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The theory of alternating bilinear forms on finite dimensional vector spaces
V is well understood; two forms on V are equivalent if and only if they have
equal ranks. The situation for alternating trilinear forms is much harder. This is
partly because the number of forms of a given dimension is not independent of
the underlying field and so there is no useful canonical description of an alter-
nating trilinear form.

In this paper we consider the set of all alternating trilinear forms on all
finite dimensional vector spaces over a fixed finite field F and show that this set
has a certain finiteness property. We then give a brief description of how this
result may be used to prove two theorems on varieties of groups; in particular,
that every group of exponent 6 has a finite basis for its laws. The details may be
found in my D. Phil, thesis [1] which was written while I held a scholarship
from the Science Research Council. This research was supervised by Dr. P. M.
Neumann and Professor G. Higman for whose help I am heartily grateful.

1. Preliminaries

Throughout this paper F will denote a finite field with q elements. A finite
dimensional vector space over F on which is defined an alternating trilinear form
(u,t>,w) is said to be a T-spoce (over F). I? V is a T-space and U ^ V then the
restriction of the alternating trilinear form on V to U gives U the structure of
a T-space and we sometimes call attention to this by saying that U is a sub-T-space
of V. A linear transformation a: V -» U, where V and U are T-spaces, is said to be
a homomorphism if, for all u,v,weV, (ua,vx,wcc) = (u,v,w). The terms iso-
morphism, epimorphism and monomorphism are defined in the obvious way.

If A, B, C are subsets of the T-space V we shall write (A, B, C) = 0 if
(a,b,c) = 0 for all aeA, beB, ceC. We write (v,A,B) = 0 if {{v},A,B) = 0.
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Obviously, {v e V ] (v, V, V) = 0} is a subspace of V; we shall call it the singular
part of V. Tt is easy to see that all vector space complements for the singular part
of V are isomorphic (as T-spaces) and so we may unambiguously refer to any one
of them as the non-singular part of V. A T-space is said to be non-singular if it
coincides with its non-singular part and totally singular if it coincides with its
singular part.

If U and V are T-spaces then we may conside their direct sum U © V in the
usual sense of linear algebra. Of course, this will not have the structure of a
T-space unless the values of(u1,v1, v2) and (u1( U2, I>I) are defined for all uuu2eU
and v1,v2 e V: e.g. these values are defined if U and V are subspaces of some
T-space W. If (U, U, V) = (U, V, V) = 0 then we write U@V = U ®c V. In-
ductively we define Ur ©cU2 ®c — ®cUn as ( l ^ ©<.-•• © c l / B - i ) ®cUn and
write U" for this T-space if all the Ut are isomorphic to some fixed T-space U.

Let X be the set of all (isomorphism classes of) T-spaces. We define a partial
order =̂  on X by defining U ^ V if U is isomorphic to a sub-T-space of V. Our
main result on T-spaces is that, with respect to this ordering, X is a partially
well-ordered set. X is partially well-ordered if and only if its closed subsets satisfy
the minimum condition under inclusion; a subset X- of X is said to be closed if,
whenever F e £ a n d t / < F , U eX. The closure of a set X, c l £ , is {V\ F < UeX}.

If A and B are subsets of the T-space V then {veV\ (v, A, E) = 0} is denoted
by Ann(y4,jB) and it is obviously a subspace of V.

LEMMA 1.1. If A and B are subspaces of the T-space V then

[ F : Ann{A,B)'\ ^ (dim A) • (dimfl).

PROOF. Let elt --.e^jand / x , •••,/(, be bases for A and B respectively. Clearly,
Arm(A,B) = p | Ann(ehfj). However, Ann(e,-,/,) is the kernel of the linear

i = l.a

functional x H* (X, e^fj) and so has codimension at most 1 in V.

LEMMA 1.2. Let V be a T-space of dimension at least r2. Then V has a
totally singular subspace of dimension r.

PROOF. We proceed by induction on r, the case r = 0 being trivial. Let
r 2: 1 and suppose that the lemma holds with r — 1 in place of r. Then there
exists a totally singular subspace S of dimension r — 1. Since, by Lemma 1.1,
[ F : Ann(S,S)] ^ (r - I)2 we see that Ann ( S , S ) $ S and so there exists
u e Ann(S, S) — S. Obviously, <S, u> is totally singular and of dimension r.

If x is a fixed element of some T-space V and U ^ V then (x,Uj,u2) with
u1,u2eU provides an alternating bilinear form on U. The rank of this form is
called the rank of x on U. In this context we recall a simple fact about alternating
bilinear forms.
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LEMMA 1.3. Let (x,y) be an alternating bilinear form of rank r defined on a
vector space V and let V be a subspace of V of codimension n. Then the restriction
of thejorm to U has rank at least equal to r — 2n.

