
2
Heavy quarks

The light u, d, and s quarks have masses mq that are small compared to the scale
of nonperturbative strong dynamics. Consequently, it is a good approximation to
take the mq → 0 limit of QCD. In this limit QCD has an SU(3)L × SU(3)R chiral
symmetry, which can be used to predict some properties of hadrons containing
these light quarks. For quarks with masses m Q that are large compared with the
scale of nonperturbative strong dynamics, it is a good approximation to take the
m Q → ∞ limit of QCD. In this limit QCD has spin-flavor heavy quark symmetry,
which has important implications for the properties of hadrons containing a single
heavy quark.

2.1 Introduction

The QCD Lagrangian in Eq. (1.82) describes the strong interactions of light
quarks and gluons. As discussed in Sec. 1.4, there is a nonperturbative scale
�QCD that is dynamically generated by QCD. A color singlet state, such as
a meson made up of a quark–antiquark pair, is bound by the nonperturbative
gluon dynamics. If the quarks are light, the typical size of such a system is
of the order of �−1

QCD. Consider a Qq̄ meson that contains a heavy quark with
mass m Q � �QCD, and a light quark with mass mq � �QCD. Such a heavy-light
meson also has a typical size of the order of �−1

QCD, as for mesons containing
only light quarks. The typical momentum transfer between the heavy and light
quarks in the Qq̄ meson arising from nonperturbative QCD dynamics is of the
order of �QCD. An important consequence of this fact is that the velocity v

of the heavy quark is almost unchanged by such strong interaction effects, even
though the momentum p of the heavy quark changes by an amount of the order of
�QCD, since �v = �p/m Q . A similar argument holds for any hadron containing
a single heavy quark Q.

In the limit m Q → ∞, the heavy quark in the meson can be labeled by a velocity
four-vectorv that does not change with time. The heavy quark behaves like a static

44
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external source that transforms as a color triplet, and the meson dynamics reduces
to that of light degrees of freedom interacting with this color source. One sees
immediately that the mass of the heavy quark is completely irrelevant in the limit
m Q → ∞, so that all heavy quarks interact in the same way within heavy mesons.
This leads to heavy quark flavor symmetry: the dynamics is unchanged under
the exchange of heavy quark flavors. The 1/m Q corrections take into account
finite mass effects and differ for quarks of different masses. As a result, heavy
quark flavor symmetry breaking effects are proportional to (1/m Qi − 1/m Q j ),
where Qi and Q j are any two heavy quark flavors. The only strong interaction
of a heavy quark is with gluons, as there are no quark–quark interactions in
the Lagrangian. In the m Q → ∞ limit, the static heavy quark can only interact
with gluons via its chromoelectric charge. This interaction is spin independent.
This leads to heavy quark spin symmetry: the dynamics is unchanged under
arbitrary transformations on the spin of the heavy quark. The spin-dependent
interactions are proportional to the chromomagnetic moment of the quark, and
so are of the order of 1/m Q . Heavy quark spin symmetry breaking does not
have to be proportional to the difference of 1/m Q’s, since the spin symmetry is
broken even if there are two heavy quarks with the same mass. The heavy quark
SU(2) spin symmetry and U(Nh) flavor symmetries (for Nh heavy flavors) can
be embedded into a larger U(2Nh) spin-flavor symmetry in the m Q → ∞ limit.
Under this symmetry the 2Nh states of the Nh heavy quarks with spin up and
down transform as the fundamental representation. We will see in Sec. 2.6 that the
effective Lagrangian can be written in a way that makes this symmetry manifest.

2.2 Quantum numbers

Heavy hadrons contain a heavy quark as well as light quarks and/or antiquarks
and gluons. All the degrees of freedom other than the heavy quark are referred
to as the light degrees of freedom �. For example, a heavy Qq̄ meson has an
antiquark q̄, gluons, and an arbitrary number of q̄q pairs as the light degrees of
freedom. Although the light degrees of freedom are some complicated mixture
of the antiquark q̄ , gluons, and q̄q pairs, they must have the quantum numbers of
a single antiquark q̄. The total angular momentum of the hadron J is a conserved
operator. We have also seen that the spin of the heavy quark SQ is conserved
in the m Q → ∞ limit. Therefore, the spin of the light degrees of freedom S�

defined by

S� ≡ J − SQ (2.1)

is also conserved in the heavy quark limit. The light degrees of freedom in a
hadron are quite complicated and include superpositions of states with different
particle numbers. Nevertheless, the total spin of the light degrees of freedom is a
good quantum number in heavy hadrons. We will define the quantum numbers j ,
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Ds
+, Ds
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D0, D*0

cu
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cd

Fig. 2.1. Flavor SU(3) weight diagram for the spin-0 pseudoscalar and spin-1 vector
cq̄ mesons. The corresponding bq̄ mesons are the B̄0

s , B̄−, and B̄0, and their spin-1
partners. The vertical direction is hypercharge, and the horizontal direction is I3, the
third component of isospin.

sQ , and s� as the eigenvalues J2 = j ( j + 1), S2
Q = sQ(sQ+1), and S2

� = s� (s� + 1)
in the state H (Q). Heavy hadrons come in doublets (unless s� = 0) containing
states with total spin j± = s� ± 1/2 obtained by combining the spin of the light
degrees of freedom with the spin of the heavy quark sQ = 1/2. These doublets are
degenerate in the m Q → ∞ limit. If s� = 0, there is only a single j = 1/2 hadron.

Mesons containing a heavy quark Q are made up of a heavy quark and a light
antiquark q̄ (plus gluons and qq̄ pairs). The ground state mesons are composed
of a heavy quark with sQ = 1/2 and light degrees of freedom with s� = 1/2,
forming a multiplet of hadrons with spin j = 1/2 ⊗ 1/2 = 0 ⊕ 1 and negative
parity, since quarks and antiquarks have opposite intrinsic parity. These states
are the D and D∗ mesons if Q is a charm quark, and the B̄ and B̄∗ mesons if
Q is a b quark. The field operators which annihilate these heavy quark mesons
with velocity v are denoted by P (Q)

v and P∗(Q)
vμ , respectively. The light antiquark

can be either a ū, d̄ , or s̄ quark, so each of these heavy meson fields form a 3̄
representation of the light quark flavor group SU(3)V . The SU(3) weight diagram
for the 3̄ mesons is shown in Fig. 2.1.

In the nonrelativistic constituent quark model, the first excited heavy meson
states have a unit of orbital angular momentum between the constituent antiquark
and the heavy quark. These L = 1 mesons have s� = 1/2 or 3/2, depending on
how the orbital angular momentum is combined with the antiquark spin. The
s� = 1/2 mesons form multiplets of spin parity 0+ and 1+ states named (for
Q = c) D∗

0 and D∗
1 , and the s� = 3/2 mesons form multiplets of 1+ and 2+ states

named (for Q = c) D1 and D∗
2 . Properties of the s� = 1/2 and s� = 3/2 states are

related in the nonrelativistic constituent quark model, but not by heavy quark
symmetry.

Baryons containing a heavy quark consist of a heavy quark and two light
quarks, plus gluons and qq̄ pairs. The lowest-lying baryons have s� = 0 and
s� = 1 and form 3̄ and 6 representations of SU(3)V , which are shown in Figs. 2.2
and 2.3, respectively. We can easily understand this pattern in the nonrelativistic
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Fig. 2.2. Flavor SU(3) weight diagram for the 3̄ spin-1/2 c [qq] baryons. The corres-
ponding b [qq] baryons are the �0

b, �−
b and �0

b. The vertical direction is hypercharge,
and the horizontal direction is I3, the third component of isospin.

Σc
0, Σc

*0

cdd

Σc
+, Σc

*+

cud

Σc
++, Σc

*++

cuu

Ξc′ 0, Ξc
*0

cds

Ξc′ +, Ξc
*+

cus

Ωc
0, Ωc
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Fig. 2.3. Flavor SU(3) weight diagram for the 6 spin-1/2 and spin-3/2 c (qq) baryons.
The corresponding b (qq) baryons are the spin-1/2 �

−,0,+
b , �

′−,0
b , and �−

b , and their
spin-3/2 partners. The vertical direction is hypercharge, and the horizontal direction is
I3, the third component of isospin.

constituent quark model. In this model the ground-state baryons have no orbital
angular momentum and the spatial wave function for the two light constituent
quarks is symmetric under their interchange. The wave function is also com-
pletely antisymmetric in color. Fermi statistics then demands that for s� = 0,
where the spin wave function is antisymmetric, the SU(3)V flavor wave func-
tion is also antisymmetric, and hence transforms as (3 × 3)antisymmetric = 3̄. For
s� = 1, the SU(3)V flavor wave function is symmetric and hence transforms as
(3 × 3)symmetric = 6. The s� = 0 ground-state baryons have positive parity and
total spin of 1/2, and the spinor fields that destroy these states are denoted by
�

(Q)
v . The s� = 1 ground-state baryons have positive parity and come in a doublet

of states with total spins of 1/2, and 3/2. We denote the fields that destroy these
states by �

(Q)
v and �

∗(Q)
vμ , respectively. The spectrum of excited baryons is more
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complicated than in the meson sector. In the nonrelativistic constituent quark
model, the L = 1 baryons come in two types; states with the unit of orbital angu-
lar momentum between the two light quarks, and states with the unit of orbital
angular momentum between the light quark pair and the heavy quark. The latter
are expected to be lower in mass. The lowest-mass hadrons containing c and b
quarks are summarized in Tables 2.1 and 2.2, respectively.

