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Abstract

While predicting the course of an epidemic is difficult, predicting the course of a pandemic
from an emerging virus is even more so. The validity of most predictive models relies on
numerous parameters, involving biological and social characteristics often unknown or highly
uncertain. Data of the COVID-19 epidemics in China, Japan, South Korea and Italy were used
to build up deterministic models without strong assumptions. These models were then applied
to other countries to identify the closest scenarios in order to foresee their coming behaviour.
The models enabled to predict situations that were confirmed little by little, proving that these
tools can be efficient and useful for decision making in a quickly evolving operational context.

Introduction

The coronavirus SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) is responsible
for the COVID-19 epidemic that broke out in Wuhan (China) in December 2019 [1].
Although being identified in the early stages of the epidemic as being close to two other cor-
onaviruses (SARS and MERS) [2], its epidemiological risks in terms of propagation and lethal-
ity were not known. Investigations reported by the Chinese Centre for Disease Control and
Prevention (China CDC) demonstrated that a new coronavirus was at the origin of this epi-
demic [3]. The retrospective analysis of the earlier transmission in Wuhan revealed that
human-to-human transmission had occurred since the middle of December, and possibly earl-
ier, through close contacts [4]. After a very rapid dissemination in the Hubei province, the dis-
ease has spread to all the other provinces in China. Currently, the epidemic seems to be getting
under control thanks to strict control measures [5]. During its early spread in China, the virus
also reached several countries in the world, in particular Japan where early measures enabled
to control its spread relatively well [6] although restarts are now observed. Subsequently, by the
end of February, several important new clusters broke out in South Korea, Iran and Italy.
Beginning of March most of Europe was affected, to be followed by the United States. The epi-
demic is currently affecting the whole world [7].

Various techniques have been developed to model the epidemics of infectious diseases.
Most of these are based on compartment models which separate the populations in main
classes. The model enables to represent the interactions between these classes based on pre-
established mathematical rules. The simplest formulation comes from the early work by
Kermack and McKendrick in the 1920s [8] and involves three classes: the first one for the peo-
ple sensitive to the disease who are prone to contracting the disease, a second one for the infec-
tious people who have contracted the disease and can infect susceptible people and a third one
for the people outside this cycle because either they became immunised after recovering, or
they left the study area, or they have died.

Although some specific model formulations can be usefully fostered, all the mechanisms
cannot be always known and therefore the complete formulation of the equations governing
an epidemic will generally be unknown. This is especially true when coping with a new disease
outbreak. Three main problems will be met in a modelling perspective of such a situation: (1)
What are the relevant variables for a given epidemic? (2) What are the governing equations
coupling these variables? (3) What are the parameter values of these equations? Also, in
between these questions, two other very practical questions: (4) What observations do we
have to build and constrain a model? And, as a corollary, (5) How to reformulate the governing
equations based on the available observations? (see Suppl. Mat. 1 for a more detailed
contextualisation).

Two main data sets were considered for the present study. The official data from the
National Health Commission of the People’s Republic of China [9] were used to study the ori-
ginal outbreak at China’s scale (from 21 January to 10 April 2020). The data from the Johns
Hudson University [10] were used to monitor the outbreaks at the province’s scale in China
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and at the country’s scale for other countries. Their description
and pre-processing are given with further details in Suppl. Mat.
3 (Fig. S1). The time series from three original variables were con-
sidered: (1) the daily cumulated number CΣ (t) of confirmed
cases, (2) the daily number s(t) of severe cases currently under
intensive care and (3) the daily cumulated number DΣ (t) of
deaths; from which the derivatives (required for the modelling
approach are used in the present study) were deduced, corre-
sponding to the daily number of new cases C1 (t), the daily add-
itional severe cases s1 (t) and daily number of new deaths D1 (t)
(see Eq. 1).

Based on the chaos theory [11], the global modelling technique
[12–15] offers an interesting alternative with respect to other
approaches. It is well adapted to the modelling and study of
unstable dynamical behaviours: it enables to detect and extract
the deterministic component underlying the dynamical behav-
iour; and, as a consequence, it can be a powerful approach to ana-
lyse dynamics which are highly sensitive to the earlier conditions
and to detect chaos (see Suppl. Mat. 2). Another interesting aspect
of this technique comes from the potential it offers to work even if

important variables are missing, which is generally the case in epi-
demiology. Finally, it has proven to be a powerful tool to detect
couplings between observed variables, and even, when all the
dynamical variables are observed, to retrieve the original algebraic
formulation of the governing equations in a compact and poten-
tially interpretable form [16].

