A NOTE ON DEGREE SEQUENCES OF GRAPHS

BY
RICHARD A. BRUALDI ${ }^{1}$

Abstract

Sufficient conditions for a sequence of numbers to be the degree sequence of a graph are derived from the Erdos-Gallai theorem on degree sequences of graphs.

Let d_{1}, \ldots, d_{n} be a sequence of non-negative integers which is the degree sequence of a graph G. It then follows that $n-1-d_{1}, \ldots, n-1-d_{n}$ is also the degree sequence of a graph (the complement of G works). Hence there exists a smallest positive integer $\Delta\left(d_{1}, \ldots, d_{n}\right)$ such that

$$
\Delta\left(d_{1}, \ldots, d_{n}\right)-d_{1}, \ldots, \Delta\left(d_{1}, \ldots, d_{n}\right)-d_{n}
$$

is the degree sequence of a graph where

$$
\begin{equation*}
\max _{1 \leq i \leq n} d_{i} \leq \Delta\left(d_{1}, \ldots, d_{n}\right) \leq n-1 \tag{1}
\end{equation*}
$$

We extend the domain of definition of $\Delta\left(d_{1}, \ldots, d_{n}\right)$ to include every sequence of n non-negative integers by defining $\Delta\left(d_{1}, \ldots, d_{n}\right)$ to be ∞ when there is no graph whose degree sequence is $s-d_{1}, \ldots, s-d_{n}$ for any non-negative integer s.

The purpose of this note is to derive the following theorem and its corollaries which give some information about $\Delta\left(d_{1}, \ldots, d_{n}\right)$. Lest there be some misunderstanding we remark that in a graph an edge joins distinct vertices and there is at most one edge joining a pair of vertices.

Theorem. Let $n>1$. Let d_{1}, \ldots, d_{n} be a sequence of positive integers and let $m=d_{1}+\cdots+d_{n}$. Suppose Δ is an integer satisfying

$$
\begin{equation*}
n-1+d_{i} \geq \Delta \geq d_{i} \quad(i=1, \ldots, n) \tag{2}
\end{equation*}
$$

$$
\begin{equation*}
\sum_{i=1}^{n}\left(\Delta-d_{i}\right) \equiv 0 \quad(\bmod 2) \tag{3}
\end{equation*}
$$

Then $\Delta-d_{1}, \ldots, \Delta-d_{n}$ is the degree sequence of a graph.

[^0]Remark. Let $e_{i}=\Delta-d_{i}(i=1, \ldots, n)$ A reformulation of the theorem is: If (2') $n-1 \geq e_{i} \geq 0(i=1, \ldots, n),\left(3^{\prime}\right) e_{1}+\cdots+e_{n} \equiv 0(\bmod 2)$, and (4) hold, then e_{1}, \ldots, e_{n} is the degree sequence of a graph.

Proof. There is no loss in generality in assuming that $d_{1} \geq \cdots \geq d_{n}$. Since (2) is satisfied, to prove the theorem it suffices to show that the 'complementary' sequence $n-1-\Delta+d_{1}, \ldots, n-1-\Delta+d_{n}$ is the degree sequence of a graph. Applying the Erdös-Gallai theorem [2, p. 59] we see that $n-1-\Delta+$ $d_{1}, \ldots, n-1-\Delta+d_{n}$ is the degree sequence of a graph if and only if (3) is satisfied and
(5) $\sum_{i=1}^{k}\left(n-1-\Delta+d_{i}\right) \leq k(k-1)+\sum_{j=k+1}^{n} \min \left\{k, n-1-\Delta+d_{j}\right\} \quad(k=1, \ldots, n)$.