2. Some basic lemmas

If eu •••,«„ is some given basis for a T-space V the scalars (^,ey,et), for all
1 ^ i, j , k ^ n, are called basic products. To define a T-space uniquely it is
sufficient to give a basis eu •••,en and basic products (el,eJ,ek), for all 1 ^ i < j
< k^n.

For each n we define a certain T-space Vn by a basis x, au a2, •••, a2n together
with the basic products

(x,a2«-i>«2i) = - ( x , a 2 j , a 2 i _ 1 ) = . l for i = l,—,n

(x, a,, Oj) = 0 for all other i,j

(a,,aj,ak) = 0 for all i,j,k.

We observe that Vn has a totally singular subspace of codimension 1 and that
the rank of x on this subspace is as large as possible. We note that Vt is the unique
minimal non-singular element of Z.

LEMMA 2.1. / / the T-space U is non-singular then every homomorphism
of U into a T-space V is a monomorphism.

PROOF. Let a: L/-> V be a homomorphism and let x belong to the kernel
of a. Then xa = 0 and so, for all u, veU, (xa, UOL, vet) = 0. Thus, for all u, veU,
(x, u, v) = 0 and so x = 0 as U is non-singular.

THEOREM 2.2. For every T-space V there exists an integer n such that

PROOF. If n is a monomorphism from the non-singular part of V into some
V" then it is easy to see that n can be extended to a monomorphism of V into
Vi+t where s is the dimension of the singular part of V. So, without loss in
generality, we may assume that V is non-singular.

Let eu---,e, be a basis for V and let Ult •••, Vn be all the subsets {e;,e,-,et}

with 1 ^ i < j < k g r. Thus, n = I r I. Suppose that V" is defined by the

basis aubv,c^,a2,b2,c2,---,an,bn,cn together with the basic products (ai,bi,c')
= (bt, cb at) = (cf, at, bt) = - (c,, fcj, Oj) = - (fci5 at, ĉ ) = - («;, cj5 6J = 1, for all
1 ^ i ^ n and all other basic products are zero.

Define maps ym:Vm-^V" by etym = am, efjm = bm, ekym = (e,,e,,ek)cm

where l/m = {e^e^e^ with i <j < k.
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Now define a linear transformation a from V into V" by defining it as follows
on the basis vectors and extending it by linearity.

{ e,ym if e, e Ume,a = en + ••• + eUl where e.m = j 0"
m .f J J

To complete the proof we only have to verify that (e,a, ep, eka) = (ej; ep ek)
for all 1 ^ i < j < k ^ r and then appeal to Lemma 2.1. Suppose that
Um = {eh ep ek} with i<j < k. Then (e,a, e^a, <

= ( e n + ••• + e , n , e y i + ••• + e J n , e k l + ••• + ekn)

= {en,en,ek]) + ••• + (ein,eJn,ekn) by definition of Vf.

But (ei(, e,,, ek/) is non-zero only when en, en and et( are all non-zero and this can
only happen when {et,epek) = Ut, i.e. when / = m.

Hence, (ep, ep.. ekcc) = (eim,eJm,ekm) = (etym, ejym, ekyj

= ("m, bm, (?h ep ek)cm) = {et, ep ek) (am, bm, cm)

= (e,,epek).

The following lemmas exploit our knowledge of alternating bilinear forms.

LEMMA 2.3. Let X be a vector space of alternating bilinear forms on the
vector space V and suppose that, for every S in X, the rank of S is less than 2r.
Then V has a subspace of codimension at most r(r — 1) on which every element
of X vanishes.

PROOF. We prove the lemma by induction on r, the case r = 1 being im-
mediate. We may suppose that X contains a form Sj of rank precisely 2(r — 1).
Then Ui = {ueFlS^u,!) ) = 0 for all veV) is of codimension 2(r - 1). We
shall show that, for every S2 in X, the restriction of S2 to Ut has rank at most
2(r — 2) on Uy. Suppose the contrary, so that some S2 has rank 2(r — 1) on l / j .
Then U2 = {ue V\S2(u,v) = 0 for all ve V} has codimension 2(r - 1) in V
and l/j O U2 has codimension 2(r — 1) in Uy. Thus, we may choose
^ i ° , - " . ^ ( r - i ) as a basis for U modulo Ux n U2 and take the xf, i = 1,2,
j = 1, •••,2(r — 1), as part of a basis for V, and have