A great number of works have been based on chaos theory to
study epidemiological behaviours [17–19] but a global modelling
approach per se has rarely been applied to biological systems. The
first replicable application was in ecology [20]. In epidemiology, it
enabled to obtain an interpretable model for the epidemic of
Bombay bubonic plague (1896–1911) by extracting the couplings
between the human epidemic and the epizootics of two species of
rats. Although obtained from observational time series without
strong a priori model structure, it was found possible in the latter
case to give an interpretation to all the model’s terms [21]. A
model was also obtained for the West Africa epidemic of Ebola
Virus Disease (2013–2016) coupling the two observed variables
made available with a regular sampling: the cumulated numbers
of infected cases and deaths [22]. In the present study, this mod-
elling approach is used to model the current COVID-19 epidemic
in Asia (China, Japan, South Korea) and Italy and then to produce
scenarios for 16 countries (several of these ones included) where
the disease was introduced later and spread locally. Two general
equation forms are considered in the present study: (1) the multi-
variate form

Ċ1 = PC C1,s1,D1( )
ṡ1 = Ps C1,s1,D1( )
Ḋ1 = PD C1,s1,D1( )

⎧⎨
⎩ (1)

based on three observed variables. The aim of this structure is to
retrieve the couplings between C1 the number of daily new cases,
s1 the number of daily additional severe cases (positive or nega-
tive) and D1 the number of daily deaths and (2) the canonical
form

ĊS = C1

Ċ1 = C2

Ċ2 = P CS,C1,C2
( )

⎧⎨
⎩ (2)

based on a single observed variable – here CΣ the cumulative
number of new cases since the beginning of the epidemic – and
its successive derivatives C1 and C2. The aim of this second struc-
ture is to analyse and compare the dynamical behaviours. This lat-
ter formulation was also applied to the cumulative number of
deaths DΣ with its derivatives D1 and D2.

Considering the set of variables (C1, s1, D1), a model of chaotic
behaviour was obtained on 5 February for the 21 January to 4
February 2020 period [23]. Its time evolution is shown in
Figure 1. This model M1

comprises 11terms. It emphasises the existence of strong but non-
linear couplings between the three observed variables.
Unfortunately, this model is difficult to interpret, mainly because
two of the observed variables – the daily numbers of new cases
and additional severe cases – can present overlaps, the latter
being potentially included in the former one. As a consequence,
the present model can only be a reformulation of the original pro-
cesses as well as a rough reduction.

The numerical integration of the model shows a transient of
approximately 15 days that corresponds to the period used to
identify the model (Fig. 1). Three simulations were performed
starting from slightly different initial conditions. These trajector-
ies alternatively come closer and move away one to another but do
not converge to a single temporal evolution, which illustrates the
high sensitivity to the initial conditions. During the identification
period (Day of Year (DoY) 20−25), the trajectories show a good
consistency between the model (grey lines) and the observed data
(plain black line). The agreement deteriorates after this period
(dashed black line). The data show that the observed number of
new cases C1(t) starts to decrease on DoY 37 after a peak of
∼5000 cases per day has been reached, whereas the simulations
continue rising until reaching a steady regime of much larger
magnitude (>7000 cases per day). This discrepancy is explained
as a result of the lockdown. Indeed, the lockdowns were set on
in China from DoY 23 to 29 (Table 1). Considering the incuba-
tion period of 3–5 days, the model was thus obtained while the
effect of the confinement was still partial, and while the disease
was still under progress for contaminated people although con-
tamination had been slowed down. The large oscillations observed
in s1(t) (Fig. 1b) are reproduced by the model although they

Ċ1 = −0.10530723D2
1 + 2.343× 10−5C2

1 + 0.15204s1 D1 − 0.01451520C1( )
ṡ1 = −0.20517824C1 + 0.44040714s1 + 0.16060376D2