2.3 Strong decays of excited heavy hadrons

In many cases the two members of a doublet with spin of the light degrees of
freedom s� can decay by means of a single pion emission to the two members
of another lower-mass doublet with spin of the light degrees of freedom s ′

�. The
orbital angular momentum of the emitted pion (L , Lz) is restricted by parity,
angular momentum conservation, and heavy quark spin symmetry. For a given
pion partial wave there are four transition amplitudes that are related by heavy
quark spin symmetry, e.g., the four amplitudes for (D1, D∗

2) → (D, D∗) + π .
It is an instructive exercise to derive these symmetry relations. The derivation
only makes use of the standard formula for the addition of angular momenta in
quantum mechanics. The first step is to decompose the total angular momentum
of the initial and final heavy hadron states j and j ′ into the spin of the initial and
final heavy quark sQ and s ′

Q , and the spin of the initial and final light degrees
of freedom s� and s ′

�. Using the Clebsch-Gordan decomposition of | j, jz〉 into
|1

2 , sQz 〉 and |s�, s�z 〉,
| j, jz〉 =

∑
sQz ,s�z

〈1
2 , sQz ; s�, s�z

∣∣ j, jz
〉∣∣ 1

2 , sQz

〉∣∣s�, s�z

〉
, (2.2)

and the corresponding decomposition of | j ′, j ′
z〉 into |1

2 , s ′
Qz

〉 and |s ′
�, s ′

�z
〉, the

transition amplitude can be written in the form

M [
H (Q)( j, jz) → H (Q)( j ′, j ′

z) + π (L , Lz)
]

= 〈π (L , Lz) ; j ′, j ′
z|Heff| j, jz〉

=
∑〈

π (L , Lz) ; 1
2 , s ′

Qz; s ′
�, s ′

�z

∣∣ Heff
∣∣ 1

2 , sQz; s�, s�z
〉

× 〈1
2 , s ′

Qz; s ′
�, s ′

�z

∣∣ j ′, j ′
z

〉 〈 1
2 , sQz; s�, s�z

∣∣ j, jz
〉
. (2.3)

Eq. (2.3) is schematic and only keeps track of the group theory factors. The
effective strong interaction Hamiltonian, Heff, conserves the spin of the heavy
quark and of the light degrees of freedom separately. The Wigner-Eckart theorem
then implies that the hadronic matrix element must have the form〈

π (L , Lz) ; 1
2 , s ′

Qz; s ′
�, s ′

�z

∣∣ Heff
∣∣1

2 , sQz; s�, s�z
〉

= δsQz,s′
Qz

〈L , Lz; s ′
�, s ′

�z|s�, s�z〉〈L , s ′
� ‖ Heff ‖ s�〉, (2.4)
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Table 2.1. The lowest-mass hadrons containing a
c quarka

Mass Quark
Hadron (MeV) Content J P s�

D+

D∗+
1869.3 ± 0.5

2010.0 ± 0.5
cd̄

0−

1− 1/2

D0

D∗0

1864.6 ± 0.5

2006.7 ± 0.5
cū

0−

1− 1/2

D+
s

D∗+
s

1968.5 ± 0.6

2112.4 ± 0.7
cs̄

0−

1− 1/2

D∗
0

D∗
1 2461 ± 50

cq̄
0+

1+ 1/2

D1

D∗
2

2422.2 ± 1.8

2458.9 ± 2.0
cq̄

1+

2+ 3/2

�+
c 2284.9 ± 0.6 c[ud] 1/2+ 0

�+
c 2465.6 ± 1.4 c[us] 1/2+ 0

�0
c 2470.3 ± 1.8 c[ds] 1/2+ 0

�++
c

�∗++
c

2452.8 ± 0.6

2519.4 ± 1.5
c(uu)

1/2+

3/2+ 1

�+
c

�∗+
c

2453.6 ± 0.9
c(ud)

1/2+

3/2+ 1

�0
c

�∗0
c

2452.2 ± 0.6

2517.5 ± 1.4
c(dd)

1/2+

3/2+ 1

�′+
c

�∗+
c

2573.4 ± 3.3

2644.6 ± 2.1
c(us)

1/2+

3/2+ 1

�′0
c

�∗0
c

2577.3 ± 3.4

2643.8 ± 1.8
c(ds)

1/2+

3/2+ 1

�0
c

�∗0
c

2704 ± 4
c(ss)

1/2+

3/2+ 1

a Heavy quark spin symmetry multiplets are listed together.
For the excited mesons, the masses quoted correspond to
q = u, d. Excited charm masses with quark content cs̄ and
excited charm baryons have also been observed.
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Table 2.2. The lowest-mass hadrons containing a
b quarka

Mass Quark
Hadron (MeV) Content J P s�

B̄0

B̄∗0

5279.2 ± 1.8

5324.9 ± 1.8
bd̄

0−

1− 1/2

B̄−

B̄∗−
5278.9 ± 1.8

5324.9 ± 1.8
bū

0−

1− 1/2

B̄0
s

B̄∗0
s

5369.3 ± 2.0
bs̄

0−

1− 1/2

B̄∗
0

B̄∗
1

bq̄
0+

1+ 1/2

B̄1

B̄∗
2

bq̄
1+

2+ 3/2

�0
b 5624 ± 9 b[ud] 1/2+ 0

�0
b b[us] 1/2+ 0

�−
b b[ds] 1/2+ 0

�+
b

�∗+
b

b(uu)
1/2+

3/2+ 1

�0
b

�∗0
b

b(ud)
1/2+

3/2+ 1

�−
b

�∗−
b

b(dd)
1/2+

3/2+ 1

�′0
b

�∗0
b

b(us)
1/2+

3/2+ 1

�′−
b

�∗−
b

b(ds)
1/2+

3/2+ 1

�−
b

�∗−
b

b(ss)
1/2+

3/2+ 1

a Heavy quark spin symmetry multiplets are listed together.
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where the final term is the reduced matrix element. Substituting into Eq. (2.3)
yields

M =
∑〈1

2 , sQz; s�, s�z

∣∣ j, jz
〉〈L , s ′

� ‖ Heff ‖ s�〉
× 〈1

2 , sQz; s ′
�, s ′

�z

∣∣ j ′, j ′
z

〉 〈
L , Lz; s ′

�, s ′
�z

∣∣ s�, s�z
〉

= (−1)L+s′
�+ 1

2 + j
√

(2s� + 1)(2 j ′ + 1)

{
L s ′

� s�

1
2 j j ′

}

×〈L , ( jz − j ′
z); j ′, j ′

z| j, jz〉〈L , s ′
� ‖ Heff ‖ s�〉, (2.5)

where we have rewritten the product of Clebsch-Gordan coefficients in terms of
6 j symbols. The total decay rate for j → j ′ is given by

�( j → j ′π ) ∝ (2s� + 1)
2 j ′ + 1

2 j + 1

∑
jz, j ′

z

∣∣∣∣∣
{

L s ′
� s�

1
2 j j ′

}∣∣∣∣∣
2

|〈L , ( jz − j ′
z); j ′, j ′

z| j, jz〉|2

= (2s� + 1)(2 j ′ + 1)

∣∣∣∣∣
{

L s ′
� s�

1
2 j j ′

}∣∣∣∣∣
2

, (2.6)

where we have dropped terms, such as the reduced matrix element, which are the
same for different values of j and j ′. Equation (2.6) provides relations between
the decay rates of the excited s� = 3/2 D1 and D∗

2 mesons to the ground state
s� = 1/2 D or D∗ mesons and a pion. These two multiplets have opposite parity
and the pion has negative parity, so the pion must be in an even partial wave with
L = 0 or 2 by parity and angular momentum conservation. The decays D∗

2 → Dπ

and D∗
2 → D∗π must occur through the L = 2 partial wave, while D1 → D∗π

can occur by either the L = 0 or L = 2 partial wave. The L = 0 partial wave
amplitude for D1 → D∗π vanishes by heavy quark symmetry since{

0 1/2 3/2
1/2 1 1

}
= 0, (2.7)

so that all the decays are L = 2. Equation (2.6) implies that the L = 2 decay
rates are in the ratio

�(D1 → Dπ ) : �(D1 → D∗π ) : �(D∗
2 → Dπ ) : �(D∗

2 → D∗π )

0 : 1 : 2
5 : 3

5

, (2.8)

where �(D1 → Dπ ) is forbidden by angular momentum and parity conservation.
Equation (2.8) holds in the heavy quark symmetry limit, mc → ∞. There is
a very important source of heavy quark spin symmetry violation that is kine-
matic in origin. For small pπ , the decay rates are proportional to |pπ |2L+1,
which for L = 2 is |pπ |5. In the mc → ∞ limit the D1 and D∗

2 are degenerate
and the D and D∗ are also degenerate. Consequently this factor does not af-
fect the ratios in Eq. (2.8). However, for the physical value of mc, the D∗ − D
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mass splitting is ∼140 MeV, which cannot be neglected in comparison with the
450 MeV D∗

2 − D∗ splitting. Including the factor of |pπ |5, the relative decay rates
become

�(D1 → Dπ ) : �(D1 → D∗π ) : �(D∗
2 → Dπ ) : �(D∗

2 → D∗π )

0 : 1 : 2.3 : 0.92
. (2.9)

As a consequence of Eq. (2.9) we arrive at the prediction BR(D∗
2 → Dπ )/BR

(D∗
2 → D∗π ) � 2.5, which is in good agreement with the experimental value

2.3 ± 0.6. The prediction for this ratio of branching ratios would have been 2/3
without including the phase space correction factor.

