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Abstract

This paper provides explicit formulas for the Wall polynomials which arise in Wall's work on
conjugacy classes in the unitary, symplectic and orthogonal groups. From these explicit formulas are
easily derived six interesting limiting identities including the two that arise in the Lusztig-Macdonald-
Wall conjectures.
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1. Introduction

G. Lusztig in his pathbreaking paper on the representation theory of the finite
classical groups [4] found that the following polynomials and associated limits
were essential when dealing with the case of characteristic 2.

Let us define polynomials xn = Xn(
a> b, <7) by X-i = a, x 0 = b and for n s* 0

0-1) Xln+X=Xln + <l2n+'X2n-^

Now define x(a, b, q) — hmn^00 xn(
a, b, q). Then it turns out that
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18 George E. Andrews [21

and

Identities (1.3) and (1.4) were first established in [2]. Subsequently A. Garsia

and J. Remmel [3] made an extensive combinatorial study of the proof given in [2]

and provided many insights and simplifications surrounding the development.

However, both [2] and [3] tend to focus on the actual limit functions x ( « , b, q)

and regard the polynomials xn(
a> b> i) a s means to this end.

The polynomials x«(a> b, q) were first defined by G. E. Wall [5], and so we

have called them "Wal l Polynomials". The object of this paper is to provide

explicit formulas for the Wall polynomials which allow one to prove not only

(1.3) and (1.4) (the L-M-W conjectures) but (3.5)-(3.8) as well. These explicit

formulas are given in Theorem 1 whose proof occupies Section 2. Section 3 is

devoted to the limiting results described above, and Section 4 discusses some

obvious open questions.

IBM's symbolic manipulation language S C R A T C H P A D was instrumental in

the discovery of (3.5)-(3.8) and in the determination of (2.4)-(2.7). Indeed the

ease with which (2.4)-(2.7) were discovered illustrates the great utility of

S C R A T C H P A D in problems of this type.

The following tables (produced by SCRATCHPAD) present the first few Wall

polynomials:
TABLE 1

n
0
1
2
3
4
5
6 1 4

• i
/

3<7 + 4?2

1 + 3?-

n

0
1
2

3
4
5

6

?

1 + 3 ?
l + 3 ? + 4?2 +

4- 7?3 +11?" +
1- 4?2 + Iq3 + 1

+ 9?"

1 -f
1+9 + 3

1 + q + 3q

+4q9

l + ? + 3?24

+ 5ql0 +

1 + 3c
+ 4?2

5q3 +
Uq5 +

I?4 + 1
+ 7?12

- ? + 3
?2 + 2
2 + 4q

+ 3q10

-4q3-\

4 ? " +

Xn(U.<7)
1

l+q
+ 3q + 2?2

? + 2<?2 + <73

+ 5?3 + 5 /
5 / + f?5 +
13?6 + 14(/7

II?5 + 13?6H

+ 5?13 + 2?1

TABLE 2

Xn(0,1, q)
1
1

\+q + q-
l+q + q2 +
q2 + 2?3 + 3
?3 + 3?" + 2
3 + 5?4 + 64

+ ?"+<?
1 2

- 5q* + 6q5 H

3?'2 + 2?13

+ 1A

+ 4?5

5?6 +
+ 11?8

h 15?7

4 + ?15

q3

q4 + q
q5 + 2,
'5 + Iq'

-7?6 +

+ ?"4

+ 2?6

2?7 + q« + ? '
1 + 9?9 + 6?10

+ 14?8 + 13<7S

+ ? "

5 + I6

q6 + J + q»

' + 6q1 + 6q*

Iq7 + 7?8 + 1

2qn
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2. The main theorem

For the statement and proof of this theorem we require some simple facts about
Gaussian polynomials:

B<0,

where A is a nonnegative integer and B is any integer.
These polynomials satisfy

from [1, page 35, equations (3.3.3) and (3.3.4)].

THEOREM 1.

(2-4) X 2 - .

(2-5) X 2 - ( l , l . . ) = J

(2-6) X2,-i(0,

PROOF. We only show that the proposed representations of these polynomials
actually satisfy the recurrences (1.1) and (1.2) together with the appropriate initial
conditions. The theorem then follows by mathematical induction.

We treat (2.4) and (2.5) first. Define P(n, m) by

j=-co L J
j=-co

Then by replacing j by -y, we see that

(2.9) P(«,i«)
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and

(2..0) H..m)=2j[;X-_\]+f«\*t;{J
1]y (by(2.2))

> = - o

= />(« - 1, m) + q"~lP(n - 2, m + 1).