S,{x2%ux2
2]) = - SMf, x ^ ) = 1 and

SiixW-uxlfi = - ^ ( ^ ^ j - i ) = 1 for all 1 g j g r - 1

together with SjCx, j/) = 0 and S2(x, y) = 0 for all other pairs of basis elements.
It is then evident that St + S2 has rank 4(r — 1) 2; 2r (since r > 1). This contra-
diction shows that S2 has rank less than 2(r — 1) on Ul. The inductive hypothesis
now yields a subspace Uo of L^ of codimension at most (r — l)(r — 2) in Uy on
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which every element of X vanishes. However,

IV: C/o] = [V: C/J + [U,: C/o] ^ 2(r - 1) + (r - l)(r - 2)

115

LEMMA 2.4. Lef S1,--',Sr be alternating bilinear forms on a vector space
V with the property that every non-zero linear combination Z ' = i a,S,- has rank
at least 4r(r — 1) + 2. Then there exist uu •••,M2re V such that the matrix

~Sl(ul,u2)

Sr("2r-l,"2r) -

is non-singular and S&Uj,uk) = Ofor all other i,j and k.

PROOF. The lemma is proved by induction on r being trivial if r = 1. Assume
that r > 1 and that Su---,Sr satisfy the hypotheses of the lemma and that the
lemma holds with r — 1 in place of r. Then there exist ult •••, u2r_2 in V such
that the r — 1) x (r — 1) matrix

Ji(«i,«2) • S1(M2r_3,M2r_2)

A =

i s n o n - s i n g u l a r a n d S^Up uk) = 0 f o r a l l o t h e r i,j, k i n l ^ i ^ r - l a n d 1 ^ j ,

Let

Y = {ye V\ Sjty,Uj) = 0 for all 1 g i g r and 1 ^ j ^ 2r - 2}

which is a subspace of V of codimension at most 2r(j — 1). To complete the
inductive step it is only necessary to find u2r-u u2re Y so that the r x r matrix
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Sl(«2r-l>«2r) "

[6]

Sr(u2r_i,u2r) _

B

S1(u2r-i,u2r)

Sr(u2r-Uu2r) _

is non-singular. If, for every choice of u2r_1} u2re Y, this matrix is singular then,
for every choice of u2r_u u2re Y, there is a non-trivial dependence relation on
Pu'">Pr> t-ne r o w s of the matrix. However, the dependence relation must be the
same (apart from scalar multiples) for all choices of u2i—1> u2reY because B
has row rank r — 1 and so there is only one dependence relation on the rows of B.
Therefore there exist scalars jSls ••• Pr not all zero such that fi1pl + ••• + firpr = 0
no matter what elements M2I—i> uir a r e taken from Y. Hence PiSl(u2r_1,u2r)
+ ... + j3rSr(M2r-i,M2r) = 0 for all u2,_u u2re Y. But, by Lemma 1.3, ZJ-if tS,
has rank on Y at least equal to Ar{r - 1) + 2 - 2(2r(r - 1)) > 0, which is a
contradiction.

LEMMA 2.5. Let Sx, ••-,Sr be alternating bilinear forms on a vector space V
having the property that every non-zero linear combination S^ ia jS , has rank
at least Ar(r — 1) + 2. Then there exist u, veV such that S1(M,D) = 1 and
S/u,») = 0forall2^j ^ r.

PROOF. The conditions of Lemma 2.4 are satisfied and there exist elements
uu ••• ur, v1; ••• vr of V such that the matrix

Si(«,,«V) • • • • Sr(ur,vr) J

is non-singular and S,(uj,vk) = 0 if j ^ k. If Pi, •••pr are the rows of this matrix
then, regarded as coordinate vectors, they span an r-dimensional vector space
and one can find elements Pi,---Pr of F s u c n that

+PrPr =
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Therefore, / ^ / H ^ ) + - + prSj(ur,vr) = { J |f 2 ̂  j < r-

However, since S,(«y, vk) = 0 if j # k,

^Sj(uuVl) + - + P,Sj(ur,vr) = SJ(fi1u1 + - + prur,Vl + - + vr)

and therefore we may put u = X'=i/?jUf and v = S; = i vt to prove the lemma.

DEFINITION. Let P be an r-dimensional T-space with a basis x ( 1 ) , - , x w .
We define the T-space V(n,r,P,x{1), —,x(r)) by a basis

together with the following basic products:

1) (x ( I ) ,x0 ) ,xw); these are determined by P

2) ( x < W ) = (x(i\xu\b^) = 0

3) ( x « f l « , a i " > ) = (xm,b¥>,b<»>)= 0

4) (x(i),fl«,&<">)«= V / ^ *

in each case the subscripts and superscripts running through all possible values,
and

5) basic products which are determined by

<a,W)A(y)| l ^ i | B , l g j g r ) being totally singular.

