A CLASS OF HARMONICALLY CONVERGENT SETS

TORLEIV KLØVE

Communicated by B. Mond
(Received 17 April 1974)

1.

Following Craven (1965) we say that a set M of natural numbers is harmonically convergent if

$$
\begin{equation*}
\mu(M)=\sum_{n \in M} \frac{1}{n} \tag{1}
\end{equation*}
$$

converges, and we call $\mu(M)$ the harmonic sum of M. (Craven defined these concepts for sequences rather than sets, but we found it convenjent to work with sets.) Throughout this paper, lower case italics denote non-negative integers.

Let $r>1,1 \leqq m \leqq r$, and $0 \leqq d_{1}<d_{2}<\cdots<d_{m}<r$. We define

$$
\begin{equation*}
M(t)=M\left(r ; d_{1}, d_{2}, \cdots, d_{m} ; t_{1}, t_{2}, \cdots, t_{m}\right) \tag{2}
\end{equation*}
$$

to be the set of natural numbers which contains the digit d_{i} exactly t_{i} times ($i=1,2, \cdots, m$) when expressed in the scale of r. Further, let

$$
\begin{aligned}
M_{\lambda}(t) & =\left\{\left[n^{\lambda}\right] \mid n \in M(t)\right\} \\
M_{\lambda}^{0}(t) & =\left\{\left[n^{i}\right] \mid n \in M(t), n<r\right\} \\
T & =\sum_{i=1}^{m} t_{i} \\
T^{*} & =\prod_{i=1}^{m}\left(t_{i}!\right)
\end{aligned}
$$

where $[x]$ denote the least integer $\geqq x$ and $0!=1$. Note that $M_{\lambda}^{0}(t)$ is empty if $T>1$. We prove the following theorems.

Theorem 1. If $d_{1}>0$ and $\lambda>\log (r-m) / \log r$, then

$$
\begin{aligned}
\mu\left(M_{\lambda}(t)\right) \leqq \mu\left(M_{\lambda}^{0}(t)\right)+\frac{T!r^{\lambda}}{T^{*}\left(r^{\lambda}-r+m\right)^{T+1}} & \left(\sum_{n=1}^{r-1} \frac{1}{n^{\lambda}}-\sum_{i=1}^{m} \frac{1}{d_{i}^{\lambda}}\right) \\
& +\frac{(T-1)!r^{\lambda}}{T^{*}\left(r^{\lambda}-r+m\right)^{T}} \sum_{i=1}^{m} \frac{t_{i}}{d_{i}^{\lambda}}
\end{aligned}
$$

THEOREM 2. If $d_{1}>0, m<r$, and $0 \leqq \lambda \leqq \log (r-m) / \log r$, then $M_{\lambda}(t)$ is not harmonically convergent, i.e. $\mu\left(M_{\lambda}(t)\right)=\infty$.

2.

To prove the theorems, we first prove some lemmata. We assume throughout that $d_{1}>0$.

Lemma 1. For $l \geqq 1$ we have

$$
\begin{aligned}
& \sum_{\substack{0 \leqq b<r^{l} \\
b \in M(1)}} 1=\frac{l!(r-m)^{l-T}}{T^{*}(l-T)!} \text { if } l \geqq T \\
&=0 \quad \text { if } l<T .
\end{aligned}
$$

Proof. The case $l<T$ is obvious. Let $l \geqq T$. If $b<r^{l}$ then

$$
b=\sum_{j=0}^{l-1} b_{j} r^{j} \text { where } 0 \leqq b_{j}<r
$$

The sum in the lemma equals the number of ways we may choose ($b_{0}, b_{1}, \cdots, b_{l-1}$) such that $b_{j}=d_{i}$ for exactly t_{i} values of $j(i=1,2, \cdots, m)$. The T element of which t_{i} have value d_{i} may be chosen in

$$
\frac{l!}{t_{1}!t_{2}!\cdots t_{m}!(l-T)!}
$$

ways, and for the remaining $(l-T)$ elements there are $(r-m)$ possible choices. This proves the lemma.

Lemma 2. For $\lambda>\log (r-m) / \log r$ we have

$$
\sum_{l=1}^{\infty} \frac{1}{r^{\lambda l}} \underset{\substack{0 \leqq b<r \\ b \in M(t)}}{\sum} 1=\frac{T!r^{\lambda}}{T^{*}\left(r^{\lambda}-r+m\right)^{T+1}}
$$

Proof. By Lemma 1 we get

$$
\sum_{l=1}^{\infty} \frac{1}{r^{\lambda l}} \sum_{\substack{0 \leqq b<r^{l} \\ b \in M(l)}} 1=\sum_{l=1}^{\infty} \frac{1}{r^{\lambda l}} \cdot \frac{l!(r-m)^{l-T}}{T^{*}(l-T)!}
$$

$$
\begin{aligned}
& =\frac{T!}{T^{*}(r-m)^{T}} \sum_{l=r}^{\infty}\binom{l}{T}\left(\frac{r-m}{r^{\lambda}}\right)^{l} \\
& =\frac{T!}{T^{*}(r-m)^{T}} \cdot \frac{\left(\frac{r-m}{r^{\lambda}}\right)^{T}}{\left(1-\frac{r-m}{r^{\lambda}}\right)^{T+1}} \\
& =\frac{T!r^{\lambda}}{T^{*}\left(r^{\lambda}-r+m\right)^{T+1}}
\end{aligned}
$$