1

Ḋ1 = −0.00011493C1D1 − 1.215× 10−5C1s1 + 0.2844499D1 + 2.38× 10−6C2
1

⎧⎨
⎩ (3)
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appear slower in the simulations. Finally, although underesti-
mated by the model, the agreement with the data is obviously bet-
ter for the daily deaths (Fig. 1c). Death is the result of the
successive stages of the disease in which duration can highly
vary from one patient to another. This generates a delay following
the peak of new cases. The number of deaths will thus depend on
the number of simultaneous cases s but also on the health system
capacity, in particular on the number of ventilators available in a
country. Exceeding the capacity can have a direct effect on the
dynamical behaviour by generating a plateau rather than a peak
for the number of severe cases and smoothing more or less the
number of daily deaths depending on the degree of saturation.

The representation in the phase space shows that, after the
transient, the model trajectory reaches a steady regime charac-
terised by a chaotic attractor (Fig. 2). A more detailed analysis
of the model (see Suppl. Mat. 4 and Fig. S2) proves that the
dynamic of model M1 is very close to a phase non-coherent
regime, that is, a much less predictable behaviour.

Four other models M2 to M5 were obtained (see Figs S3–S6)
using a slightly different time window. Interestingly, small param-
eter changes of model M2 give rise to a restart after a decreasing
period (Fig. S4). This illustrates the possibility to withstand the
peaks of the outbreak by controlling the proper parameters. It
also reveals the capacity of the approach to obtain governing
equations enabling a certain diversity of behaviours. Note that
all these models (M1−M5) could be obtained only for periods
at the transition between the exponential propagation of the dis-
ease and the beginning of the decrease. Yet, while chaotic models
can give rise to unpredictable trajectories, they rely on steady
dynamics: their governing equations are invariant. Although lock-
downs were applied in China during the period ranging from
DoY 23−29, due to the incubation time the results of these

measures started to become effective around 6 February 2020. It
is why these chaotic models could be obtained only on a brief
time window, revealing the tipping point from uncontrolled
(and unbounded) behaviour to a controlled situation, by the
early beginning of February (around DoY 37). And it is also
why, soon after (around DoY 41), it became possible to obtain
a canonical model (general equations form corresponding to
Eq. 2) for the set of variables (CΣ, C1, C2) converging to fixed
points (see model K1 in Suppl. Mat. S5, Fig. S7–S8).

At present, despite some restarts, the epidemic seems to be get-
ting under control in China. Since the immunisation remains
largely insufficient to modify significantly the dynamic (see
Table S2), the obtained models can be used to simulate a restart.
Three simulations starting from DoY-72 7pm and DoY-73 7am
and 7pm were run (see Fig. 1 in dashed brown lines) showing
that a quick restart must be expected if the control measures
were to be released at this time.

Using the Italian data as new initial conditions, the model M1

(light coloured lines) was run again to compare it with the evolu-
tion observed in Italy (dashed red line) revealing a good agree-
ment during the transient. This agreement may be surprising
considering the difference in population size between the two
countries (no population normalisation was applied here). The
behaviour observed in China relies, for more than 83.5%, on
the Hubei province whose population size is quite similar to
that of Italy. Comparing with the evolution of the epidemic in
Italy, this simulation is backing up the fact that the strict control
measures applied by the Chinese authorities played an important
role in the control of the epidemic. Very strict measures were
taken in Hubei (total quarantine of Wuhan and of a part of
Hubei province) while the number of daily new cases was around
140 per 10M population in Hubei. Similar measures were taken

Fig. 1. Observed and modelled time series.Observed (thick lines)
and modelled (light lines) with M1 (Eq. 3) time series for China
(black, grey and brown) and Italy (red, orange and purple) due
to COVID-19 from 21 January (DoY 21) to 2 April 2020 (DoY 92).
The part of the observations used to identify the model is in
plain lines. Three variables are presented: the daily number of
confirmed new cases C1 (a), and of additional severe cases var-
iations s1 (b) and the daily deaths D1 (c). Note that a correction
factor has been applied to the number C1 of confirmed new
cases in Italy to make the comparison with China consistent
(see Suppl. Mat. 2). Dashed brown lines correspond to simula-
tions of a possible restart in China.
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Table 1. Control measures and epidemic situation