The inequalities (5) are equivalent to the inequalites

$$
\begin{equation*}
\sum_{i=1}^{k} d_{i} \leq k(\Delta+k-n)+\sum_{j=k+1}^{n} \min \left\{k, n-1-\Delta+d_{j}\right\} \quad(k=1, \ldots, n\} . \tag{6}
\end{equation*}
$$

Let k be a fixed integer with $1 \leq k \leq n$. Suppose t is an integer with $k+1 \leq t \leq n$ such that

$$
\begin{align*}
& d_{n-t+1}, \ldots, d_{n} \leq k+\Delta-n \tag{7}\\
& d_{k+1}, \ldots, d_{n-t} \geq k+\Delta-n+1 .
\end{align*}
$$

Then inequality (6) for k is equivalent to

$$
\begin{equation*}
\sum_{i=1}^{k} d_{i} \leq \sum_{j=n-t+1}^{n} d_{j}+t(n-1-\Delta)+(\Delta-t) k \tag{8}
\end{equation*}
$$

Now using (7) we see that

$$
\sum_{i=1}^{k} d_{i}=m-\sum_{j=k+1}^{n} d_{j} \leq m-\left(\sum_{j=n-t+1}^{n} d_{j}+(n-k-t)(k+\Delta-n+1)\right) .
$$

Hence (8) will be satisfied if

$$
m-\left(\sum_{j=n-t+1}^{n} d_{j}+(n-k-t)(k+\Delta-n+1)\right) \leq \sum_{j=n-t+1}^{n} d_{j}+t(n-1-\Delta)+(\Delta-t) k
$$

or, equivalently,

$$
\begin{equation*}
2 \sum_{j=n-t+1}^{n}\left(k+\Delta+1-n-d_{j}\right) \leq(n-k)(k+\Delta-n+1)+\Delta k-m . \tag{9}
\end{equation*}
$$

From the assumption that d_{1}, \ldots, d_{n} are positive integers it follows that

$$
\begin{equation*}
k+\Delta+1-n-d_{j} \leq k+\Delta-n \quad(j=n-t+1, \ldots, n) . \tag{10}
\end{equation*}
$$

Thus since $t \leq n-k$, it follows that (5) is satisfied if

$$
2(n-k)(k+\Delta-n) \leq(n-k)(k+\Delta-n+1)+\Delta k-m \quad(k=1, \ldots, n)
$$

or, equivalently,

$$
\begin{equation*}
k^{2}-(2 n-2 \Delta+1) k+\left(n^{2}+n-n \Delta-m\right) \geq 0 \quad(k=1, \ldots, n) . \tag{11}
\end{equation*}
$$

Let

$$
f(x)=x^{2}-(2 n-2 \Delta+1) x+\left(n^{2}+n-n \Delta-m\right) .
$$

Then the minimum value of $f(x)$ for integer x occurs at $x=n-\Delta$ and equals $-\Delta^{2}+\Delta(n+1)-m$. Hence (11) is satisfied provided

$$
\begin{equation*}
-\Delta^{2}+\Delta(n+1)-m \geq 0 \tag{12}
\end{equation*}
$$

which is equivalent to (4). The theorem now follows.
Suppose we replace the assumption in the statement of the theorem that d_{1}, \ldots, d_{n} are positive integers by the assumption d_{1}, \ldots, d_{n} are non-negative integers. Then the following changes occur. Inequality (10) is replaced by

$$
k+\Delta+1-n-d_{j} \leq k+\Delta+1-n \quad(j=n-t+1, \ldots, n)
$$

inequality (11) is replaced by

$$
k^{2}-(2 n-2 \Delta-1) k+\left(n^{2}-n-n \Delta-m\right) \geq 0 \quad(k=1, \ldots, n)
$$

and inequality (12) is replaced by

$$
-\Delta^{2}+\Delta(n-1)-m \geq 0
$$

Hence we have the following.
Corollary 1. Let $n>1$. Let d_{1}, \ldots, d_{n} be a sequence of non-negative integers and let $m=d_{1}+\cdots+d_{n}$. Suppose Δ is an integer satisfying (2), (3) and

$$
\begin{equation*}
\Delta^{2}-\Delta(n-1)+m \leq 0 \tag{13}
\end{equation*}
$$

Then $\Delta-d_{1}, \ldots, \Delta-d_{n}$ is the degree sequence of a graph.
Corollary 2. Let d_{1}, \ldots, d_{n} be a sequence of positive integers such that $m=d_{1}+\cdots+d_{n} \leq 2 n$. Let Δ be an integer with $\Delta \leq n-1$. Then $\Delta-d_{1}, \ldots, \Delta-d_{n}$ is the degree sequence of a graph if and only if $\Delta \geq d_{i}$ ($i=1, \ldots, n$) and (3) holds.

