to [Vek62] for its properties:

P (g)(z) =
1

2iπ

∫
B

g(ξ)
ξ − z

dξ ∧ dξ. 2

We now prove Proposition 16. Write z = zp+1 and z′ = (z1, . . . , zp, zp+2, . . . , zk). We first
treat z′ as a parameter. We thus want to solve the equation

∂h

∂z
= hC,

in a neighborhood of 0 ∈ C. A simple renormalization argument (see [DK90, p. 51] for instance)
implies that it is enough to solve this equation when C is defined on the ball B of radius 1
around 0 in C and the C1 norm of C is as small as we wish. By looking for h under the form
h= Id + u and by using the operator P given by the previous proposition (with the Banach
space E being the space of endomorphisms of H ), we see that it is enough to find a solution of
the equation

u= P (C + uC),

where u ∈ Cα(B, E). If C is small enough, we can apply the contraction mapping principle to the
operator u 7→ P (C + uC) in the space Cα(B, E). Its fixed point will be close to 0, and hence
the map h= Id + u will take its values in GL(H ).

The fact that the solution we obtain depends smoothly on z′ and holomorphically on the zi
(i6 p) is a consequence of the implicit function theorem. This proves Proposition 16.

7. About the regularity of harmonic maps

The purpose of this section is to briefly explain the proof of Proposition 6. We first state a
version of Proposition 6 for the flat Laplacian ∆, i.e. the Laplacian associated to the Euclidean
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metric on Cn. Here again, B is a closed ball in X̃ that we can identify with a ball in Cn via some
choice of coordinates.

Proposition 18. Let p > 1. There exists a constant C such that if u ∈W 1,p(B,H ) and
∆u ∈ Lp(B,H ) then u ∈W 2,p(B,H ) and we have |D2u|p 6 C|∆u|p. Here D2u is the matrix of
partial derivatives of order two of u and |D2u|pp =

∑
i,j |∂i∂ju|

p
p.

Proof. This proof is classical. It follows from the fact that for each index α, there exists a
linear operator Rα (the Riesz transform) mapping continuously Lp(B,H ) into itself for each
p ∈ (1,+∞) and such that ∂2u/∂xα∂xβ =−RαRβ(∆u). See [Ste70, ch. 2] for the discussion of
the continuity properties of various operators defined by singular integrals. The case of vector-
valued functions is discussed in § 5 of Chapter 2. The particular case of the Riesz transforms is
discussed in Chapter 3. 2

With Proposition 18 at hand, one proves Proposition 6 exactly as in the finite-dimensional
case. One first proves the following a priori estimate.

Proposition 19. Let B′ ⊂⊂B′′ be closed balls contained in the interior of B. There exists a
constant C such that if u ∈W 2,p

loc (B) then

|D2u|p,B′ 6 C|∆gu|p,B′′ .

From this statement, one easily deduces the result of Proposition 6. We refer the reader
to [GT01, ch. 9] for more details.
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Appendix. Elliptic subgroups of the Cremona group
with a large normalizer

Serge Cantat

In this appendix, we prove the following theorem (Theorem 4 in the introduction). Its statement
uses the action of Bir(P2) on HP2 . Recall that the distance d(u, v) on HP2 is given by the
intersection form (u, v)P2 : cosh(d(u, v)) = (u, v)P2 . Birational transformations determine three
kind of isometries of this space: elliptic, parabolic, or hyperbolic.

Theorem A.1. Let N be a subgroup of the Cremona group Bir(P2). Assume that there exists
a short exact sequence

1→A→N →B→ 1

where N contains at least one hyperbolic element, and A is infinite elliptic. Then N is conjugate
to a subgroup of the group Gtoric of automorphisms of (C∗)2.
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Remark A.1. The same conclusion holds if we assume that A is infinite, finitely generated, and
all its elements are elliptic, because this new assumption implies that A is elliptic (see [Can11,
Theorem 6.4, Proposition 6.12]).

Let Y be a rational surface. The group Aut(Y ) of automorphisms of Y is a complex Lie
group. It may have an infinite number of connected components, but its connected component
of the identity Aut(Y )0 is easily described: Aut(Y )0 is isomorphic to an algebraic subgroup of
PGLn+1(C) for some positive integer n; this isomorphism is given by an equivariant embedding
of Y in Pn(C). All pairs (Y,Aut(Y )0) with dim(Aut(Y )0) > 1 are described in [Akh95, Bla09].