Region Country Control measures Date

Cumulative
confirmed
cases

Cumulative
corrected
cases

Cumulative cases
per 10 million
population

7-day
window

new cases
Cumulated
deaths

Cumulated
deaths per 10

million
population

7-day
window
deaths

East
Asia

China Partial lockdown
(Wuhan and a part
of Hubei)

23/01 830 830 6 (140)a – 25 0.2 (4)a –

Nationwide
lockdown

29/01 7711 7711 54 (1303)a 7140 170 1.2 (29)a 153

Japan Partial national
lockdown (schools
and university)

27/02 214 449 36 252 4 0.3 3

Frontiers closed
(China then EU)

05/03 360 756 60 307 6 0.5 2

16/03 825 1732 138 659 27 2.2 17

South
Korea

Nationwide
lockdown +massive
testing and positive
case tracing

29/02 3150 1890 366 1630 16 3.1 14

Europe Spain Nationwide
lockdown

14/03 10 865 2202 10 015 195 39.5 185

Belgium Nationwide
lockdown

18/03 1486 1040 903 820 14 12.2 11

Italy Partial lockdown (in
affected province)

23/02 155 384 63 377 3 0.5 3

North country
lockdown

04/03 3089 7661 1266 6537 107 17.7 95

Nationwide
lockdown

08/03 7375 18 290 3023 14 089 366 60.5 332

UK Social distancing
and working from
home

16/03 1543 3857 580 3055 55 8.3 51

Partial national
lockdown (schools
and university)

23/03 5683 14 208 2139 9695 281 42.3 260

France Partial national
lockdown (schools
and university)

16/03 6633 8623 1285 7051 148 22.1 129

Nationwide
lockdown

17/03 7652 9948 1483 7628 175 26.1 115

Netherlands Nationwide
lockdown

16/03 1413 2402 1378 1856 24 13.8 21
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Sweden Social isolation of
cases and ban of
mass gathering

16/03 1103 772 747 599 6 5.8 6

Switzerland Nationwide
lockdown

16/03 2450 1470 1715 1246 14 16.3 12

Denmark Travel restrictions 14/03 827 413 709 402 1 1.7 1

Partial national
lockdown (schools
and university)

16/03 914 457 784 412 3 5.2 3

Nationwide
lockdown

18/03 1057 529 909 308 4 6.9 4

Germany Nationwide
lockdown

16/03 7272 3636 451 3048 17 2.1 15

Austria Nationwide
lockdown

16/03 1018 407 457 355 3 3.4 3

Norway Nationwide
lockdown

12/03 702 281 527 246 0 0 0

America USA Stay at home order 19/03
to 21/
03

13 747 15 122 46 12 084 200 0.6 78

California, Illinois
and New Jersey

25 600 28 160 86 22 873 307 0.9 253

Alabama, Missouri
and South Carolina

4/04
to 7/
04

308 853 339 738 1035 187 388 8407 25.6 6381

396 223 435 845 1328 208 051 12 722 38.8 8849

Middle
East

Iran Partial lockdown
(some provinces)

19/03 18 407 41 416 4988 18 747 1284 154.7 855

a Numbers normalised by the Hubei’s population size within parentheses, by the China’s population size otherwise.
Note: Control measures by country, and corresponding dates and epidemic situation in terms of cases and deaths (corrections for country inter-comparisons have been applied, see Suppl. Mat. Data 2). Values in bold were used to estimate the
epidemiologic levels at which the control measures have been applied.
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in Italy (on 8 March 2020) and more recently in Spain (14 March
2020) but comparatively much later, when the number of cases
reached around 3023 per 10M population in Italy and 2202 in
Spain. Details about the types and dates of control measures
taken in the countries considered in the study are provided in
Table 1. In France, the control measures enforcing confinement
of all the French population based on voluntary basis but under
government control were taken much later than in China but
slightly earlier than in Italy and Spain in terms of number of
cases (∼1483).