In the special case that P is totally singular V(n,r,P,xw,---,x(r)) is iso-
morphic to VT

n, the ith central direct summand being generated by x('\ a['\ b({\

LEMMA 2.6. Suppose that V is a T-space with a totally singular subspace
Vo and an r-dimensional subspace P. Suppose that the rank of every non-zero
element of P on Vo is at least $n2r2 + Ar2. Then V has a sub-T-space isomorphic
to V(n,r,P,x(1\-,xir)) where x(1\--,x(r) is any basis for P.

PROOF. We construct the required subspace by finding elements of Vo

" 1 ! ° 1 > > " 1 > 0 l >a2 > ° 2 > ia2 > ° 2 > > " n >°n

in that order, which satisfy the conditions of the above definition. Suppose that
we have successfully found a\J), b\J) for all 1 g i < m ^ n and 1 ^ j'• ^ r to
construct some subspace U isomorphic to V(m - l,r,P,x(1),---,x(r)). Let
^0 = V0P\Ann(U,U). This has codimension at most 4 m V in Vo and hence
every non-zero element of P has, by Lemma 1.3, rank on Uo at least 8n2r2 + Ar2

- Sm2r2 ^ Ar2 since m g «. Now we can, by Lemma 2.5, choose a^\ b^ e Uo
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to satisfy the correct conditions. Similarly, we can construct a(*\ b%\ •••, ajjr )b%\a j j , ,

LEMMA 2.7. Let V be a vector space on which is defined a function j? taking
non-negative integral values and satisfying

a) P{x + y) ^ P(x) + P(y) and b) P{Xx) = /?(x)

for all x,y e V and XeF — {0}. Suppose that every m-dimensional subspace of
V contains a non-zero vector v such that P(v) ^ n. Then V has a subspace U
of codimension m — 1 such that

P(u) g 2mn for all ueU.

PROOF. Clearly, it is possible to find a subspace U of codimension m — 1
with a basis alt---,ar such that P(ak) g n for all k. By b), every vector in U is a
sum of linearly independent vectors u,- each satisfying P(u^ g n. We complete
the proof by proving, by induction on k, the statement
Pfc: If u1( ••-,uk are linearly independent vectors of U each satisfying

jS(Uj) g n, then /?( £ M , ) ^ 2mn.

P* is true by a) for k = 1,2, •• -,2m. Assume now that k > 2m and that Pt holds
for all i < k. Let ut, •••,u2m, •••,uk be linearly independent vectors of U each
satisfying P(ut) g n. For 1 ^ i ^ m let j f = u2 i_, + u2i so that

uk = 2m+1 + ••• + uk.
Then J'I,•••,}'„ are linearly independent and so (yu---,y^> has dimension m
and therefore contains a non-zero vector w such that /?(w) j£ n. The element w
is expressible as £f=i a^; where not all a, are zero. We may assume, without
loss in generality, that a1 ^ 0 so that

m

i = 2

Thus

Substituting for ux + u2 we can express u as a linear combination of w,«,, "-.Ufc
and these are linearly independent vectors. P t now follows from the induction
hypothesis.

We note that, if U is a subspace of the T-space V, then the rank of x on U is
a function /?(x) which satisfies a) and b) of Lemma 2.7. We have stated the lemma
in more generality than necessary in order to be able to use it in a subsequent
paper.
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3. Proper closed subsets of X

DEFINITION. The set of T-spaces which have a totally singular subspace of
codimension at most r obviously forms a closed subset of X. We call this subset
the rth hyperlayer and denote it by X(r). Obviously, X(l) <=X(2) <= ••• and
U?=1X(r) = X. The main theorem of this section is that a closed subset of X
which is not equal to X itself is contained in one of the hyperlayers.

LEMMA 3.1. Let V be a T-space such that V[% V and let U be any totally
singular subspace of V. Then every r2-dimensional subspace of V contains a
non-zero element whose rank on U is less than I2r2.

PROOF. Suppose, if possible, that X is an r2-dimensional subspace of V
every non-zero element of which has rank on U at least I2r2. By Lemma 1.2,
X has a totally singular subspace P of dimension r. Applying Lemma 2.6 with U
in place of Vo we see that (taking n = 1) V has a sub-T-space isomorphic to
V(\,r,P,xll\ •••,x(r)) where x(1), •••,x(r) is any basis for P. But, since P is totally
singular, this sub-T-space is isomorphic to V[. This contradiction proves the
lemma.

LEMMA 3.2. Suppose that V is a T-space such that V[ $ V and let U be
any totally singular subspace of V. Then there exist subspaces Vo of V and
Uo of U such that

a) [F:F0]^2

b) [U: Uo] ^ 144r8

c) (Fo, Uo, Uo) = 0

d ) l / g Vo.

PROOF. For any xeV define fi(x) to be the rank of x on U. Then

1) P(x + y)^ j8(x) + j8O0 for all x,yeV

2) P(Ax) = fi(x) for all x e V and X eF - {0}.