Phenomenologically, the suppression associated with emission of a low-
momentum pion in a partial wave L is ∼(|pπ |/�CSB)2L+1. The fact that the
scale �CSB ∼ 1 GeV enables us to understand why the doublet of D∗

0 and D∗
1

excited s� = 1/2 mesons is difficult to observe. For these mesons, heavy quark
spin symmetry predicts that their decays to the ground-state doublet by single
pion emission occur in the L = 0 partial wave. The masses of the (D∗

0 , D∗
1) are

expected to be near the masses of the (D1, D∗
2), and so their widths are larger

than those of the D1 and D∗
2 by roughly (�CSB/|pπ |)4 ∼ 20–40. The D1 and D∗

2
widths are �(D1) = 18.9 ± 4 MeV and �(D∗

2) = 23 ± 5 MeV. Hence the D∗
0,1

should be broad, with widths greater than 200 MeV, which makes them difficult
to observe. The measured width of the D∗

1 is 290 ± 100 MeV.
The excited positive parity s� = 3/2 mesons Ds1 and D∗

s2, which contain
a strange antiquark, have also been observed. The Ds1 is narrow, �(Ds1) <

2.3 MeV, and its decays to D∗K are dominated by the S-wave amplitude. This
occurs because the kaon mass is much larger than the pion mass, and so for
this decay |pK | � 150 MeV while in D1 → D∗π decay |pπ | � 360 MeV. Con-
sequently, there is a large kinematic suppression of the D-wave amplitude in
Ds1 → D∗K decay. The s� = 1/2 and s� = 3/2 charmed mesons are in a 3̄ of
SU(3)V , whereas the π , K , and η are in an 8. Since there is only one way to
combine a 3, 3̄, and 8 into a singlet, SU(3)V relates the S-wave part of the D1

decay width to the Ds1 decay width. Neglecting η final states, which are phase
space suppressed, SU(3)V light quark symmetry leads to the expectation that
�S−wave (D1) ≈ (3/4)�(Ds1) × |pπ |/|pK | < 4.1 MeV.

2.4 Fragmentation to heavy hadrons

A heavy quark produced in a high-energy process will materialize as a hadron
containing that heavy quark. Once the “off-shellness” of the fragmenting heavy
quark is small compared with its mass, the fragmentation process is constrained
by heavy quark symmetry. Heavy quark symmetry implies that the probabil-
ity, P (H )

hQ → hs
, for a heavy quark Q with spin along the fragmentation axis (i.e.,
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helicity) hQ to fragment to a hadron H with spin s, spin of the light degrees of
freedom s�, and helicity hs is

P (H )
hQ → hs

=
∑
h�

PQ → s�
ph�

|〈sQ, hQ ; s�, h�|s, hs〉|2, (2.10)

where h� = hs − hQ . In Eq. (2.10) PQ → s�
is the probability for the heavy quark to

fragment to a hadron with spin of the light degrees of freedom s�. This probability
is independent of the spin and flavor of the heavy quark but will depend on other
quantum numbers needed to specify the hadron H . PQ → s�

has the same value
for the two hadrons in the doublet related by heavy quark spin symmetry. ph�

is the conditional probability that the light degrees of freedom have helicity h�,
given that Q fragments to s�. The probabilistic interpretation of the fragmentation
process means that 0 ≤ ph�

≤ 1 and∑
h�

ph�
= 1. (2.11)

Like PQ → s�
, ph�

is independent of the spin and flavor of the heavy quark, but
can depend on the hadron multiplet. The third factor in Eq. (2.10) is the Clebsch-
Gordan probability that the hadron H with helicity hs contains light degrees of
freedom with helicity h� and a heavy quark with helicity hQ . Parity invariance
of the strong interactions implies that

ph�
= p−h�

, (2.12)

since reflection in a plane containing the momentum of the fragmenting quark
reverses the helicities but leaves the momentum unchanged. Equations (2.11)
and (2.12) imply that the number of independent probabilities ph�

is s� − 1/2 for
mesons and s� for baryons. At the hadron level, parity invariance of the strong
interactions gives the relation P (H )

hQ → hs
= P (H )

−hQ → −hs
.

Heavy quark spin symmetry has reduced the number of independent frag-
mentation probabilities. For the ground-state D and D∗ mesons, s� = 1/2, so
p1/2 = p−1/2, which must both equal 1/2, since p1/2 + p−1/2 = 1. This gives
the relative fragmentation probabilities for a right-handed charm quark,

P (D)
1/2 → 0 : P (D∗)

1/2 → 1 : P (D∗)
1/2 → 0 : P (D∗)

1/2 → −1

1/4 : 1/2 : 1/4 : 0
. (2.13)

Parity invariance of the strong interactions relates the fragmentation probabilities
for a left-handed charm quark to those in Eq. (2.13). Heavy quark spin symmetry
implies that a charm quark fragments to a D one-third as often as it fragments to
a D∗. This prediction disagrees with the experimental data, which give a larger
fragmentation probability for the D, and the discrepancy is due to the D∗ − D
mass difference. We have already seen that the mass difference has an important
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impact on decays of excited charm mesons to the D and D∗ and it is not surprising
that the mass difference should influence the fragmentation probabilities as well.
The B∗ − B mass difference is 50 MeV, which is approximately a factor of 3
smaller than the D∗ − D mass difference, so one expects the predictions of exact
heavy quark symmetry to work better in this case. Recent experimental data from
LEP show that the B∗ : B ratio is consistent with the predicted value of 3 : 1.

Charm quark fragmentation to the negative parity s� = 3/2 multiplet of excited
charmed mesons is characterized by the Falk-Peskin parameter w3/2, defined as
the conditional probability to fragment to helicities ±3/2,

p3/2 = p−3/2 = 1
2w3/2, p1/2 = p−1/2 = 1

2 (1 − w3/2). (2.14)

The value of p±1/2 is determined in terms of w3/2 since the total fragmentation
probability must be unity. The relative fragmentation probabilities are given by
Eq. (2.10):

P (D1)
1/2 → 1 : P (D1)

1/2 → 0 : P (D1)
1/2 → −1 : P

(D∗
2 )

1/2 → 2 :

1
8 (1 − w3/2) : 1

4 (1 − w3/2) : 3
8w3/2 : 1

2w3/2 :
(2.15)

P
(D∗

2 )
1/2 → 1 : P

(D∗
2 )

1/2 → 0 : P
(D∗

2 )
1/2 → −1 : P

(D∗
2 )

1/2 → −2

3
8 (1 − w3/2) : 1

4 (1 − w3/2) : 1
8w3/2 : 0

.

Equation (2.15) predicts that the ratio of D1 to D∗
2 production by charm quark

fragmentation is 3/5, independent of w3/2. Assuming that the decays of the
negative parity s� = 3/2 charmed mesons are dominated by D(∗)π final states, the
experimental value of this ratio is close to unity. Experimentally the probability
of a heavy quark to fragment to the maximal helicities ±3/2 is small, i.e.,
w3/2 < 0.24.

The validity of Eq. (2.10) depends on a crucial assumption. Spin symmetry
violation must be negligible in the masses and decays of excited multiplets
that can be produced in the fragmentation process and then decay to the final
fragmentation product. The spin symmetry violating D1 − D∗

2 mass difference
is comparable with the widths of these states, and the spin symmetry violating
D∗ − D mass difference plays an important role in their decay rates to D and
D∗’s. Consequently we do not expect Eq. (2.13) to hold for those D and D∗’s
that arise from decays of a D1 or D∗

2 .

2.5 Covariant representation of fields

We have seen that heavy quark symmetry usually implies a degenerate multiplet
of states, such as the B and B∗. It is convenient to have a formalism in which the
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entire multiplet of degenerate states is treated as a single object that transforms
linearly under the heavy quark symmetries.

The ground-state Qq̄ mesons can be represented by a field H (Q)
v that annihi-

lates the mesons, and transforms as a bilinear under Lorentz transformations,

H (Q)′
v′ (x ′) = D (�) H (Q)

v (x) D (�)−1 , (2.16)

where

v′ = �v, x ′ = �x, (2.17)

and D (�) is the Lorentz transformation matrix for spinors, so that

H (Q)
v (x) → H (Q)′

v (x) = D (�) H (Q)
�−1v

(�−1x)D (�)−1 . (2.18)

The field H (Q)
v (x) is a linear combination of the pseudoscalar field P (Q)

v (x) and
the vector field P∗(Q)

vμ (x) that annihilate the s� = 1/2 meson multiplet. Vector
particles have a polarization vector εμ, with ε · ε = −1, and v · ε = 0. The am-
plitude for P∗(Q)

vμ to annihilate a vector particle is εμ. A simple way to combine
the two fields into a single field with the desired transformation properties is to
define∗

H (Q)
v = 1 + /v

2

[
/P∗(Q)
v + i P (Q)

v γ5
]
. (2.19)

Equation (2.19) is consistent with P (Q)
v transforming as a pseudoscalar, and P∗(Q)

vμ

as a vector, since γ5 and γ μ convert pseudoscalars and vectors into bispinors.
The

(
1 + /v

)
/2 projector retains only the particle components of the heavy quark

Q. The relative sign and phase between the P and P∗ terms in Eq. (2.19) is
arbitrary, and this depends on the choice of phase between the pseudoscalar and
vector meson states. The pseudoscalar is multiplied by γ5 rather than unity, to
be consistent with the parity transformation law

H (Q)
v (x) → γ 0 H (Q)

vP
(xP ) γ 0, (2.20)

where

xP = (x0, −x), vP = (v0, −v). (2.21)

The field H (Q)
v satisfies the constraints

/vH (Q)
v = H (Q)

v , H (Q)
v /v = −H (Q)

v . (2.22)

The first of these follows directly from /v
(
1 + /v

) = (
1 + /v

)
. The second relation

follows by anticommuting /v through H (Q)
v , and using v · P∗(Q)

v = 0, since the
polarization of physical spin-one particles satisfies v · ε = 0.