Using the model M1, the cumulated counts CΣ (t) and DΣ (t)
could be calculated by the numerical summation of the model’s
variables from which the model’s fatality rate was estimated (see
Suppl. Mat. 6 and Fig. S9). This rate progressively converges to
1.4% which is poorly consistent with the observations whose
values range from 4% to 5% (Table S2). Canonical models K1

and K2 directly obtained for the cumulated counts (CΣ (t) and
DΣ(t), respectively) and K3 for their coupling were found much
more efficient to reproduce the fatality rate, in particular the
canonical model K3 (5.0%) (see Fig. S8). Considering the ability
of the virus to propagate easily and silently in both Asia and
Europe, and now everywhere in the world and at all society levels,
a tremendous number of people will surely be infected by the
SARS-Cov-2 in the weeks and months to come, requiring specific
measures to slowdown the propagation of the disease. Though, it
may probably be extremely difficult to control the disease com-
pletely and resurgences must be expected [24] as also suggested
here by several simulations Figure 1 and Figure S3.

To analyse the recent outbreaks and compare them to more
advanced ones, the global modelling technique was used in its
canonical form (Eq. 2) to obtain polynomial models for eight of
the mostly affected provinces in China (the Hubei, Zhejiang,
Henan, Anhui, Hunan, Jianxi, Guangdong and Heilongjiang) as
well as for Japan and South Korea and more recently for Italy.
To make the comparison between different sizes of population
possible, before modelling, the time series were normalised for a
population size of 50 million inhabitants. Examples of both the
original and model phase portraits are shown in Figure S10 (see
also Suppl. Mat. 7). The original and modelled phase portraits
of these models are very consistent. These models were obtained
at the end of the outbreak for the Chinese provinces and while the
epidemic curve had started to decrease in Japan and South Korea;
it is why all these models converge to fixed points: their regimes

relate to dynamics that are not – or no longer – chaotic. These
were used to perform scenarios for the outbreaks in progress in
Europe, in the United States and even more so. On 22 February
2020, several models of canonical form could be also obtained
for Italy (see Suppl. Mat. 8) providing another scenario potentially
more representative of the European situation.

These models were then used to perform scenarios for 16
countries as follows. For each country an ensemble of initial states
(CΣ, C1, C2)0 was estimated from the observational data normal-
ised for a 50 million population (the initial states were estimated
four to eight days before the end of the time series). These initial
conditions were then used to perform an ensemble of five simula-
tions for each model. Models incompatible with the present initial
conditions were automatically rejected (diverging models). The
non-rejected simulations are then plotted for comparison with
the data observed during the days remaining after the initial con-
ditions. The models the closest to the observations are identified
as the most reliable scenarios.

Simulations are provided in Figure 3 for 16 countries (the epi-
demic curves are also provided in Fig. S11), classified from the
most severe to the smoothest situation at the time of the analysis.
These show that many countries have now very largely exceeded
the Hubei scenario, in particular Italy for which a model could be
obtained much later than the other models providing us with
another – much worse – scenario. The Italian scenario was
even overtaken by Spain and Belgium, and the United Kingdom
is now on this scenario. France, the Netherlands and Sweden
remain under it, although relatively close to it, Switzerland is sig-
nificantly lower. The United States appear presently relatively far
from the Italian scenario. However, they are still at the beginning
of the outbreak in the United States and the growth of infected
cases has been particularly quick to overtake the Hubei scenario.
Important evolutions still have to be expected there. Among the
other countries, Iran and Denmark are significantly over the
Hubei scenario whereas Germany, Austria and Norway remain
under but close to it. Japan has recently shown a clear restart
and is now overtaking the South Korean scenario. Finally,
although South Korea could not stop the propagation of the dis-
ease, it was able to maintain it at a relatively low level (see the epi-
demic curves Fig. S11), overtaking its own scenario very slowly.

As already noticed with Japan and as expected for the United
States, the present scenarios can evolve. Based on the bulletins
[23] published online from 9 February to 2 April 2020, the

Fig. 2. Original and modelled phase portraits.Three projections (C1, s1) in (a), (C1, D1) in (b) and (s1, D1) in (c) of the phase space as reconstructed from the model’s
trajectory (colour trajectories). The three colours correspond to different initial conditions (colour circles), each taken from the original data set, on 21 January 7:00
(red), 19:00 (orange) and 22 January 7:00 (purple) 2020. After a 15-day transient, the trajectories converge to a chaotic attractor. Trajectories reconstructed from the
observational data are also presented: for all China (in black) and for Italy (in red). The part of the observations used to identify the model is in plain line.
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progressions of these analyses are presented in Figure 4. For most
European countries, the scenarios have quickly evolved from
Heilongjiang to Hubei scenario types and worse ones, highlight-
ing that the outbreaks were not under control in Europe and that
strong measures were required to slow down the disease.