Moreover, by the previous lemma, every r2-dimensional subspace of V contains
a non-zero element x such that J?(x) < 12r2. We can apply Lemma 2.7 to obtain
a subspace Vo of V such that [ F : Fo] g r2 and P(x) < 24r* for all x e Vo. In
particular, Vo satisfies a).

Since every element of Vo has rank on U less than 24r4, Lemma 2.3 guarantees
the existence of a subspace Uo of U satisfying b) and c). Finally, since (U, Uo, Uo)
= 0, we can replace U + Vo by Vo and satisfy d).

LEMMA 3.3. Let V be a T-space such that V[ $ V. Then V has a totally
singular subspace of codimension at most (2.144r8 + 2r2 + I)2 — 1.
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PROOF. Let U be a totally singular subspace of maximal dimension and take V*
so that U 0 V* = F. If the lemma is false then dim F* ^ (2.144r8 + 2r2 + I)2

and so, by Lemma 1.2, V* has a totally singular subspace W of dimension
2.144r8 + 2r2 + 1. By the previous lemma there exist subspaces Uo ^ U,
Ki} ^ V, Wo g W, Fo

(2> ^ F such that

a) [ F : Fo
(1)] g r2 and [ F : Fo

(2)] ^ r2

b) [[ / : C/o] ^ 144r8 and \_W: FF0] ^ 144r8

c) ( F ^ , t/0, t/0) = 0 and (F«$2), Wo, Wo) = 0

d) 17 g F0
U) and W ^ Fo

w.

If we put ^ = [/0nF0
( 2 ) and fi=fonFo

(l) then a) implies that
\U0:A]^r2 and [ W 0 : B ] ^ r 2 . By b), [C7: A] ^ 144r8 + r2 and [W:B]
^ 144r8 + r2. Moreover, since AnB = 0, dim (/I + B) = dirndl + dimB and
it follows that

dim (,4 + B) ^ dim U - (144r8 + r2) + dim W - (144r8 + r2) = dim C7 + 1.

However, if C = FQ1} C\V<
0
2), C contains both A and B and, by c), (C,A,A)

= (C,B,B) = 0 and hence A + B is totally singular. This contradicts the choice
of U.

THEOREM 3.4. A closed subset ofX which does not contain every T-space is
contained in one of the hyperlayers.

PROOF. Let X be a closed subset of % which is not equal to !I. By Theorem 2.2
there exists n such that F" S v for all VeX. It follows from Lemma 3.3 that
X S 2(m) where m = (2.144n8 + 2n2 + I)2 - 1.

4. The main theorem

In this section we prove the main theorem on T-spaces — that (2,=^) is
a partially well-ordered set. As a corollary of the proof we obtain a description
of all closed subsets of Z.

DEFINITION. Let P be an r-dimensional T-space with an s-dimensional
sub-T-space Q. Let ^(P,Q) denote the closure of the set of T-spaces V which
satisfy the following conditions:

a) V = S@P where S is totally singular and P is isomorphic to P in an
isomorphism X H ! which carries Q to Q

b) (Q,S,S) = Q
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[11] Alternating trilinear forms 121

We note that 5(P, Q) depends not only on P and Q but also on the particular way
in which Q is embedded in P.

The unique T-space V which satisfies a), b), c) and the further conditions
d) P = Q® R where R corresponds to a subspace R of P in the isomorphism

andKhasabasisx(s+1),"-,x(r )

e) (Q,R,S) = 0
f) R 0 S = V(n, r-s, M, Jc(s+1), •••, Jc(r)) in that S has a basis

{a(
t
J\ bjJ> 11 ^ i g «, s + 1 ^ j ^ r} and the basic products of R © S resemble

those of the definition of V(/i,r,P,x(1),-,x(r)) in an obvious way, is denoted by
S(n,r,s,P,Q,R,x(s+1),---,xir)). This also depends on the embeddings of Q and
R into P.

It is easy to see that {S(B,r,s,P,g,R,x( '+1),-,x(r ))}"=1 is an ascending
chain in (X, < ).

LEMMA 4.1. In the notation of the previous definition let V be a T-space
satisfying a), b) and c). Assume that a subspace R ofP and basis x(s+1), •••,x(r) is
chosen so that d) holds. Then, for some n,

V^S(n,r,s,P,Q,R,x(s+1\-,xir)).