∗ For clarity, the superscript (Q) and/or the subscript v will sometimes be omitted.
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It is convenient to introduce the conjugate field

H̄ (Q)
v = γ 0 H (Q)†

v γ 0 = [
P∗(Q)†

vμ γ μ + iP (Q)
v

†
γ5
]1 + /v

2
, (2.23)

which also transforms as a bispinor,

H̄ (Q)
v (x) → D(�) H̄ (Q)

�−1v
(�−1x)D(�)−1 , (2.24)

since

γ 0 D(�)† γ 0 = D(�)−1 . (2.25)

In the rest frame

v = vr = (1, 0) (2.26)

the field H (Q)
vr is

H (Q)
vr

=
⎛
⎝ 0 iP (Q)

vr − σ · P∗(Q)
vr

0 0

⎞
⎠ , (2.27)

using the Bjorken and Drell convention for γ matrices,

γ 0 =
(

1 0
0 −1

)
, γ =

(
0 σ

−σ 0

)
, γ5 =

(
0 1
1 0

)
. (2.28)

The indices α and β of the field [H (Q)
vr ]αβ label the spinor indices of the heavy

quark Q and the light degrees of freedom, respectively. The field H (Q)
vr transforms

as a (1/2, 1/2) representation under SQ ⊗ S�. The spin operators SQ and S� for
the heavy quark and light degrees of freedom acting on the H (Q)

vr field are[
SQ, H (Q)

vr

] = 1
2σ4 × 4 H (Q)

vr
,

(2.29)[
S�, H (Q)

vr

] = −1
2 H (Q)

vr
σ4 × 4,

where σ i
4×4 = iεi jk[γ j , γ k]/4 are the usual Dirac rotation matrices in the spinor

representation. Under infinitesimal rotations, one finds (neglecting derivative
terms that arise from rotating the spatial dependence of the fields) that

δH (Q)
vr

= i
[
θ · (SQ + S�), H (Q)

vr

] = i

2

[
θ ·σ4×4, H (Q)

vr

]
, (2.30)

so that

δP (Q)
vr

= 0, δP∗(Q)
vr

= θ × P∗(Q)
vr

, (2.31)

which are the transformation rules for a spin-zero and spin-one particle, respec-
tively. The fields P (Q)

v and P∗(Q)
vμ mix under SQ or S� transformations. Under
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heavy quark spin transformations,

δH (Q)
vr

= i
[
θ · SQ, H (Q)

vr

] = i

2
θ ·σ4×4 H (Q)

vr
, (2.32)

so that

δP (Q)
vr

= − 1
2θ · P∗(Q)

vr
, δP∗(Q)

vr
= 1

2θ × P∗(Q)
vr

− 1
2θP (Q)

vr
. (2.33)

Under finite heavy quark spin transformations,

H (Q)
v → D(R)Q H (Q)

v , (2.34)

where D(R)Q is the rotation matrix in the spinor representation for the rotation
R. Like the Lorentz transformations, it satisfies γ 0 D(R)†Qγ 0 = D(R)−1

Q .
It is straightforward to write couplings that are invariant under the heavy quark

symmetry using the field H (Q)
v and its transformation rules. We have concentrated

on the heavy quark spin symmetry, because that is the new ingredient in the
formalism. One can also implement the heavy quark flavor symmetry by using
fields H (Qi )

v for each heavy quark flavor Qi , and also imposing heavy flavor
symmetry

H (Qi )
v → Ui j H

(Q j )
v , (2.35)

where Ui j is an arbitrary unitary matrix in flavor space.
We have seen how to use a covariant formalism for the pseudoscalar and vector

meson multiplet. It is straightforward to derive a similar formalism for baryon
states. For example the �Q baryon has light degrees of freedom with spin zero,
so the spin of the baryon is the spin of the heavy quark. It is described by a spinor
field �

(Q)
v (x) that satisfies the constraint

/v�(Q)
v = �(Q)

v , (2.36)

transforms under the Lorentz group as†

�(Q)
v (x) → D(�) �

(Q)
�−1v

(�−1x), (2.37)

and transforms under heavy quark spin transformations as

�(Q)
v → D(R)Q�(Q)

v . (2.38)

The analog of the polarization vector for spin-1/2 �Q states with velocity v and
spin s is the spinor u(v, s). These spinors will be normalized so that

ū(v, s)γ μu(v, s) = 2vμ. (2.39)

† We hope the reader is not confused by the use of � for both the Lorentz transformation and the heavy baryon
field.
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Then

ū(v, s)γ μγ5u(v, s) = 2sμ, (2.40)

where sμ is the spin vector, satisfying v · s = 0 and s2 = −1. The field �
(Q)
v

annihilates heavy baryon states with amplitude u(v, s).

2.6 The effective Lagrangian

The QCD Lagrangian does not have manifest heavy quark spin-flavor symmetry
as m Q → ∞. It is convenient to use an effective field theory for QCD in which
heavy quark symmetry is manifest in the m Q → ∞ limit. This effective field
theory is known as heavy quark effective theory (HQET), and it describes the
dynamics of hadrons containing a single heavy quark. It is a valid description of
the physics at momenta much smaller than the mass of the heavy quark m Q . The
effective field theory is constructed so that only inverse powers of m Q appear in
the effective Lagrangian, in contrast to the QCD Lagrangian in Eq. (1.82), which
has positive powers of m Q .

Consider a single heavy quark with velocity v interacting with external fields,
where the velocity of an on-shell quark is defined by p = m Qv. The momentum of
an off-shell quark can be written as p = m Qv + k, where the residual momentum
k determines the amount by which the quark is off shell because of its interactions.
For heavy quarks in a hadron, k is of the order of �QCD. The usual Dirac quark
propagator simplifies to

i
/p + m Q

p2 − m2
Q + iε

= i
m Q/v + m Q + k/

2m Qv · k + k2 + iε
→ i

1 + /v

2v · k + iε
(2.41)

in the heavy quark limit. The propagator contains a velocity-dependent projection
operator

1 + /v

2
. (2.42)

In the rest frame of the heavy quark this projection operator becomes (1+γ 0)/2,
which projects onto the particle components of the four-component Dirac spinor.

It is convenient to formulate the effective Lagrangian directly in terms of
velocity-dependent fields Qv(x), which are related to the original quark fields
Q(x) at tree level. One can write the original quark field Q(x) as

Q (x) = e−im Qv · x [Qv(x) + Qv(x)] , (2.43)

where

Qv(x) = eim Qv · x 1 + /v

2
Q(x) , Qv(x) = eim Qv · x 1 − /v

2
Q(x) . (2.44)
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The exponential prefactor subtracts m Qvμ from the heavy quark momentum. The
Qv field produces effects at leading order, whereas the effects of Qv are sup-
pressed by powers of 1/m Q . These 1/m Q corrections are discussed in Chapter 4.
Neglecting Qv and substituting Eq. (2.43) into the part of the QCD Lagrangian
density involving the heavy quark field, Q̄(i /D−m Q)Q gives Q̄vi /DQv. Inserting
(1 + /v)/2 on either side of /D yields

L = Q̄v (iv · D) Qv, (2.45)

which is an m Q-independent expression. The Qv propagator that follows from
Eq. (2.45) is (

1 + /v

2

)
i

(v · k + iε)
, (2.46)

which is the same as was derived previously by taking the m Q → ∞ limit of the
Feynman rules. The projector in Eq. (2.46) arises because Qv satisfies(

1 + /v

2

)
Qv = Qv. (2.47)

Beyond tree level, there is no simple connection between the fields Qv of
the effective Lagrangian and Q of the QCD theory. The effective theory is con-
structed by making sure that on-shell Green’s functions in the effective theory
are equal to those in QCD to a given order in 1/m Q and αs(m Q). At tree level,
we have seen that the quark propagator in the effective theory matches that in
the full theory up to terms of the order of 1/m Q . It remains to show that the
gluon interaction vertex is the same in the two theories. Consider a generic
gluon interaction, as shown in Fig. 2.4. The interaction vertex in the full theory
is −igT Aγ μ, whereas in the effective theory, the vertex is −igT Avμ from the
v · D term in Eq. (2.45). The vertex in the full theory is sandwiched between
quark propagators. Each heavy quark propagator is proportional to

(
1 + /v

)
/2,

so the factor of γ μ in the vertex can be replaced by

γ μ → 1 + /v

2
γ μ 1 + /v

2
= vμ 1 + /v

2
→ vμ, (2.48)

which gives the same vertex as in the effective theory. Thus the effective
Lagrangian in Eq. (2.45) reproduces all the Green’s functions in the full the-
ory to leading order in 1/m Q and αs(m Q). If there is more than one heavy quark

Fig. 2.4. The quark–gluon vertex.
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flavor, the effective Lagrangian at leading order in 1/m Q is

Leff =
Nh∑

i = 1

Q̄(i)
v (iv · D) Q(i)

v , (2.49)

where Nh is the number of heavy quark flavors and all the heavy quarks have the
same four-velocity v. The effective Lagrangian in Eq. (2.49) does not depend
on the masses or spins of the heavy quarks, and so has a manifest U(2Nh) spin-
flavor symmetry under which the 2Nh quark fields transform as the fundamental
2Nh-dimensional representation. There are only 2Nh independent components
in the Nh fields Q(i)

v , because the constraint in Eq. (2.47) eliminates two of the
four components in each Q(i)

v spinor field.