Discussion

The analyses of the control measures taken by the countries con-
sidered in the study show a distinct relationship between the epi-
demic level at which the measures were taken (in terms of the
number of cumulative cases Ccontrol

S and deaths Dcontrol
S , see

Table 1 and Fig. S12) and how severe the impact was in the coun-
tries (as ordered in Fig. 3). It is still too early to identify the best-
case scenario but obviously the earlier the reaction the most likely
countries remain on the path of a less dramatic scenario.

Some behaviours require specific comments. In Iran, despite
its classification as a moderate scenario, levels Ccontrol

S and
Dcontrol
S at which control measures were applied are found far

much larger than all the other countries. These inconsistencies
are difficult to explain since information about the outbreak is
scarce and poorly transparent for this country; these high levels
probably result from a high under-estimation of the cases of infec-
tion and deaths. Despite early control measures taken in Belgium,
the spread of the epidemic has significantly overtaken the Italian
scenario in terms of cases. This may very likely result from a poor
respect of the control measures by part of the population. Finally,
the large dispersion of the control measures in the United States
mostly reveals the geographic differences in tackling the outbreak
with, in particular, late measures in New York where the epidemic
started relatively early, and early measures taken in California,
where the epidemic began comparatively later. Since, the

Fig. 3. Empirical scenarios simulations (variable CΣ).Empirical scenarios (in colour) of the number of cumulative cases per 10 million population, applied to 16
countries based on the models obtained for seven Chinese provinces, South Korea, Japan and Italy. Observations are in black plain lines. For each model, an
ensemble of five simulations was run starting from the observational initial conditions (black circle) from 2 April (DoY 93) to 6 April (DoY 97). The population
size is taken into account but age, geographical distribution and society organisation are not. Correction factors were applied to each country to account for
the inter-countries discrepancies between the cases and the number of deaths (see Suppl. Mat. 2). Four main scenarios have been kept: the Jiangxi (in yellow),
the South Korea (in orange), the Hubei (in grey) and the Italian scenarios (in red). The other scenarios were rejected automatically.
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epidemic is at present still at its beginning, the situation will very
likely evolve towards more severe scenarios in the days to come.

A more in-depth analysis of these results is required to better
understand the impact of the type of enforcement (state control
vs. volunteering basis) on the disease evolution outcome, includ-
ing sociological analysis of the socio-cultural factors influencing
control measure implementation between countries (Fig. S13).
At this stage, it seems that measures based exclusively on volun-
teering basis have been efficient to contain the epidemic mostly
in South Korea but insufficient to avoid restarts in Japan, and
completely ineffective in the Netherlands and the United
Kingdom. It shows also that controls established early at state
level cannot be sufficient if the measures are not respected by
most of the population.

During the last two weeks, in Europe, the most relevant scen-
arios have quickly evolved, starting from relatively light situations
and evolving to more and more severe scenarios later confirmed
step by step (see Fig. 4). Following this path, Italy has largely
exceeded the situation met in the Hubei province, leading to
another, much more severe scenario. Spain as well as Belgium
have also reached and then exceeded the Italian scenario. They
are closely followed by France and the Netherlands. The United
Kingdom has also already reached it, and may possibly overtake
it in the days to come.

One important question that arises from the present results is
the scale of applicability. Because the model here obtained at
China’s scale is mostly based on a contribution at smaller scale
(the Hubei, and more especially Wuhan), it was found to be rela-
tively well applicable to Italy (even without population renormal-
isation, see Fig. 1). The daily deaths toll simulated by the model
being even largely exceeded – and more and more – by the
Italian observations, it shows that this model is characteristic of
an even smaller – intra-province – scale. Indeed, most of the
cases and deaths of the Hubei province actually come from the
Wuhan district (on 16 March 2020, 73.7% and 79.7%, respectively
[24]). As the epidemic could be circumscribed geographically by
stringent – and generalised – measures in Wuhan, the model
obtained for China finally appears more representative of the
extremely smaller urban/suburban scale (∼11 million inhabi-
tants), a scale comparable to regions such as Lombardy in Italy
(∼10M), or cities such as New York City (∼5.80 M) and Los