PROOF. Let x(1),--,x(s) be a basis for Q. Consider a T-space V isomorphic
to S(n,r,s,P,Q,R,xu+1\ •••,x(r)). We may suppose that it has the following
structure:

1) P = Q®R®S where P is isomorphic to F = Q © R in an isomorphism
x i-yx which carries Q to Q and R to R; in particular, for 1 ^ i,j, k g r,

2) 5 is totally singular
3) (Q,S,S) = 0
4) (£/*,$) = 0
5) 5 has a basis {a<J), 6,°>| 1 ^ i ^ n, s + I ^ j ^ r} where (je^aj

= Sjk8tJdlm, for s + l ^ i j , f e g r and 1 g / , m g n and (jc( 0 ,a^.a^)
= (x(i>, b\J\ b(

m
k)) = 0, for s + 1 g i,;, fc ̂  r and 1 ^ /, m ^ n.

We may assume that V is non-singular; for if we can embed the non-singular
part of V into V then the singular elements may be embedded into 5 if necessary
by taking n to be larger. It is enough to map the basis elements of V into V in
such a way that the trilinear form is preserved, for then we can extend the map
to a homomorphism which, by Lemma 2.1, will be a monomorphism.

Let slf •••,sc be a basis for S and let Uu •••, Up be all the subsets {SJ.S,} with
i <j. Take n to be any integer not less than p + r. For each k = 1,2, --.p define
a map Afc: Uk->S by s A = <4S+1) + ••• + a^r) and SjAk = (Je(1+1),s,,sy)6j|

I+1) +
••• + (xir\st,Sj)bk

r) where i < ; and {siySj} = Uk.
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We now define a linear transformation p of V into Fas follows. For 1 g i <; c,

n=s+l

, f StAk if S; 6 Uk

where sik = { ' .,

[ 0 otherwise.

For 1 ^ k ^ r,

Jc(k)j8 = Jcw + £ y^fc^p where ykl = 1 if fc < / and 0 if k Z I-

To show that ft is a monomorphism we have to verify

A) (x(%xU)p,x(k)p) = (x(i\xU),x(k)) for all 1 ^ ij.fc g r,

B) (s,P,SjP,skP) = (Si,Sj,sk) for all l g i j . H c ,

C) (x(u)^, s^, swP) = (x(u), sv, 5W) for all 1 g M ̂  r and 1 ̂  v < w <; c,

D) (x(u)p,xMp,swP) = (xM,xM,sw) for all 1 ^ u < v ^ r,l ^ w ^ c.

r r r

l=s+l l=s+l l=s+l

B) This follows since both sides are equal to zero.

n = r

= (x ( u ) , s u l H — + svp, swl + ••• + swp), from the definition of V, and so

rO if u > s

2, (x ,svi, swi) if u ^ s

by definition of V. Now, if {sv, sw} = Uk, then (x(u), svi, swi) is non-zero only when
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both svi and swi are non-zero and this occurs only when both sv and sw belong to
V,, i.e. when i = k. Thus,

0

0

(*(u),

0

z* ak ,

if

if

if

if

if

y CY(° <! ^ u ( / ) if

u

u

u

u

u

u

VII

>

VII

>

VII

>

s

s

s

s

s

s.
1=5+1 1=S+1

Using again the definition of V we have

rO if u

{
if u > s

i f u g s

i f u > s

= (x(u) s s )

= ( ^

if u i

i =

'• s.

s + l

f 1 ^

n =r

since

yvlbl'lP,

m = l

4 - / V v h(i) v("> V Ci?(m) r ( n ) s ^/7(n)

+ 1 •£< yui°u+p>x , ZJ (x ,x ,sw)ap+
\ l=s+l m = l

n=s+l

— / v ( u ) y •» h(° y CJE(I>) JE W t ^a(n)

— IX , ZJ 7t'l°t! + p> •" \ x >X >sw)av +
\ l=s+l n=s+l
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(=s+l n=s+l

0 if 1 g U < V g S

(yuXvlP,xiv\(x(u\x^,sJaiip) if l g « g

fO if 1 ̂  u < v ̂  s

\( jc ( u ) ,x ( t > ) ,s j if 1 ̂  « ̂  r and s < « g r since y80 = 1

and ym = 0

= (xw,xw,sj if l^u<v^r since (Jc(u),x(l1),sw) = 0

if 1 g u < v ̂  s.

Thus, A), B), C) and D) are all true and hence /? is a monomorphism
of F into F. Therefore F is isomorphic to a sub-T-space of F and hence
V < S(n, r ,s ,P, 2 , i? ,x ( s + 1 ) , -,xir)) as required.

The next lemma is, in some sense, a converse of Lemma 4.1, for it gives a
condition under which a T-space of %(P, Q) has a subspace which is isomorphic
to S(n, r,s,P,Q,R,x(s+1), •••,x(r)). We shall use both lemmas at the end of the
proof of Lemma 4.3 to deduce that g(P, Q) is the closure of a certain set of
T-spaces.