2.7 Normalization of states

The standard relativistic normalization for hadronic states is

〈H (p′)|H (p)〉 = 2Ep (2π )3 δ3(p − p′), (2.50)

where Ep =
√

|p|2 + m2
H . States with the normalization in Eq. (2.50) have mass

dimension −1. In HQET, hadron states are labeled by a four-velocity v and a
residual momentum k satisfying v · k = 0. These states are defined by using the
HQET Lagrangian in the m Q → ∞ limit. They differ from full QCD states by
1/m Q corrections and a normalization factor. The normalization convention in
HQET is

〈H (v′, k ′)|H (v, k)〉 = 2v0 δvv′ (2π )3 δ3(k − k′). (2.51)

Possible spin labels are suppressed in Eqs. (2.50) and (2.51). The split between
the four-velocity v and the residual momentum is somewhat arbitrary, and the
freedom to redefine v by an amount of order �QCD/m Q while changing k by
a corresponding amount of order �QCD is called reparameterization invariance.
We shall explore the consequences of this freedom in Chapter 4. In matrix
elements we shall usually take our initial and final hadron states that contain a
single heavy quark to have zero residual momentum and not show explicitly the
dependence of the state on the residual momentum; i.e., k will be dropped in the
labeling of states, |H (v)〉 ≡ |H (v, k = 0)〉. The advantage of the normalization
in Eq. (2.51) is that it has no dependence on the mass of the heavy quark. A
factor of m H has been removed in comparison with the standard relativistic
norm in Eq. (2.50). States normalized by using the HQET convention have mass
dimension −3/2.

In the remainder of the book, matrix elements in full QCD will be taken
between states normalized by using the usual relativistic convention and labeled
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by the momentum p, whereas matrix elements in HQET will be taken between
states normalized by using the HQET convention and labeled by their velocity
v. The two normalizations differ by a factor

√
m H ,

|H (p)〉 = √
m H [|H (v)〉 + O(1/m Q)]. (2.52)

Similarly Dirac spinors u(p, s) labeled by momentum are normalized to satisfy

ū(p, s)γ μu(p, s) = 2pμ, (2.53)

and those labeled by velocity to satisfy

ū(v, s)γ μu(v, s) = 2vμ. (2.54)

The spinors u(p, s) and u(v, s) differ by a factor of
√

m H

u(p, s) = √
m H u(v, s). (2.55)

2.8 Heavy meson decay constants

Heavy meson decay constants are one of the simplest quantities that can be
studied with HQET. The pseudoscalar meson decay constants for the B̄ and D
mesons are defined by‡

〈0|q̄γ μγ5 Q(0) |P(p)〉 = −i fP pμ, (2.56)

where fP has mass dimension one. Vector meson decay constants for the D∗
and B̄∗ mesons are defined by

〈0|q̄ γ μQ(0) |P∗(p, ε)〉 = fP∗ εμ, (2.57)

where εμ is the polarization vector of the meson. fP∗ has mass dimension two.
The vector and axial currents q̄γ μQ and q̄γ μγ5 Q can be written in terms of

HQET fields,

q̄ �μQ(0) = q̄ �μQv(0) , (2.58)

where �μ = γ μ or γ μγ5. There are αs(m Q) and 1/m Q corrections to this match-
ing condition, which will be discussed in Chapters 3 and 4, respectively.

The matrix elements required in the heavy quark effective theory are

〈0|q̄ �μQv(0) |H (v)〉, (2.59)

where |H (v)〉 denotes either the P or P∗ states with zero residual momentum,
normalized using Eq. (2.51). For these matrix elements, it is helpful to reexpress
the current q̄ �μQv in terms of the hadron field H (Q)

v of Eq. (2.19). The current

‡ The pion decay constant fπ defined with the normalization convention in Eq. (2.56) has a value of 131 MeV.
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q̄ �μQv is a Lorentz four vector that transforms as

q̄ �μQv → q̄ �μD(R)Q Qv (2.60)

under heavy quark spin transformations, where D(R)Q is the rotation matrix
for a heavy quark field. The representation of the current in terms of H (Q)

v

should transform in the same manner as Eq. (2.60) under heavy quark spin
transformations. This can be done by using a standard trick: (i) Pretend that
�μ transforms as �μ → �μD(R)−1

Q so that the current is an invariant. (ii) Write
down operators that are invariant when Qv → D(R)Q Qv, �μ → �μD(R)−1

Q ,
and H (Q)

v → D(R)Q H (Q)
v . (iii) Set �μ to its fixed value γ μ or γ μγ5 to obtain the

operator with the correct transformation properties.
The current must have a single H (Q)

v field, since the matrix element in Eq. (2.59)
contains a single initial-state heavy meson. The field H (Q)

v and �μ can only occur
as the product �μH (Q)

v for the current to be invariant under heavy quark spin
symmetry. For Lorentz covariance, the current must have the form

Tr X�μH (Q)
v , (2.61)

where X is a Lorentz bispinor. The only parameter that X can depend on is v, so
X must have the form a0(v2) + a1(v2)/v, by Lorentz covariance and parity. All
dependence on spin has already been included in the indices of the H field, so
X can have no dependence on the polarization of the P∗ meson. Since H (Q)

v /v =
−H (Q)

v and v2 = 1, one can write

q̄�μQv = a

2
Tr �μH (Q)

v , (2.62)

where a = [a0(1)−a1(1)] is an unknown normalization constant that is indepen-
dent of the mass of the heavy quark Q. Evaluating the trace explicitly gives

a ×
{

−ivμP (Q)
v if �μ = γ μγ5,

P∗(Q)
v

μ if �μ = γ μ,
(2.63)

where P (Q)
v and P∗(Q)

vμ are the pseudoscalar and vector fields that destroy the
corresponding hadrons. The resulting matrix elements are

〈0|q̄γ μγ5 Qv|P(v)〉 = −iavμ,
(2.64)〈0|q̄γ μQv|P∗(v)〉 = aεμ.

Comparing with the definitions of the meson decay constants Eqs. (2.56), (2.57),
and using pμ = m P (∗)vμ gives the relations

fP = a√
m P

, fP∗ = a
√

m P∗ . (2.65)
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Table 2.3. Heavy meson decay constants from a
lattice Monte Carlo simulationa

Decay Constant Value in MeV

fD 197 ± 2
fDs 224 ± 2
fB 173 ± 4
fBs 199 ± 3

a From the JLQCD Collaboration [S. Aoki et al., Phys. Rev.
Lett. 80 (1998), 5711]. Only the statistical errors are quoted.

The factors of
√

m P and
√

m P∗ are due to the difference between the normal-
izations of states in Eqs. (2.50) and (2.51). The P and P∗ masses are equal in
the heavy quark limit, so one can write the equivalent relations

fP = a√
m P

, fP∗ = m P fP , (2.66)

which imply that fP ∝ m−1/2
P and fP∗ ∝ m1/2

P . For the D and B system, one finds

fB

fD
=

√
m D

m B
, fD∗ = m D fD, fB∗ = m B fB . (2.67)

The decay constants for the pseudoscalar mesons can be measured by means of
the weak leptonic decays D → �̄ν� and B̄ → �ν̄�. The partial width is

� = G2
F |VQq |2

8π
f 2

Pm2
�m P

(
1 − m2

�

m2
P

)2

. (2.68)

The only heavy meson decay constant that has been measured is fDs , from the
decays D+

s → μ̄νμ and D+
s → τ̄ ντ . However, at the present time, the reported

values vary over a large range of ∼200–300 MeV. Values of the heavy meson
decay constants determined from a lattice Monte Carlo simulation of QCD are
shown in Table 2.3. Only statistical errors are quoted. Note that this simula-
tion suggests that there is a substantial correction to the heavy quark symmetry
prediction fB/ fD = √

m D/m B � 0.6.

2.9 B̄ → D(∗) form factors

The semileptonic decays of a B̄ meson to D and D∗ mesons allow one to deter-
mine the weak mixing angle Vcb. The semileptonic B̄ meson decay amplitude is
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determined by the matrix elements of the weak Hamiltonian:

HW = 4G F√
2

Vcb[c̄γμPLb][ēγ μPLνe]. (2.69)

Neglecting higher-order electroweak corrections, the matrix element factors into
the product of leptonic and hadronic matrix elements. The hadronic part is the ma-
trix element of the vector or axial vector currents V μ = c̄γ μb and Aμ = c̄γ μγ5b
between B̄ and D(∗) states.