Proof. If $\Delta-d_{1}, \ldots, \Delta-d_{n}$ is the degree sequence of a graph, then surely $\Delta \geq d_{i}(i=1, \ldots, n)$ and (3) holds. Now suppose that $\Delta \geq d_{i}(i=1, \ldots, n)$ and (3) holds. First suppose that $\Delta=1$. It then follows that $d_{i}=1(i=1, \ldots, n)$ and hence $\Delta-d_{i}=0(i=1, \ldots, n)$. The conclusion follows trivially in this case. Next suppose $\Delta=2$. Then $\Delta-d_{1}, \ldots, \Delta-d_{n}$ is a sequence of 0 's and 1 's with an even number of terms equal to 1 . It follows easily that $\Delta-d_{1}, \ldots, \Delta-d_{n}$ is the degree sequence of a graph. Now suppose $\Delta=n-1$. From (3) we see that

$$
n(n-1)-\sum_{i=1}^{n} d_{i} \equiv 0 \quad(\bmod 2)
$$

hence it follows that $\sum_{i=1}^{n} d_{i} \equiv 0(\bmod 2)$. It now follows readily by induction that d_{1}, \ldots, d_{n} is the degree sequence of a graph. Hence $\Delta-d_{1}, \ldots, \Delta-d_{n}$ is the degree sequence of a graph. Thus we may assume that $3 \leq \Delta \leq n-2$. Let $m=2(n-1)+p$ where $-(n-2) \leq p \leq 2$. To complete the proof it suffices by the theorem to show that (4) is satisfied. We calculate that

$$
\Delta^{2}-\Delta(n+1)+m=(\Delta-2)(\Delta-(n-1))+p .
$$

Since $p \leq 2$ and $3 \leq \Delta \leq n-2$, (4) is satisfied unless $\Delta=3, \Delta=n-2$, and $p=2$ all hold. If the latter conditions hold, then $n=5, m=10$ and

$$
\sum_{i=1}^{5}\left(\Delta-d_{i}\right)=5
$$

contradicting (3). Thus (4) holds and $\Delta-d_{1}, \ldots, \Delta-d_{n}$ is the degree sequence of a graph.

Corollary 3. Let d_{1}, \ldots, d_{n} be a sequence of positive integers such that $d_{1}+\cdots+d_{n} \leq 2 n$. Let Δ be an integer such that $n-1 \geq \Delta \geq d_{i}(i=1, \ldots, n)$. Then there exists a regular graph G of degree Δ with n vertices having a spanning subgraph H with degree sequence d_{1}, \ldots, d_{n} if and only if

$$
\begin{equation*}
\sum_{i=1}^{n} d_{i} \equiv n \Delta \equiv 0(\bmod 2) \tag{14}
\end{equation*}
$$

Proof. If graphs G and H as specified in the corollary exist, then clearly (14) holds. Now suppose (14) is satisfied. It follows easily by induction on n that there exists a graph with degree sequence d_{1}, \ldots, d_{n} and hence a graph with degree sequence $n-1-d_{1}, \ldots, n-1-d_{n}$. It follows from Corollary 2 that there exists a graph with degree sequence $\Delta-d_{1}, \ldots, \Delta-d_{n}$. Since $n-1-d_{i}-$ $\left(\Delta-d_{i}\right)=n-1-\Delta \geq 0(i=1, \ldots, n)$, it follows from the ' k-factor theorem' $[3,4]$ with $k=n-1-\Delta$ that there exists a graph H^{\prime} with degree sequence $n-1-$ $d_{1}, \ldots, n-1-d_{n}$ having a spanning subgraph G^{\prime} which is regular of degree $n-1-\Delta$. Hence the complement G of G^{\prime} is a regular graph of degree Δ having the complement H of H^{\prime} as a spanning subgraph where the degree sequence of H is d_{1}, \ldots, d_{n}.