LEMMA 4.2. Let V be a T-space which satisfies conditions a), b)
and c) of the definition of $(P, Q). Assume that a subspace, R, of P and a basis,
x<-s+1),---,xir\ of R is chosen so that d) holds. If every element of R- {0} has
rank on S at least %n2r2 + 6r2 then S has a subspace S t such that

P®St is isomorphic to S(n,r,s,P,Q,R,xis+i\---,x(r)).

PROOF. Let So = S n Ann (Q, R) so that [SISQ] g rs ^ r2. Hence, by
Lemma 1.3, every element of R — {0} has rank on So at least Sn2r2 + 6r2 — 2r2

= 8n2r2 + 4r2. We may now apply Lemma 2.6 to R®S0 (with R in place of P
and So in place of Fo). This yields a subspace, Slt of So which satisfies

ii) R®S1 = V(n,r-s,R,x(s+1),-,xir)).
It follows that P®St is isomorphic to S(n,r,s,P,Q,R,x(s+1\---,x(r)).

LEMMA 4.3. Let X = {V^^Li be an infinite set of T-spaces whose closure
is not X itself. Then there exists a subset ofX whose closure is ^(P, Q)for some
T-space P and sub-T-space Q of P.
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PROOF. We shall prove this lemma by successively replacing X by suitable
subsets until we obtain one with the right property.

Since cl3£ # X, Theorem 3.4 implies that, for some integer k, X £ Z(k).
Each T-space Ff of X has, therefore, a decomposition At © Ut where dimAf ^ k
and Ut is totally singular. Since F is finite, there are only a finite number of
possibilities for At (up to isomorphism of T-spaces) and one of these possibilities
must occur infinitely often. Hence, if we replace X by a suitable infinite subset,
we may assume that At £ A for all i.

For each i and xeA write x(i) for the element of At which corresponds to x
in the isomorphism of A with At. Write r/x) for the rank of x(i) on Ut.

We choose a subset, C, of /I maximal under inclusion with respect to the
following property: there exists a subsequence nl,n2,--- of 1,2,••• such that
rm(x) -> oo as i -» oo for all xeC. Since 4̂ is finite and we allow the possibility
that C may be empty, C certainly exists. Let B = A — C. We shall show that B
is a subspace of A Let beB. If rn((i) is not bounded as i-> oo there exists a
subsequence m1,m2, ••• of n1,n2, ••• such that rm((fr)->oo as i->oo and hence
''miW -• oo as j -> oo for all x 6 {b} U C and this contradicts the maximality of C.
Thus B consists precisely of those elements xeA for which rn.(x) is bounded
as i -+ oo. It follows from the relations

rn(x + y)£ rn{x) + rn(y), rJL«x) = rn(x) if a # 0 and rn(0) = 0

that B is a subspace. Replacing X by {Fni}7=1 we may assume that rn(x) is bounded
as n -* oo if x e B and rn(x) ->ooasn-+ooif;»cey4 —B.

Let bu •••, b, be a basis for 2J and let

There exist integers hu---,ht such that /•;(&,) ^ ft; for all i. Thus, for all i and
for j = 1,2,—.f, the subspace

DiJ = {xeUi\(bj(i),x,Ui) = O}

has codimension at most hj in C/j. Let Df = (~}t
J=1DiJ. Then, for each i, Dt has

codimension at most h = Ey=1/i,. in U( and (£(, Dj, [/;) = 0. Let S, = D{

nAnn(Bi,B,) so that, by Lemma 1.1, [£>4: S,] g t2 and hence [C7;: SJ ^ t2 + h.
Moreover, (B^B^S.) = (B,-,^, C/,) = 0.

Now, for each j , choose a subspace, T,-, such that Ut = St(BTt. Since
dim Tf ^ t2 + h, there are only a finite number of possibilities for Tf (up to
isomorphism of T-spaces) and so one of these possibilities must occur infinitely
often. By replacing X by a suitable subsequence we may assume that Tt s T for
all i.
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As before, for each i and t e T, write t(i) for the element of T, which corres-
ponds to t in the isomorphism of T with Tr Extend the basis bu •••, b, of B to a
basis bu---,bt, ••-,bu of A and let (l9 ••-,(„ be a basis for T.

For each i consider the basic products formed with the elements b^i),
•••,fcu(i),*!(i). •••>*u(0 (which form a basis for At@T^. Those basic products of
the form (b1(i), bm(0> &n(0) a n d 0i(0> *m(0> '„(')) a r e independent of i, while
there are only a finite number of possibilities for the U X U X D array (b,(i),bm(i),
tn(i)) and for the uxvxv array (bfr),tm(i),tn(i)). Thus, as usual, we may replace
X by a suitable subsequence so that the uxuxv array (fo,(0»2>m(0>'n(O) is in-
dependent of i and then replace (the new) X by a subsequence so that the u • v • v
array (bt(i), tm(i), tn(i)) is independent of i. Then all the sub-T-spaces A. © T, are
isomorphic to some T-space of the form A © T in isomorphisms in which At

corresponds to A, Bt to B and Q to C.