It is convenient to write the most general possible matrix element in terms of
a few Lorentz invariant amplitudes called form factors. The most general vector
current matrix element for B̄ → D must transform as a Lorentz four vector.
The only four vectors in the problem are the momenta p and p′ of the initial
and final mesons, so the matrix element must have the form apμ + bp′μ. The
form factors a and b are Lorentz invariant functions that can only depend on
the invariants in the problem, p2, p′2 and p · p′. Two of the variables are fixed,
p2 = m2

B and p′2 = m2
D , and it is conventional to choose q2 = (p − p′)2 as the

only independent variable. A similar analysis can be carried out for the other
matrix elements. The amplitudes involving the D∗ are linear in its polarization
vector ε and can be simplified by noting that the polarization vector satisfies the
constraint p′ · ε = 0. The conventional choice of form factors allowed by parity
and time-reversal invariance is

〈D(p′)|V μ|B̄(p)〉 = f+(q2)(p + p′)μ + f−(q2)(p − p′)μ,

〈D∗(p′, ε)|V μ|B̄(p)〉 = g(q2)εμνατ ε∗
ν (p + p′)α(p − p′)τ ,

〈D∗(p′, ε)|Aμ|B̄(p)〉 = −i f (q2)ε∗μ

−iε∗ · p[a+(q2)(p + p′)μ + a−(q2)(p − p′)μ],

(2.70)

where q = p − p′, all the form factors are real, and the states have the usual
relativistic normalization.

Under parity and time reversal,

P|D(p)〉 = −|D(pP )〉,
P|D∗(p, ε)〉 = |D∗(pP , εP )〉,

T |D(p)〉 = −|D(pT )〉,
T |D∗(p, ε)〉 = |D∗(pT , εT )〉, (2.71)

which are the usual transformations for pseudoscalar and vector particles. Here
p = (p0, p), ε = (ε0, ε), and pP = pT = (p0, −p), εP = εT = (ε0, −ε). Analo-
gous equations hold for the B̄ and B̄∗. Parity and time-reversal invariance of
the strong interactions implies that the matrix elements of currents between two
states |ψ〉 and |χ〉 transform as

〈ψ |J 0|χ〉 = ηP〈ψP |J 0|χP〉,
〈ψ |J i |χ〉 = −ηP〈ψP |J i |χP〉,

〈ψ |J 0|χ〉∗ = ηT 〈ψT |J 0|χT 〉,
〈ψ |J i |χ〉∗ = −ηT 〈ψP |J i |χP〉,

(2.72)
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2.9 B̄ → D(∗) form factors 65

where ηP = 1, ηT = 1 if J is the vector current, ηP = −1, ηT = 1 if J is the
axial current, and |χP〉 ≡ P|χ〉, |χT 〉 ≡ T |χ〉, and so on. One can now show that
Eq. (2.70) is the most general form factor decomposition. Consider, for example,
〈D∗(p′, ε)|V μ|B̄(p)〉. Parity invariance requires that

〈D∗(p′, ε)|V 0|B̄(p)〉 = −〈D∗(p′
P , εP )|V 0|B̄(pP )〉. (2.73)

The only possible tensor combination that changes sign under parity is
ε0νατ ε∗

ν pα p′
τ , which is proportional to the right-hand side in Eq. (2.70). Time-

reversal invariance requires

〈D∗(p′, ε)|V 0|B̄(p)〉∗ = −〈D∗(p′
T , εT )|V 0|B̄(pT )〉, (2.74)

which implies that g(q2) is real. One can similarly work through the other two
cases. The factors of i in Eq. (2.70) depend on the phase convention for the
meson states. We have chosen to define the pseudoscalar state to be odd under
time reversal. Another choice used is i times this, which corresponds to a state
which is even under time reversal. This introduces a factor of i in the last two
matrix elements in Eq. (2.70).

It is straightforward to express the differential decay rates d�(B̄ → D(∗)eν̄e)/
dq2 in terms of the form factors f±, f, g, and a±. To a very good approximation,
the electron mass can be neglected, and consequently a− and f− do not contribute
to the differential decay rate. For B̄ → Deν̄e the invariant decay matrix element
is

M(B̄ → Deν̄e) =
√

2G F Vcb f+ (p+ p′)μ ū(pe)γμ PLv
(

pνe

)
. (2.75)

Squaring and summing over electron spins yields,

|M|2 =
∑
spins

|M(B̄ → Deν̄e)|2

= 2G2
F |Vcb|2| f+|2(p + p′)μ1 (p + p′)μ2Tr

[
/peγμ1/pνeγμ2 PL

]
. (2.76)

The differential decay rate is

d�

dq2
(B̄ → Deν̄e) = 1

2m B

∫
d3 p′

(2π )32p′0

∫
d3 pe

(2π )32p0
e

×
∫

d3 pνe

(2π )32p0
νe

|M|2(2π )4δ4(q − pe − pνe

)
δ[q2 − (p − p′)2], (2.77)

where q2 is the hadronic momentum transfer squared, or equivalently, the invari-
ant mass squared of the lepton pair. The integration measure is symmetric with
respect to electron and neutrino momenta, so the part of the trace in Eq. (2.76)
involving γ5 does not contribute. It would contribute to the electron spectrum
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d�(B̄ → Deν̄e)/dEe. The integration over electron and neutrino momenta gives∫
d3 pe

(2π )32p0
e

∫
d3 pνe

(2π )32p0
νe

Tr
[
/peγμ1/pνeγμ2

]
(2π )4δ4[q − (

pe + pνe

)]
= 1

6π

(
qμ1qμ2 − gμ1μ2q2). (2.78)

Finally, using

(p + p′)μ1 (p + p′)μ2
(
qμ1qμ2 − gμ1μ2q2)

= (
q2 − m2

B − m2
D

)2 − 4m2
Bm2

D, (2.79)

and the two-body phase space formula∫
d3 p′

(2π )32p′0 δ[q2 − (p − p′)2] = 1

16π2m2
B

√(
q2 − m2

B − m2
D

)2 − 4m2
Bm2

D,

(2.80)
the differential decay rate in Eq. (2.77) becomes

d�

dq2
(B̄ → Deν̄e) = G2

F |Vcb|2| f+|2
192π3m3

B

[(
q2−m2

B −m2
D

)2−4m2
Bm2

D

]3/2
. (2.81)

A similar but more complicated expression holds for d�(B̄ → D∗eν̄e)/dq2.
It is convenient, for comparing with the predictions of HQET, not to write the

B̄ → D(∗) matrix elements of the vector and axial vector current as in Eq. (2.70),
but rather to introduce new form factors that are linear combinations of f±, f ,
g, and a±. The four velocities of the B̄ and D(∗) mesons are vμ = pμ/m B and
v′μ = p′μ/m D(∗) , and the dot product of these four velocities, w = v ·v′, is related
to q2 by

w = v · v′ = [
m2

B + m2
D(∗) − q2]/[2m Bm D(∗) ]. (2.82)

The allowed kinematic range for w is

0 ≤ w − 1 ≤ [m B − m D(∗) ]2/[2m Bm D(∗) ]. (2.83)

The zero-recoil point, at which D(∗) is at rest in the B̄ rest frame, is w = 1. The
new form factors h±, hV , and h A j are expressed as functions of w instead of q2

and are defined by

〈D(p′)|V μ|B̄(p)〉√
m Bm D

= h+(w) (v + v′)μ + h−(w) (v − v′)μ,

〈D∗(p′, ε)|V μ|B̄(p)〉√
m Bm D∗

= hV (w)εμναβε∗
ν v′

αvβ, (2.84)

〈D∗(p′, ε)|Aμ|B̄(p)〉√
m Bm D∗

= −ih A1 (w)(w + 1)ε∗μ + ih A2 (w)(ε∗ · v)vμ

+ ih A3 (w) (ε∗ · v)v′μ.
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The differential decay rates d�(B̄ → D(∗)eν̄e)/dw in terms of these form factors
are

d�

dw
(B̄ → Deν̄e) = G2

F |Vcb|2m5
B

48π3
(w2 − 1)3/2r3(1 + r )2FD(w)2,

d�

dw
(B̄ → D∗eν̄e) = G2

F |Vcb|2m5
B

48π3
(w2 − 1)1/2(w + 1)2r∗3(1 − r∗)2

×
[

1 + 4w

w + 1

1 − 2wr∗ + r∗2

(1 − r∗)2

]
FD∗(w)2, (2.85)

where

r = m D

m B
, r∗ = m D∗

m B
, (2.86)

and

FD(w)2 =
[

h+ +
(

1 − r

1 + r

)
h−

]2

,

FD∗(w)2 =
{

2(1 − 2wr∗ + r∗2)

[
h2

A1
+

(
w − 1

w + 1

)
h2

V

]
(2.87)

+ [
(1 − r∗)h A1 + (w − 1)

(
h A1 − h A3 − r∗h A2

)]2

}

×
{

(1 − r∗)2 + 4w

w + 1
(1 − 2wr∗ + r∗2)

}−1

.