Angeles (∼10.M) in the United States. Of course, the model can-
not exclusively rely on a geographic scale, but also on the condi-
tions in which it was obtained with early and stringent control.
Such a severe scenario did happen at a suburb scale under strin-
gent control. Without such a control, the scenarios can get much
worse, even at this scale. Therefore, stringent measures similar to
those implemented in China but exclusively focused on specific
targets may not prevent the development of Hubei scenario
types elsewhere. Without control, several scenarios of this type
can happen at intra-province scale.

The scenarios here obtained are empirical scenarios. They
compare the present epidemic situation to the situations met else-
where without accounting explicitly for the measures taken to
counteract the propagation of the disease. In this sense, the fore-
casts provided by these scenarios can only be valid provided
dynamically equivalent measures are taken (since different mea-
sures may have similar effects on the epidemiologic curve by
affecting the reproduction number by the same factor). What
was observed in practice for the 16 countries of this study is a
quick evolution of all the European scenarios from relatively
light (Heilongjiang to Zhejiang) to moderate (South Korea scen-
ario) and then to relatively severe (Hubei) situations and even
much harder (the Italian scenario). We have thus reached a situ-
ation in Europe with multiple severe Hubei type scenarios at
country scale and potentially much beyond in most of the
cases. Since the dynamic observed in China is mainly representa-
tive of the suburban scale as explained before, several countries
did experience multiple severe Wuhan scenarios inside its borders
(such as in Italy, Spain or France). The evolution during the last
weeks has shown that the United States is following the same evo-
lution from light-to-severe scenarios.

The models obtained for Italy enabled to forecast coming
decreasing stages of the epidemic in this country (Fig. S14). It
is estimated that a situation with less than 100 new cases per
day could be reached by May (see Table S5). Nonetheless, to
drop down below this threshold will very likely be quite challen-
ging. Indeed, even in South Korea, where measures have been
quicker and more effective, a threshold lower than 50 new cases
per day could be reached only very recently. Reaching this
stage, specific measures will then be required before getting out
from confinement to avoid new clusters restarts.

Fig. 4. Closest scenarios.Closest scenarios as a function of time for eight countries: South Korea (K), Italy (I), Iran (Ir), Spain (E), France (F), Germany (G), Japan (J),
United Kingdom (UK) and the United States of America (US). The results show that the situations can evolve very quickly for the countries who did not take strin-
gent measures to wipe out the epidemic.
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Nevertheless, the European path may not be the worst possible
scenario. The comparison of various outbreaks at a suburban
scale (1–10 million inhabitants) can be extremely different from
one location to another revealing that, under softer confinement,
the situations observed in Italy, Spain or France would have been
even worse. Indeed, the evolution observed at four cities of the
New York State (New York City, Nassau, Suffolk and
Westchester) where the lockdown was late and relatively light, is
clearly much worse than what is observed elsewhere, for example
in three other cities on the West Coast (King, Santa Clara and Los
Angeles), or in four regions of North of Italy (Lombardy, Veneto,
Emilia-Romagna and Piedmont), in Daegu metropolitan city in
South Korea and in Wuhan (see Fig. S15). These behaviours
clearly illustrate that, at such a scale, a late confinement may
lead in the United States to scenarios worse than what was
observed in Europe.

The present analyses show that the global modelling approach,
possibly in conjunction with other approaches, could be useful for
decision makers to monitor the efficiency of control measures and
to foresee the extent of the outbreak at various scales. In particu-
lar, it could be used to adapt more classical modelling approaches
when needed to ensure mitigation and, hopefully, eradication of
the disease [5, 24] (important methodological differences between
the present study and more classical modelling approaches are
sketched in Suppl. Mat. 9). This work could be used also to
inform decision makers in countries in other parts of the world,
especially in the low- and middle-income countries, such as in
Africa [25] and South-East Asia, where numbers of COVID-19
cases are still relatively low and where rapid enforcement of con-
trol measures should be applied to prevent a catastrophic evolu-
tion of the disease.

Supplementary material. The supplementary material for this article can
be found at https://doi.org/10.1017/S0950268820000990
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