Now define

(2.11) *,,,_, =P (n ,» ) >

and

(2.12) X,n = P(n + 1, n) + ? T ( H + 1, n - 1).

Clearly X , = Xo = l,and
(2.13)

X2H+l=P{n+l,n+l)

= P(n, n+l) + q"P(n - 1, n + 2) (by (2.10))

= P(n + 1, n) + ^"/'(n + 2, n - 1) (by (2.9))

= P(» + 1, n) + q"(P(n + 1, n - 1) + 9
n + 1P(n, «)) (by (2.10))

Also
(2.14)

Xm+2 = Hn + 2, n + 1) + q"+xP(n + 2, n)

= P(n+l,n+l) + qn+lP(n, n + 2) + q"+1P(n + 2, n) (by (2.10))

= X2n+i + 2qn+lP(n + 2, n) (by (2.9) and (2.11))

= *2*+, + 2qn+\P{n + 1, n) + ?"
+1i>(«, n + 1)) (by (2.10))

= X2n+] + 29"+ ' ( l + q"+l)P(n + 1, „) (by (2.9))

+ qn+](l + qn+x){P(n, n) + qnP{n - 1, « + 1))

*2n+.+<7'I+1(l+<7'I+1)*2n-,

+ <7"+l(l + qn+])(P(n + \,n) + qnP(n + 1, « - 1)) (by (2.11) and (2.9))

X2n+X + q"+l(l + q"+x){X2n + X2m.t)

% + 1 +(l- q^)X2n_x) (by (2.13)).
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Thus the polynomials Xn satisfy the initial conditions X_x = Xo = 1 and (1.1) and
(1.2). Consequently

(2.15) Xn = Xn{\A,q) f o r a l l n > - l .

Combining (2.15) with (2.11) and (2.12), we see that (2.4) and (2.5) are estab-
lished.

For (2.6) and (2.7) we define

(2-16) G.(»,*)

Now
(2.17)

- Qa(n -l,m)+ q"Qa-i(n ~ 2, m + 1),

and

j»a+ 1

= efl(«, m - 1 ) + 9
m"2ef l+,(« + 1 , in - 2).

Next define

(2.19) y2n_, = g 0 ( « - i , « + i),

and

(2.20) Y2n = Qo(n,n+\) + q»Qi(n,n).

Clearly 7 , = 0, Yo = 1, and

(2.21) Y2n+i = Qo(n,n + 2)

= QQ(n, n + 1) + 9"e,(ii + 1, n) (by (2.18))

= Y2n - q"Qx{n, n) + q"Qx{n + 1, n) (by (2.20))

= Y2n + q2"+iQ0(n-l,n+\) (by (2.17))

(by (2.19)).
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Finally

(2.22)

Y2n + 2 = Qo(n +l,n + 2) + q"+lQx{n + 1, n + 1)

= Y2n+] - Q0(n, n + 2) + Q0(n + 1, n + 2) + 9 " + l G , ( « + 1, «,) (by (2.19))

= ^2«+1 + q"+'Q-x(n - 1, /i + 3) + 9 " + 1 e , ( « + 1, « + 1) (by (2.17))

- G o ( » - l , » + 3)

+ Q0(n + l,n+ l)-\2n+?]) (by (2.16))

= Y2n+l + qn+i(Q0(n - 1, n + 3) + Q0(n +\,n+ 1))

+ Go(« - 1, « + 3) + Go(» + 1, « + 1)) (by (2.19))

= ^2«+i + ( ? " + l + 12"+2)(Y2n-i + Y2n)

- (1 + 9"+ 1)(G0(n, « + 1) + q"Qx{n, n))

+ Q0(n - 1, « + 3) + G0(« + 1, « + 1)) (by (2.20))

+ q"+1{-\(\ + q"+l)Q0(n - 1, « + 1 ) - (l + q"^)

•(Q0(n,n+l) + q"Q,(n,n)) f Q0(n - \,n + 2)

+ qn+xQ,(n, n + 1) + Q0(n + 1, n + 1)) (by (2.18))

Y2n)

(1 + q"+l)Q0(n -l,n+ l)~ (l + q»+i)

• { Q 0 ( n , n + 1) + 9 " e , ( « , « ) ) + G o ( » - l , « + 0

« + 1 , » + 1 ) ) (by (2.18))
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= ^ + (qn+1 ,{ ,