The spin-flavor symmetry of heavy quark effective theory can be used to derive
relations between the form factors h±, hV , and h A j . A transition to the heavy
quark effective theory is possible provided the typical momentum transfer to
the light degrees of freedom is small compared to the heavy quark masses. In
B̄ → D(∗)eν̄e semileptonic decay, q2 is not small compared with m2

c,b. However,
this variable does not determine the typical momentum transfer to the light
degrees of freedom. A rough measure of that is the momentum transfer that
must be given to the light degrees of freedom so that they recoil with the D(∗).
The light degrees of freedom in the initial and final hadrons have momentum
of order �QCDv and �QCDv′, respectively, since their velocity is fixed to be the
same as the heavy quark velocity. The momentum transfer for the light system
is then q2

light ∼ (�QCDv − �QCDv′)2 = 2�2
QCD(1 − w). Heavy quark symmetry

should hold, provided

2�2
QCD (w − 1) � m2

b,c. (2.88)

The heavy meson form factors are expected to vary on the scale q2
light ∼ �2

QCD,
i.e., on the scale w ∼ 1.
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The six form factors can be computed in terms of a single function using
heavy quark symmetry. The QCD matrix elements required are of the form
〈H (c)(p′)|c̄ �b|H (b)(p)〉, where � = γ μ, γ μγ5 and H (Q) is either P (Q) or P∗(Q).
At leading order in 1/mc,b and αs(mc,b), the current c̄ �b can be replaced by
the current c̄v′�bv involving heavy quark fields and the heavy mesons states
|H (Q)(p(′))〉 by the corresponding ones in HQET |H (Q)(v(′))〉. One can then use
a trick similar to that used for the meson decay constants: the current is invari-
ant under spin transformations on the cv′ and bv quark fields, provided that �

transforms as D(R)c�D(R)−1
b where D(R)c and D(R)b are the heavy quark

spin rotation matrices for c and b quarks, respectively. For the required matrix
elements one represents the current by operators that contain one factor each of
H̄ (c)

v′ and H (b)
v , so that a meson containing a b quark is converted to one containing

a c quark. Invariance under the b and c quark spin symmetries requires that the
operators should be of the form H̄ (c)

v′ �H (b)
v , so that the factors of D(R)b,c cancel

between the � matrix and the H fields. Lorentz covariance then requires that

c̄v′�bv = Tr X H̄ (c)
v′ �H (b)

v , (2.89)

where X is the most general possible bispinor that one can construct using the
available variables, v and v′. The most general form for X with the correct parity
and time-reversal properties is

X = X0 + X1/v + X2/v
′ + X3/v/v

′, (2.90)

where the coefficients are functions of w = v · v′. Other allowed terms can all
be written as linear combinations of the Xi . For example, /v′/v = 2w − /v/v′, and
so on. The relations /vH (b)

v = H (b)
v and /v′ H̄ (c)

v′ = −H̄ (c)
v′ imply that all the terms in

Eq. (2.90) are proportional to the first, so one can write

c̄v′� bv = −ξ (w)Tr H̄ (c)
v′ �H (b)

v , (2.91)

where the coefficient is conventionally written as −ξ (w). Evaluating the trace
in Eq. (2.91) gives the required HQET matrix elements

〈D(v′)|c̄v′ γμ bv|B̄(v)〉 = ξ (w) [vμ + v′
μ],

〈D∗(v′, ε)|c̄v′γμγ5bv|B̄(v)〉 = −iξ (w) [(1 + w)ε∗
μ − (ε∗ · v)v′

μ], (2.92)

〈D∗(v′, ε)|c̄v′γμbv|B̄(v)〉 = ξ (w) εμναβε∗νv′αvβ.

Equations (2.92) are the implications of heavy quark spin symmetry for the
B̄ → D(∗) matrix elements of the axial vector and vector currents. The function
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2.9 B̄ → D(∗) form factors 69

ξ (w) is independent of the charm and bottom quark masses. Heavy quark flavor
symmetry implies the normalization condition

ξ (1) = 1. (2.93)

To derive this result, consider the forward matrix element of the vector current
b̄γ μb between B̄ meson states. To leading order in 1/mb, the operator b̄γ μb can
be replaced by b̄vγμbv. The forward matrix element can then be obtained from
Eq. (2.92) by setting v′ = v, and letting c → b, D → B̄,

〈B̄(p)|b̄γμb|B̄(p)〉
m B

= 〈B̄(v)|b̄vγμbv|B̄(v)〉 = 2 ξ (w = 1) vμ. (2.94)

Note that ξ (w) is independent of the quark masses, and so has the same value
in Eqs. (2.92) and (2.94). Equivalently, heavy quark flavor symmetry allows one
to replace D by B̄ in Eq. (2.92). The left-hand side of Eq. (2.94) with μ = 0 is
the matrix element of b-quark number between B̄ mesons, and so has the value
2v0. This implies that ξ (1) = 1.

Functions of w = v · v′ like ξ occur often in the analysis of matrix elements
and are called Isgur-Wise functions. Eq. (2.92) predicts relations between the
form factors in Eqs. (2.84):

h+(w) = hV (w) = h A1 (w) = h A3 (w) = ξ (w),
(2.95)

h−(w) = h A2 (w) = 0.

This equation implies that

FD(w) = FD∗(w) = ξ (w). (2.96)

There is experimental support for the utility of the mc,b → ∞ limit for describing
B̄ → D(∗)eν̄e decays. Figure 2.5 shows a plot of the ratio FD∗(w)/FD(w) as a

Fig. 2.5. The measured ratio FD∗ (w)/FD(w) as a function of w. The data are from the
ALEPH Collaboration [D. Buskulic et al., Phys. Lett. B395 (1997) 373].
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function of w using data from the ALEPH collaboration. It shows that FD∗(w)
is indeed near FD(w). Note that the experimental errors become large as w

approaches unity. This is partly because the differential rates d�/dw vanish at
w = 1. In addition to comparing the D and D∗ decay rates, there is experimental
information on the individual form factors in B̄ → D∗eν̄e decay. It is convenient
to define two ratios of these form factors:

R1 = hV

h A1

, R2 = h A3 + rh A2

h A1

. (2.97)

In the mc,b → ∞ limit, heavy quark spin symmetry implies that R1 = R2 = 1.
Assuming the form factors h j have the same shape in w, the CLEO collaboration
has obtained the experimental values [J. E. Duboscq et al., Phys. Rev. Lett. 76
(1996) 3898]

R1 = 1.18 ± 0.3, R2 = 0.71 ± 0.2. (2.98)

There is a simple physical reason why a single Isgur-Wise function is needed
for the matrix elements in Eq. (2.92). In the mc,b → ∞ limit, the spin of the
light degrees of freedom is a good quantum number. Since c̄v′�bv does not act
on the light degrees of freedom, their helicity, h�, is conserved in the transitions
it mediates. For B̄ → D(∗) matrix elements, there are two helicity amplitudes
corresponding to h� = 1/2 and h� = −1/2. However, they must be equal by parity
invariance and therefore there is only one Isgur-Wise function. There are cases
when more than one Isgur-Wise function occurs. For example, in �b → �

(∗)
c eν̄e

decay, the initial and final hadrons have s� = 1. Thus there are two independent
helicity amplitudes h� = 0 and h� = ± 1, and consequently, two Isgur-Wise
functions occur (see Problem 10).

2.10 Λc →Λ form factors

Another interesting application of heavy quark symmetry is to the weak decay
�c → �ēνe. This decay is an example of a heavy → light transition, in which a
heavy quark decays to a light quark. The most general weak decay form factors
can be written in the form

〈�(p′, s ′)|s̄γ μc|�c(p, s)〉 = ū(p′, s ′)[ f1γ
μ + i f2σ

μνqν + f3qμ]u(p, s) ,

〈�(p′, s ′)|s̄γ μγ5c|�c(p, s)〉 = ū(p′, s ′)[g1γ
μ + ig2σ

μνqν + g3qμ]γ5u (p, s) ,

(2.99)

where q = p− p′ and σμν = i[γμ, γν]/2. The form factors fi and gi are functions
of q2. Heavy quark spin symmetry on the c-quark constrains the general form
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factor decomposition in Eq. (2.99). Making the transition to HQET, one can
write the left-hand side of Eq. (2.99) as

〈�(p′, s ′)|s̄ �cv|�c(v, s)〉, (2.100)

where s̄�c → s̄�cv at leading order in 1/mc. The matrix element in Eq. (2.100)
has the same form factor expansion as Eq. (2.99) with u(p, s) → u(v, s). The√

m�c difference between Eqs. (2.99) and (2.100) in the normalization of states is
compensated by the same factor in the normalization of spinors. The most general
form for the matrix element in Eq. (2.100) consistent with spin symmetry on the
c quark is

〈�(p′, s ′)|s̄�cv|�c(v, s)〉 = ū(p′, s ′)X�u(v, s) , (2.101)

where X is the most general bispinor that can be constructed out of p′ and v.
Note that s and s ′ cannot be used, because the fermion spin is encoded in the
matrix indices of the spinors. The decomposition of X is

X = F1 + F2v/, (2.102)

where Fi are functions of v · p′, and we have used the constraints

/vu(v, s) = u(v, s) , /p′u(p′, s ′) = m�u(p′, s ′) (2.103)

to reduce the number of independent terms. Substituting Eq. (2.102) into
Eq. (2.101) and comparing with Eq. (2.99) gives the relations

f1 = g1 = F1 + m�

m�c

F2,

(2.104)
f2 = f3 = g2 = g3 = 1

m�c

F2,

so that the six form factors fi , gi can be written in terms of two functions F1,2. The
heavy → light form factors F1,2 are expected to vary on the scale v · p′ ∼ �QCD.

