BULL. AUSTRAL. MATH. SOC. VOL. 31 (1985), 181-184.

THE POWER CONCAVITY OF SOLUTIONS OF SOME SEMILINEAR ELLIPTIC BOUNDARY-VALUE PROBLEMS

GRANT KEADY

Let Ω be a bounded convex domain in \mathbb{R}^2 with a smooth boundary. Let $0 < \gamma < 1$. Let $u \in C^2(\Omega) \cap C(\overline{\Omega})$ be a solution, positive in Ω , of

 $-\Delta u = u^{\gamma} \quad \text{in} \quad \Omega \quad ,$ $u = 0 \quad \text{on} \quad \partial \Omega \quad .$

Then the function u^{α} is concave for $\alpha = (1-\gamma)/2$.

Let Ω be a bounded convex domain in \mathbb{R}^2 with a smooth boundary. To avoid some minor technicalities, assume that the curvature on $\partial\Omega$ is uniformly bounded away from zero. We give a new proof of the following theorem, using techniques which generalise those of Makar-Limanov [6] $(\gamma = 0)$ and of Acker, Payne and Philipin [1] $(\gamma = 1)$.

Let u be any positive function on Ω . The function u is said to be α -concave, for $\alpha > 0$, if u^{α} is concave. The function u is said to be 0-concave, or log-concave, if log u is concave.

THEOREM 1. Let $0 \le \gamma \le 1$. Let $u \in C^2(\Omega) \cap C(\overline{\Omega})$ be a solution, positive in Ω , of

Received 11 September 1984.

Copyright Clearance Centre, Inc. Serial-fee code: 0004-9727/85 \$A2.00 + 0.00.

(P)
$$\begin{cases} -\Delta u = u^{\Upsilon} \quad in \quad \Omega , \\ u = 0 \quad on \quad \partial \Omega . \end{cases}$$

Then the function u is a-concave for $0 \le \alpha \le (1-\gamma)/2$.

Concerning the interior regularity needed in the proof, it is known that any solution $u \in C^2(\Omega)$ is in $C^{\infty}(\Omega)$.

Theorem 1 was first proved in a University of Adelaide PhD thesis by Kennington [4]. Kennington's proof actually establishes the theorem in \mathbb{R}^n (with $n \ge 2$). Kennington's techniques are clever extensions of those of Korevaar [5]. Korevaar used his techniques to establish the result in the case $\gamma = 1$. A similar proof, again for $\gamma = 1$, appears in Caffarelli and Spruck [2].

The proof of Theorem 1 below is just one application of the Maximum Principle (Protter and Weinberger [7], Sperb [8]) in the following form.

MAXIMUM PRINCIPLE. Let $\Theta \in C(\Omega)$ with $\Theta \ge 0$. Let $Z = \{z \in \Omega \mid \Theta(z) = 0\}$.

Let $I \in C^2(\Omega)$ satisfy

$$-\Delta I + \frac{\mathbf{A} \cdot \nabla I}{\Theta} + A_0 I = 0 ,$$

(1.1) I > 0 in a neighbourhood of $\partial\Omega$,

where **A** and A_0 belong to $C(\Omega)$ with $A_0 \ge 0$. Suppose that I > 0 at points of Z. Then $I \ge 0$ in Ω .

Note that the only use of the hypothesis on the curvature of $\partial\Omega$ is to guarantee (1.1). In the application to Problem (P), with $\gamma > 0$, the boundary condition is

 $I(z) \rightarrow +\infty$ as $z \rightarrow \partial\Omega$.

(Note also that the coefficient A_0 is singular at the boundary.)

The quantity I is the most obvious generalisation of that used in [6] and [1], namely $I = I_{\alpha}$ with $\alpha = (1-\gamma)/2$. Here, if $0 < \alpha < 1$,

(1.2)
$$I_{\alpha} = \frac{u^{2} \operatorname{Hessian}(u^{\alpha})}{\alpha^{2}(1-\alpha)} = \frac{u^{2} \left[\left(u^{\alpha} \right)_{xx} \left(u^{\alpha} \right)_{yy} - \left(\left(u^{\alpha} \right)_{xy} \right)^{2} \right]}{\alpha^{2}(1-\alpha)}$$

If $\alpha = 0$,

$$I_0 = u^2$$
 Hessian(log u)

For a positive superharmonic function u, establishing that $I_{\alpha} \ge 0$ in Ω is establishing that u is α -concave. (In the case $\gamma = 0$ our notation is exactly as in [6], that is $I = I_{\frac{1}{2}}$. In the case $\gamma = 1$ our $I = I_0$ is $\Phi/2$ where Φ is defined by equation (2.1) of [1].)

Define

(1.3)
$$P_2 = |\nabla u|^2 + \frac{2u^{\gamma+1}}{1+\gamma}$$

(The notation is that of Sperb [8].) The explicit formulae for the coefficients A_{0} , A and Θ are as follows:

$$A = A_{1} + A_{2} \nabla I ,$$

$$A_{2} = -8u^{1+\gamma}(1+\gamma) ,$$

$$A_{0} = \frac{|\nabla u|^{2}}{u^{2}} \gamma(1-\gamma) ,$$

$$A_{1} = 2\gamma(1+\gamma) \frac{P_{2}}{u} \{2u \nabla P_{2} - (1+\gamma)P_{2} \nabla u\}$$

and

$$\Theta = \left(4uu_{xx} + 2u^{1+\gamma} - (1+\gamma)\left(u_x^2 - u_y^2\right)\right)^2 + 4\left(2uu_{xy} - (1+\gamma)u_x^2 u_y\right)^2$$
$$= -8u^{1+\gamma}(1+\gamma)I + P_2^2(1+\gamma)^2 .$$

The form of the equation was discovered using the earlier results of [6] and [1] as a guide.

The coefficients were determined in the order, first A_2 , then A_0

and finally A_1 . The only important detail is the sign of A_0 . Further details are given in the research report, Keady [3]. The calculations were sufficiently intricate that the computer algebra system, REDUCE, was used. The REDUCE programs are given in Keady [3].

References

- [1] A. Acker, L.E. Payne and G. Philippin, "On the convexity of level lines of the fundamental mode in the clamped membrane problem, and the existence of convex solutions in a related free boundary problem", Z. Angew. Math. Phys. 32 (1981), 683-694.
- [2] A. Caffarelli and J. Spruck, "Convexity properties of solutions to some classical variational problems", Comm. Partial Differential Equations 7 (1982), 1337-1379.
- [3] Grant Keady, "The concavity of solutions of $-\Delta u = u^{\gamma}$ " (Research Report, 30. Centre for Mathematical Analysis, Australian National University, Canberra, Australia, 1984).
- [4] Alan U. Kennington, "An improved convexity maximum principle and some applications" (PhD thesis, University of Adelaide, Adelaide, 1984). See also: Abstract, Bull. Austral. Math. Soc. 31 (1985), 159-160.
- [5] N.J. Korevaar, "Convex solutions to nonlinear elliptic and parabolic boundary value problems", Indiana Univ. Math. J. 32 (1983), 603-614.
- [6] L.G. Makar-Limanov, "Solution of Dirichlet's problem for the equation $\Delta u = -1$ in a convex region", *Math. Notes* **9** (1971), 52-53.
- [7] H. Protter and H.F. Weinberger, Maximum principles in differential equations (Prentice Hall, Englewood Cliffs, New Jersey, 1967).
- [8] R. Sperb, Maximum principles and their applications (Academic Press, New York, London, 1981).

Department of Mathematics, University of Western Australia, Nedlands, Western Australia 6009, Australia.