We now prove Theorem 1 . For $k \geqq 1$ and $\lambda>\log (r-m) / \log r$ we have, with $t_{i}=\left(t_{1}, \cdots, t_{i-1}, t_{i}-1, t_{i+1}, \cdots, t_{m}\right)$, and $\Delta=\left\{a \mid 1 \leqq a<r\right.$ and $a \neq d_{i}$ for $i=1,2, \cdots, m\}$,
$\sum_{\substack{1 \leq n<r^{k+1} \\ n \in M(t)}} \frac{1}{\left[n^{\lambda}\right]} \leqq \sum_{\substack{1 \leqq n<r \\ n \in M(t)}} \frac{1}{\left[n^{2}\right]}+\sum_{l=1}^{k} \sum_{r^{\prime} \leqq n<r^{l+1}} \frac{1}{n^{\lambda}}$

$$
\begin{aligned}
& =\mu\left(M_{\lambda}^{0}(t)\right)+\sum_{l=1}^{k}\left\{\sum_{a \in \Delta} \sum_{\substack{0 \leqq b<r^{\prime} \\
b \in M(t)}} \frac{1}{\left(a r^{l}+b\right)^{\lambda}}+\sum_{i=1}^{m} \sum_{\substack{0 \leq b<r^{l} \\
b \in M\left(t_{i}\right)}} \frac{1}{\left(d_{i} r^{l}+b\right)^{\lambda}}\right\} \\
& \leqq \mu\left(M_{\lambda}^{0}(t)\right)+\sum_{a \in \Delta} \frac{1}{a^{\lambda}} \sum_{l=1}^{k} \frac{1}{r^{\prime \lambda}} \sum_{\substack{0 \leq b<r^{l} \\
b \in M(t)}} 1+\sum_{i=1}^{m} \frac{1}{d_{i}^{\lambda}} \sum_{l=1}^{k} \frac{1}{r^{l \lambda}} \sum_{\substack{0 \leq b<l \\
b \in M\left(t_{i}\right)}} 1 .
\end{aligned}
$$

Letting $k \rightarrow \infty$, Theorem 1 follows from this by Lemma 2 .
To prove Theorem 2, we first note that $[x]<2 x$ for $x>1$. Hence, by Lemma 1,

$$
\begin{aligned}
& \sum_{\substack{1 \leq n<r^{k+1} \\
n \in M(t)}} \frac{1}{\left[n^{\lambda}\right]}>\frac{1}{2} \sum_{\substack{l=1}}^{k} \sum_{\substack{l \leq n<r^{l+1} \\
n \in M(l)}} \frac{1}{n^{\lambda}}>\frac{1}{2} \sum_{l=1}^{k} \frac{1}{r^{\lambda(l+1)}} \sum_{\substack{r \leq n<r^{l+1} \\
n \in M(t)}} 1 \\
&=\frac{1}{2} \sum_{l=r}^{k} \frac{1}{r^{2(l+1)}}\left\{\frac{(l+1)!(r-m)^{l+1-T}}{T^{*}(l+1-T)!}-\frac{l!(r-m)^{l-T}}{T^{*}(l-T)!}\right\} \\
& \geqq \frac{1}{2} \sum_{l=T}^{k} \frac{T!}{T^{*}(r-m)^{T} r^{\lambda}}\left\{\binom{l+1}{T}\left(\frac{r-m}{r^{\lambda}}\right)^{l+1}-\binom{l}{T}\left(\frac{r-m}{r^{\lambda}}\right)^{l}\right\} \\
&=\frac{T!}{2 T^{*}(r-m)^{T} r^{2}}\left\{\binom{k+1}{T}\left(\frac{r-m}{r^{\lambda}}\right)^{k+1}-\left(\frac{r-m}{r^{\lambda}}\right)^{T}\right\} \rightarrow \infty
\end{aligned}
$$

when $k \rightarrow \infty$.

3.

In Kløve (1971) we treated the case: λ integer, $d_{1}>0$, and $t_{i}=0, i=1,2, \cdots, m$. The estimates given there are better then those given by Theorem 1. Better estimates may be given in the general case, but the expressions seem to be very complicated.

Craven (1965) and Alexander (1971) gave estimates for $\mu\left(\bigcup_{t=0}^{T} M(t)\right)$ in the special case $m=1$. Improved estimates for this sum may be obtained from Theorem 1 . In general, if $M_{j}, j=1,2, \cdots, s$ are harmonically convergent sets, then so is $\bigcup_{j=1}^{s} M_{j}$ and

$$
\mu\left(\bigcup_{j=1}^{s} M_{j}\right) \leqq \sum_{j=1}^{s} \mu\left(M_{j}\right) .
$$

In fact, μ is a measure on the σ-algebra of all subsets of the set of natural numbers. If we consider the special case $\lambda=m=1$ in Theorem 1 , we get, for $t>0$,

$$
\begin{aligned}
\mu(M(t)) & \leqq \mu\left(M_{1}^{0}(t)\right)+r\left(\sum_{n=1}^{r-1} \frac{1}{n}-\frac{1}{d}\right)+\frac{r}{d} \\
& \leqq \mu\left(M_{1}^{0}(t)\right)+r(\log r+1)
\end{aligned}
$$

Further

$$
\begin{aligned}
\mu(M(0)) & \leqq r(\log r+1) \\
\mu\left(M_{1}^{0}(t)\right)= & \frac{1}{d} \text { if } t=1 \\
= & 0 \text { if } t>1
\end{aligned}
$$

Hence, for $T \geqq 1$,

$$
\mu\left(\bigcup_{t=0}^{T} M(t)\right) \leqq(T+1) r \log r+(T+1) r+\frac{1}{d} .
$$

References

R. Alexander (1971), 'Remarks about the digits of integers', J. Austral. Math. Soc. 12, 239-241. B. D. Craven (1965), 'On digital distribution in some integer sequences', J. Austral. Math. Soc. 5 325-330.
T. Kløve (1971), 'Power sums of integers with missing digits', Math Scand. 28, 247-251.

University of Bergen, Bergen, Norway.