These relations between form factors have implications for the polarization
of the �’s produced in �c decay. Equation (2.104) implies that in the mc → ∞
limit, the polarization variable

α = − 2 f1g1

f 2
1 + g2

1

∣∣∣∣
q2=0

(2.105)

is equal to −1. The CLEO Collaboration [G. Crawford et al., Phys. Rev. Lett. 75
(1995) 624] finds that, averaged over all q2, α = −0.82 ± 0.10 consistent with
expectations based on charm quark spin symmetry.
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2.11 Λb →Λc form factors

The semileptonic weak decay �b → �ceν̄e form factors are even more con-
strained by heavy quark symmetry than the �c → �ēνe form factors discussed
above, because one can use heavy quark symmetry on both the initial and final
baryons. The most general weak decay form factors for �b → �c decay are
conventionally written as

〈�c(p′, s ′)|c̄γ μb|�b(p, s)〉 = ū(p′, s ′)[ f1γ
μ + f2v

μ + f3v
′μ]u(p, s),

〈�c(p′, s ′)|c̄γ μγ5b|�b(p, s)〉 = ū(p′, s ′)[g1γ
μ + g2v

μ + g3v
′μ]γ5u(p, s),

(2.106)

where fi and gi are functions of w. We have taken the general decomposition
from Eq. (2.99) and rewritten qμ and σμνqν in terms of γ μ, vμ and v′μ. Making
the transition to HQET, the matrix element

〈�c(v′, s ′)|c̄v′ � bv|�b(v, s)〉 = ζ (w)ū(v′, s ′)�u(v, s) (2.107)

by heavy quark spin symmetry on the b and c quark fields. Thus we obtain

f1(w) = g1(w) = ζ (w), f2 = f3 = g2 = g3 = 0. (2.108)

The six form factors can be written in terms of the single Isgur-Wise function
ζ (w). As in the meson case

ζ (1) = 1, (2.109)

since the form factor of b̄γ μb for �b → �b transitions at w = 1 is b-quark
number. The heavy → heavy relations in Eq. (2.108) are a special case of the
heavy → light relations in Eq. (2.104), with the additional restrictions F2 = 0
and F1(v · v′ = 1) = 1.

2.12 Problems

1. In the m Q → ∞ limit, show that the propagator for a heavy antiquark with momentum
pQ̄ = m Qv + k is

i

v · k + iε

(
1 − /v

2

)
,

while the heavy antiquark–gluon vertex is

ig(T A)T vμ.

2. Compare the theoretical expectation for the ratio �(D1 → D∗π )/�(D∗
2 → D∗π ) with its

experimental value. Discuss your result.
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3. Consider the following heavy-light matrix elements of the vector and axial vector currents

〈V (p′, ε)|q̄γμγ5 Q|P (Q)(p)〉 = −i f (Q)ε∗
μ − iε∗ · p

[
a(Q)

+ (p + p′)μ + a(Q)
− (p − p′)μ

]
,

〈V (p′, ε)|q̄γμ Q|P (Q)(p)〉 = g(Q)εμνλσ ε∗ν(p + p′)λ(p − p′)σ ,

where p = m P(Q)v. The form factors f (Q), a(Q)
± and g(Q) are functions of y = v · p′. V is a

low-lying vector meson, i.e., either a ρ or K ∗ depending on the light quark flavor quantum
numbers of q and P (Q). Show that in the mb,c → ∞ limit

f (b)(y) = (mb/mc)1/2 f (c)(y),

g(b)(y) = (mc/mb)1/2g(c)(y),

a(b)
+ (y) + a(b)

− (y) = (mc/mb)3/2
[
a(c)

+ (y) + a(c)
− (y)

]
,

a(b)
+ (y) − a(b)

− (y) = (mc/mb)1/2
[
a(c)

+ (y) − a(c)
− (y)

]
.

Discuss how these results may be used to determine Vub from data on the semileptonic decays
B → ρeν̄e and D → ρēνe.

4. Consider the matrix element

〈V (p′, ε)|q̄σμν Q|P (Q)(p)〉 = −ig(Q)
+ εμνλσ ε∗λ(p + p′)σ − ig(Q)

− εμνλσ ε∗λ(p − p′)σ

− ih(Q)εμνλσ (p + p′)λ(p − p′)σ (ε∗ · p).

Show that in the m Q → ∞ limit the form factors g(Q)
± and h(Q) are related to those in Problem 3

by

g(Q)
+ − g(Q)

− = −m Q g(Q),

g(Q)
+ + g(Q)

− = f (Q)/2m Q + p · p′

m Q
g(Q),

h(Q) = − g(Q)

m Q
+ a(Q)

+ − a(Q)
−

2m Q
.

5. Verify the expressions for the P → �ν̄e, B̄ → Deν̄e, and B̄ → D∗eν̄e decay rates given in the
text.

6. The fields D∗μν

2 and Dμ

1 destroy the spin-two and spin-one members of the excited doublet
of charmed mesons with s� = 3/2 and positive parity. Show that

Fμ
v = (1 + /v)

2

{
D∗μν

2 γν −
√

3

2
Dν

1γ5

[
gμ

ν − 1

3
γν(γ μ − vμ)

]}
,

satisfies

/vFμ
v = Fμ

v , Fμ
v /v = −Fμ

v , Fμ
v γμ = Fμ

v vμ = 0,

and that under heavy charm quark spin transformations

Fμ
v → D(R)c Fμ

v .
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7. Use Lorentz, parity, and time-reversal invariance to argue that the form factor decompositions
of matrix elements of the weak vector and axial vector b → c currents are

〈D1(p′, ε)|V μ|B̄(p)〉√
m Bm D1

= −i fV1ε
∗μ − i

(
fV2v

μ + fV3v
′μ)(ε∗ · v),

〈D1(p′, ε)|Aμ|B̄(p)〉√
m Bm D1

= f Aεμαβγ ε∗
αvβv′

γ ,

〈D∗
2 (p′, ε)|Aμ|B̄(p)〉

√m Bm D∗
2

= −ikA1ε
∗μαvα + (

kA2v
μ + kA3v

′μ)ε∗
αβvαvβ,

〈D∗
2 (p′, ε)|V μ|B̄(p)〉

√m Bm D∗
2

= kV εμαβγ ε∗
ασ vσ vβv′

γ ,

where v′ is the four velocity of the final charmed meson and v the four velocity of the B̄
meson. Note that the D1 polarization vector is denoted by εα while the D∗

2 polarization tensor
is denoted by εαβ .

8. Show that

d�

dw
(B̄ → D1eν̄e) = G2

F |Vcb|2m5
B

48π 3
r 3

1

√
w2 − 1

{[
(w − r1) fV1 + (w2 − 1)

(
fV3 + r1 fV2

)]2

+ 2
(
1 − 2r1w + r 2

1

)[
f 2

V1
+ (w2 − 1) f 2

A

]}
,

d�

dw
(B̄ → D∗

2 eν̄e) = G2
F |Vcb|2m5

B

48π 3
r 3

2 (w2 − 1)3/2

{
2

3

[
(w − r2)kA1

+ (w2 − 1)
(
kA3 + r2kA2

)]2 + [
1 − 2r2w + r 2

2

][
k2

A1
+ (w2 − 1)k2

V

]}
,

where the form factors, which are functions of w = v . v′, are defined in problem 7.

9. Argue that for B → D1 and B → D∗
2 matrix elements, heavy quark spin symmetry implies

that one can use

c̄v′�bv = τ (w)Tr
{
vσ F̄σ

v′ �H (b)
v

}
,

where τ (w) is a function of w, and Fμ
v was defined in Problem 6. Deduce the following

expressions for the form factors

√
6 f A = −(w + 1)τ,√

6 fV1 = −(1 − w2)τ,√
6 fV2 = −3τ,√
6 fV3 = (w − 2)τ,

kV = −τ,

kA1 = −(1 + w)τ,
kA2 = 0,

kA3 = 0.

Only the form factor fV1 can contribute to the weak matrix elements at zero recoil, w = 1.
Notice that fV1 (1) = 0 for any value of τ (1). Is there a normalization condition on τ (1) from
heavy quark flavor symmetry?

10. The ground-state baryons with two strange quarks and a heavy quark decay weakly, �b →
�(∗)

c eν̄e. They occur in a s� = 1 doublet, and the spin-1/2 and spin-3/2 members are denoted
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by �Q and �∗
Q respectively. Show that the field

S(Q)
vμ =

[
1√
3

(γμ + vμ)γ5�
(Q)
v + �∗(Q)

vμ

]

transforms under heavy quark spin symmetry as

S(Q)
vμ → D(R)Q S(Q)

vμ .

Here �(Q)
v is a spin-1/2 field that destroys a �Q state with amplitude u(v, s) and �∗(Q)

vμ is
a spin-3/2 field that destroys a �∗

Q state with amplitude uμ(v, s). Here uμ(v, s) is a Rarita-
Schwinger spinor that satisfies /vuμ(v, s) = uμ(v, s), vμuμ(v, s) = γ μuμ(v, s) = 0. Argue
that for �Q → �

(∗)
Q matrix elements heavy quark symmetry implies that

c̄v′�bv = TrS̄(c)
v′μ�S(b)

vν [−gμνλ1(w) + vμv′νλ2(w)].

Show that heavy quark flavor symmetry requires the normalization condition

λ1(1) = 1

at zero recoil.
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