Let P = A® T, Q = B®T and choose R ^ A so that B © R = ^ . Write
PhQi,Rt for the sub-T-spaces of y4{© Tt which correspond to P,Q,R. Then, for
each /, the following conditions hold.

a) F; = S; © P,, Sf totally singular

b) (6«,S,,S|) = 0, because (^St^d = ( B ^ S , ) = 0

c) (Qt,Qi,Sd = 0, because (T^T^S.) = ( B ^ S J = (T^B^,) = 0.

Thus, X £ 5(P,Q). Moreover, P = Q®R. Since i? - {0} s ^ - B it follows
that r,(x) -+ oo as i -v oo for all x GR — {0}. However, since [ t / f : S,"J is bounded
independently of i by t2 + h, it follows that, for all x e R — {0}, the rank of x(i) on
S( tends to infinity with i. Thus, by Lemma 4.2, c l£ contains S(n,r,s, P,Q,R,
x(s+1),,---,xir)) for every n (where r = dimP, s = dim Q and xis+1),---, x(r'is a
basis for R). Hence, c l£ = g(P, <2) by Lemma 4.1.

THEOREM 4.4. (%, ̂ ) is a partially well-ordered set.

PROOF. Since % consists of finite dimensional vector spaces it is obvious
that (X, ^ ) satisfies the minimum condition. Let X be an arbitrary infinite subset
of X. We wish to show that there exist distinct T-spaces U, V eX such that U < V.
If X contains an infinite ascending chain 3) such that c\X = cl?) then we can
take any UeX, find Y1 e 9) with U < Yu find Y2 e 3) with Yt < 72 and Yj / 72

and then find VeX with Y2 ^ V. If cl3£ = X we can, using Theorem 2.2, take
{lTK°=i as9).Ifcl3£ ^ X then, by Lemma 4.3, we can suppose that c\X = %(P,Q)
and then, using Lemma 4.1, take {S(n,r,s,P,e,.R,;c( '+1),"-,x(r ))}r=i as 3).

Another obvious consequence of Lemma 4.3 is that every closed subset of
X is the union of the g(P, Q) which it contains together with finitely many other
T-spaces.
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5. Varieties of groups

In this section we survey the main steps in proving the following theorems

THEOREM 5.1. / / m is any integer coprime to 3 then AmB3 is hereditarily
finitely based.

THEOREM 5.2. B6 is hereditarily finitely based.

We begin by indicating how Theorem 5.2 can be deduced from Theorem 5.1.
The fact, due to Hall in [2], that B6 is locally finite implies that it is generated by
its critical groups. Now, a critical group of exponent 6 has 2-length and 3-length
equal to 1 (see [3]) and from this it follows that every critical group of exponent
6 belongs either to A2B3 or B3A2 and, as B3A2 is a Cross variety, it suffices to
prove that A2B3 is hereditarily finitely based. But this follows from Theorem 5.1.

To prove Theorem 5.1 the first step is to use some arguments due to Higman
in [4] to reduce to the case where m is a prime p not equal to 3.

In this case a critical group G of ApB3 — B3 is a split extension G = NT
of a normal elementary abelian p-subgroup N and a group T of exponent 3.
Because N is a faithful irreducible module for T it follows that T has cyclic
centre Z. By counting conjugacy classes in T and TjZ it can be shown that T
has exactly two absolutely irreducible faithful representations and then, by studying
automorphisms of T, one can prove that, up to similarity, there is only one
possibility for the representation of T on N. Thus, T determines G up to iso-
morphism.

If we regard T/T' as a vector space over GF(3) then the commutator function
[x,y,z] induces an alternating trilinear form on T/T'. It is possible to show that
this form uniquely determines T. Thus, the critical group G determines and is
determined by a certain T-space VG.

Now the Kovacs and Newman theory of minimal representations is applied
(see Chapter 5 of [5]) and from this it follows that the subvarieties of ApB3 are in
1 — 1 correspondence with the factor closed sets of critical groups in APB3.
Thus, to prove Theorem 5.1 it suffices to prove that these factor closed sets of
critical groups satisfy the minimal condition under inclusion; or, equivalently,
that the set of critical groups is partially well-ordered under involvement. It is
necessary, therefore, to consider conditions which guarantee that one critical
group H is a factor of another critical group G. One can show that a sufficient
condition for this is that VH ^ VG and then Theorem 4.4 completes the proof.
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