Let u0 ∈Z (P2) be the class of a line in P2. Since A is elliptic, it fixes a point u in HP2 and
we have

(a∗(u0), u0)P2 6 cosh(2d(u0, u)),

for all a in A. Since (a∗(u0), u0)P2 is the degree of a, A is contained in the algebraic variety
BirD(P2) of birational transformations of the plane of degree 6D, for D = [cosh(2dist(u0, u))]
+ 1. Let A be the Zariski closure of A in BirD(P2); since A is infinite, dim(A) > 1; since A is
normalized by N , so is A. From Weil and Rosenlicht theorem (see [Bla09, Ros56, Wei55]), there
exist a surface Y and a birational map π : Y 99K P2(C) such that π−1 ◦A ◦ π is contained in the
group Aut(Y ) and intersects a finite number of its components. After conjugation by π, we can
and do assume that N is contained in Bir(Y ) and A is a Zariski closed complex Lie subgroup of
Aut(Y ). Changing A into A and changing N accordingly, we have now a short exact sequence

1→A→N →B→ 1

in which N contains hyperbolic elements and A is a Lie subgroup of Aut(Y ) with finitely many
components. Let A0 be the connected component of the identity in A.

Lemma A.1. The group N normalizes A0, and the group A0 has a Zariski open orbit in Y .

Proof. Since N normalizes A, it normalizes the connected component A0. Since A0 is Zariski-
closed in the algebraic group Aut(Y )0, its orbits in Y are Zariski open subsets of Zariski closed
subsets in Y . Thus, two cases can occur. Either A0 has an open orbit, or the orbits of A0

determine a pencil of curves on Y . In the second case, the group N permutes the members of
the pencil; in particular, all elements of N preserve a meromorphic fibration on Y , and N does
not contain any hyperbolic element (see [CF03]). From this contradiction, we deduce that A0

has an open orbit in Y ; in particular, dim(A0) > 2.

Now let f be an element of N . Since f normalizes A0 and A0 is contained in Aut(Y ), the group
A0 permutes the indeterminacy set Ind(f) and the set of exceptional curves Exc(f) (Exc(f) is
the zero locus of the Jacobian determinant of f). In particular, both Ind(f) and Exc(f) are
contained in the complement of the open orbit of A0; this proves the following lemma.

Lemma A.2. The union of all indeterminacy sets Ind(f) and exceptional sets Exc(f) of elements
of N is a proper Zariski closed set Z ⊂ Y . The group N acts by automorphisms on the Zariski
open set U = Y \Z.

We can now restrict our study to the Zariski open set U ⊂ Y . Each element f of N determines
an automorphism ϕf of the algebraic group A0 such that

f ◦ a ◦ f−1 = ϕf (a)
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for all a in A0. The group A0 splits into a ϕf -invariant exact sequence

1→R→A0→ S→ 1

where R is the solvable radical of A0 and S is semi-simple.

Assume, first, that R is trivial. Then A0 = S is semi-simple and the group of exterior
automorphisms of A0 is finite. Let f be a hyperbolic element of N . Changing f into one of
its positive iterates, ϕf is an interior automorphism: there exists b in S such that f ◦ a ◦ f−1 =
b ◦ a ◦ b−1 for all a in S. In particular, f commutes to b; since b is in Aut0(Y ) and f is hyperbolic,
we deduce from [Can11, Theorem B], that b has finite order. Changing f into a new positive
iterate, we can assume that b is the identity and thus f commutes to the action of S. Theorem B
of [Can11] provides a contradiction because f is hyperbolic. This shows that the solvable radical
of A0 is non-trivial.

The radical R and all members of its central series Ri = [Ri−1, Ri−1] are ϕf -invariant. Thus,
changing A0 into the last non-trivial derived subgroup A1 of R, we have a new exact sequence
1→A1→N →Q→ 1 where A1 is a connected abelian group with an open orbit V ⊂ U .

There are three possibilities for this algebraic group A1: C2, C× C∗, and C∗ × C∗. To finish,
we need to exclude the first two cases. In the first case, A1 = C2, the unique open orbit of A1

in U can be identified to C2 and all elements f of N act by affine automorphisms on V = C2

(with linear part given by ϕf ∈GL(2, C)). In particular, the degree of fn is bounded and G
does not contain any hyperbolic element, contradicting our assumption. In the second case,
A1 = C× C∗. The group of algebraic automorphisms of A1 is made of diagonal transformations
(x, y) 7→ (ax, εy) with a ∈ C∗ and ε=±1; thus, the same argument applies to exclude this case.

As a consequence, A1 = C∗ × C∗ and there is a N -invariant Zariski-open subset V ⊂ Y such
that V is isomorphic to A1 and N acts by regular transformations on V . Since the group of
regular automorphisms of C∗ × C∗ is the semi-direct product of C∗ × C∗ (acting by translations)
and GL(2, Z) (acting by group automorphisms, i.e. by monomial transformations), Theorem A.1
is proved.
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vol. 2008/2009, Astérisque 332 (2010), Exp. No. 998, 11–43.
GT01 D. Gilbarg and N. S. Trudinger, Elliptic partial differential equations of second order, Classics

in Mathematics (Springer, Berlin, 2001).
Gro93 M. Gromov, Asymptotic invariants of infinite groups, in Geometric group theory, Vol. 2

(Sussex, 1991), London Mathematical Society Lecture Note Series, vol. 182 (Cambridge
University Press, Cambridge, 1993).