- QQ(n, n + 1) - q"+lQ0(n, n + 1) - 9
2"+1G,(;t, »)

+ ?"+1fi,(«, n + 1) + Q0(n + 1, » + 1)

= Y2m+l + (q»+i + q2n+2){Y2n_x + Y2n) - q"+*Q0(n - 1, n

- Qo(", n + 1 ) - g
2 " + 1 e , ( « , / , ) + Q 0 ( n + 1 , n + l ) - 9 « [

(by (2.16))

Y2n) - q"+lQ0(n - 1, « + 1)

q2n+lQl(n,n) + q"+iQ_](n- 1, „ + 2) - 9»+ I[2« + l ] (by (2.17))

(by (2.16))

+ qn+\Qo(n - l ,» + 2) - <20(« - i ,« + i) - g-G,(ii,«))

= Y2n+] + (9"+1 + ^" + 2 ) (y 2 n _ , + Y2n) (by (2.18))

= Y2n+i + (?"+ 1 + 92"+2)(^2n+1 + (1 - q2n+x)Y2n.x) (by (2.21)).

Thus the polynomials Yn satisfy the initial conditions Y_x = 0, Yo = 1 and (1.1)
and (1.2). Consequently

(2.23) yB = xB(0,l,9) f o r a l l n ^ - 1 .

Combining (2.23) with (2.19) and (2.20), we see that (2.6) and (2.7) are estab-
lished.

3. The limiting identities

It should be pointed out that Wall polynomials possess other striking limits
that are neither addressed in [2] and [3] nor are obviously amenable to the
techniques developed there. In order to consider these new limits we must reverse
the Wall polynomial. That is, define

(3.1) *2»0.1.?) = ?"1 + "X2»0.1,?"1).

(3.2) « 2 , - i 0 . 1 . ? ) = ?"X2 l , - , ( l . l ,?-1) ,
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24 George E. Andrews [8|

(3-3) R2n(0,l,q) = q"2+"x2n{0>hq-1),

(3-4) R2n-x(0,\,q) = q"2-*X2n-i(hhq-1).

Inspection of the recurrence relations (1.1) and (1.2) shows that the Rn's are all
polynomials in q with nonzero constant term. Furthermore the empirical ex-
amination of extensions of Tables 1 and 2 leads one directly to conjecture the
following results:

22°°_ a3j2+2J

(3.5) lim R2Jl,l,q)= J~~, r

„=>

(3,)

= n

2
(3.8) l i m J t 2 . _ , ( 0 , l , g ) = J

11

In order to deduce the six limiting identities we need only two observations:
First, for fixed integers a and b:

Second if q is replaced by q~x in the Gaussian polynomial [#], the result is

(3.10) f"""
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[91 The Wall polynomials and the L-M-W conjecture 25

N o difficulties arise when we pass limits inside the summation signs as long as

| q | < 1 for then the quadratic exponent on q dominates all convergence questions.

P R O O F OF (1.3). Clearly by (1.1) Xin and Xin+\ converge to the same limit (if
any). Hence

(4.3) x O , l , t f ) = to X2n-X(\,\,q) = lim 2

= I P ^ ~ ^ ) ( b y ( 2 - 4 ) ) -

PROOF OF (1.4). As above

(4.4) x (0 ,1 ,q) = Urn x 2 n - ,(0,1, ?) = lim f [ _2" _ 1 ̂ 2+^
n-«oo n->oo / = 0 L " J V J

PROOF OF (3.5).

(4.5)

Um / ? 2 n ( l , 1, q) = lim

= lim

(wherey -^ -> - 1 in second sum) .

The second portion of (3.5) follows directly from an application of Jacobi's triple

product identity [1, page 21] to the numerator above.

Identities (3.6), (3.7) and (3.8) follow in precisely this manner.
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26 George E. Andrews 11 o 1

4. Conclusion

The most obvious questions arising from this work are:
1. Is there a reasonable combinatorial interpretation of Theorem 1? In particu-

lar can the "lattice path" setting of Garsia and Remmel [3] be used to prove
Theorem 1?

2. Are equations (3.5)—(3.8) relevant in group theory? As previously noted, (1.3)
and (1.4) are.

3. Since

(4
(1 - « ) 0 -I1) • • • ( ! - q"+m)

= " (1 - qln+1){\ + f V y + 1 ) ( l + u2r2q2n+l)
„=„ {\ - uq")(\ - tq")

can one deduce properties of the xn0> 1. <?) from this result?
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