GP91 M. Gromov and P. Pansu, Rigidity of lattices: an introduction, in Geometric topology: recent
developments (Montecatini Terme, 1990), Lecture Notes in Mathematics, vol. 1504 (Springer,
Berlin, 1991), 39–137.

GS92 M. Gromov and R. Schoen, Harmonic maps into singular spaces and p-adic superrigidity for
lattices in groups of rank one, Publ. Math. Inst. Hautes Études Sci. 76 (1992), 165–246.

JW77 K. D. Johnson and N. R. Wallach, Composition series and intertwining operators for the
spherical principal series. I, Trans. Amer. Math. Soc. 229 (1977), 137–173.

JY91 J. Jost and S. T. Yau, Harmonic maps and group representations, in Differential geometry,
Pitman Monograph Surveys Pure Applied Mathematics, vol. 52 (Longman Scientific and
Technical, Harlow, 1991), 241–259.

JZ00 J. Jost and K. Zuo, Harmonic maps into Bruhat–Tits buildings and factorizations of
p-adically unbounded representations of π1 of algebraic varieties. I, J. Algebra. Geom. 9
(2000), 1–42.

Kar53 F. I. Karpelevic, Surfaces of transitivity of a semisimple subgroup of the group of motions of
a symmetric space, Soviet. Math. Dokl. 93 (1953), 401–404.

182

https://doi.org/10.1112/S0010437X11007068 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X11007068


Kähler groups, real hyperbolic spaces and the Cremona group

Kli10 B. Klingler, Kaehler groups and duality, Preprint (2010), arXiv:1005.2836.
KKM11 B. Klingler, V. Koziarz and J. Maubon, On the second cohomology of Kähler groups, Geom.

Funct. Anal. 21 (2011), 419–442.
Kna01 A. W. Knapp, Representation theory of semisimple groups. An overview based on examples,

Princeton Landmarks in Mathematics (Princeton University Press, Princeton, NJ, 2001),
reprint of the 1986 original.

KS71 A. W. Knapp and E. M. Stein, Intertwining operators for semisimple groups, Ann. of Math.
(2) 93 (1971), 489–578.

KS93 N. Korevaar and R. Schoen, Sobolev spaces and harmonic maps for metric space targets,
Comm. Anal. Geom. 1 (1993), 561–659.

KS97 N. Korevaar and R. Schoen, Global existence theorems for harmonic maps to non-locally
compact spaces, Comm. Anal. Geom. 5 (1997), 333–387.

KM58 J.-L. Koszul and B. Malgrange, Sur certaines structures fibrées complexes, Arch. Math.
(Basel) 9 (1958), 102–109.

KM08 V. Koziarz and J. Maubon, Harmonic maps and representations of non-uniform lattices of
PU(m, 1), Ann. Inst. Fourier (Grenoble) 58 (2008), 507–558.

Man86 Y. Manin, Cubic forms, Algebra, Geometry, Arithmetic, Translated from the Russian by
M. Hazewinkel, North-Holland Mathematical Library, vol. 4, second edition (North-Holland,
Amsterdam, 1986).

Mok88 N. Mok, Strong rigidity of irreducible quotients of polydiscs of finite volume, Math. Ann. 282
(1988), 555–577.

Mok92 N. Mok, Factorization of semisimple discrete representations of Kähler groups, Invent. Math.
110 (1992), 557–614.

Mos55 G. D. Mostow, Some new decomposition theorems for semisimple groups, Mem. Amer. Math.
Soc. 1955 (1955), 31–54.

NR08 T. Napier and M. Ramachandran, Filtered ends, proper holomorphic mappings of Kähler
manifolds to Riemann surfaces and Kähler groups, Geom. Funct. Anal. 17 (2008),
1621–1654.

Nis02 S. Nishikawa, Variational problems in geometry, in Iwanami series in modern mathematics,
Translations of Mathematical Monographs, vol. 205 (American Mathematical Society,
Providence, RI, 2002).

Rez02 A. Reznikov, The structure of Kähler groups, I. Second cohomology, in Motives,
polylogarithms and Hodge theory, part II (Irvine, CA, 1998), International Press Lecture
Series, vol. 3, II (International Press, Sommerville, MA, 2002), 718–730.

Ros56 M. Rosenlicht, Some basic theorems on algebraic groups, Amer. J. Math. 78 (1956), 401–443.
Sal67 P. J. Sally, Analytic continuation of the irreducible unitary representations of the universal

covering group of SL(2,R), Memoirs of the American Mathematical Society, vol. 69
(American Mathematical Society, Providence, RI, 1967).

Sal70 P. J. Sally, Intertwining operators and the representations of SL(2,R), J. Funct. Anal. 6
(1970), 441–453.

Sam78 J. H. Sampson, Some properties and applications of harmonic mappings, Ann. Sci. Éc. Norm.
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