Corollary 4. Let n be an even integer and let d_{1}, \ldots, d_{n} be a sequence of positive integers with $m=d_{1}+\cdots+d_{n} \leq\left(\frac{n+1}{2}\right)^{2}$. There exists a graph with degree sequence $\frac{n}{2}-d_{1}, \ldots, \frac{n}{2}-d_{n}\left[\right.$ respectively, $\left.\frac{n+2}{2}-d_{1}, \ldots, \frac{n+2}{2}-d_{n}\right]$ if and only if m is even and $\frac{n}{2}-d_{i} \geq 0 \quad(i=1, \ldots, n) \quad$ respectively, $\left.\frac{n+2}{2}-d_{i} \geq 0(i=1, \ldots, n)\right]$.

Proof. The quadratic polynomial $x^{2}-x(n+1)+m$ has roots

$$
r_{1}=\frac{n+1+\sqrt{(n+1)^{2}-4 m}}{2}, \quad r_{2}=\frac{n+1-\sqrt{(n+1)^{2}-4 m}}{2}
$$

which are real since $m \leq\left(\frac{n+1}{2}\right)^{2}$. Since n is even, $(n+1)^{2}-4 m \geq 1$, and hence $r_{1} \geq \frac{n+2}{2} \geq \frac{n}{2} \geq r_{2}$. The corollary now follows by applying the theorem with $\Delta=\frac{n}{2}$ and $\Delta=\frac{n+2}{2}$.

Let d_{1}, \ldots, d_{n} be a sequence of positive integers where n is an even integer. Let $m=d_{1}+\cdots+d_{n} \leq\left(\frac{n+1}{2}\right)^{2}$. Then Corollary 4 has the following consequences. If m is odd, then $\Delta\left(d_{1}, \ldots, d_{n}\right)=\infty$. If m is even, then $\Delta\left(d_{1}, \ldots, d_{n}\right) \leq$ $\frac{n}{2}$ if $d_{i} \leq \frac{n}{2}(i=1, \ldots, n)$ while $\Delta\left(d_{1}, \ldots, d_{n}\right) \leq \frac{n+2}{2}$ if $d_{i} \leq \frac{n+2}{2}(i=1, \ldots, n)$.

Corollary 5. Let n be an odd integer and let d_{1}, \ldots, d_{n} be a sequence of positive integers with $m=d_{1}+\cdots+d_{n} \leq\left(\frac{n+1}{2}\right)^{2}$.
(a) Let $m=\left(\frac{n+1}{2}\right)^{2}$. There exists a graph with degree sequence $\frac{n+1}{2}-$ $d_{1}, \ldots, \frac{n+1}{2}-d_{n}$ if and only if $\frac{n+1}{2}-d_{i} \geq 0(i=1, \ldots, n)$.
(b) Let m be odd with $m<\left(\frac{n+1}{2}\right)^{2}$. There exists a graph with degree sequence $\frac{n+1}{2}-d_{1}, \ldots, \frac{n+1}{2}-d_{n}$ if and only if $n \equiv 1(\bmod 4)$ and $\frac{n+1}{2}-d_{i} \geq 0$ $(i=1, \ldots, n)$. There exists a graph with degree sequence $\frac{n-1}{2}-d_{i}, \ldots, \frac{n-1}{2}-d_{n}\left[\right.$ respectively, $\left.\frac{n+3}{2}-d_{1}, \ldots, \frac{n+3}{2}-d_{n}\right]$ if and only if $n \equiv 3(\bmod 4)$ and $\frac{n-1}{2}-d_{i} \geq 0 \quad(i=1, \ldots, n) \quad\left[\right.$ respectively, $\frac{n+3}{2}-d_{i} \geq 0$ $(i=1, \ldots, n)]$.
(c) Let m be even with $m<\left(\frac{n+1}{2}\right)^{2}$. There exists a graph with degree sequence $\frac{n+1}{2}-d_{1}, \ldots, \frac{n+1}{2}-d_{n}$ if and only if $n \equiv 3(\bmod 4)$ and $\frac{n+1}{2}-d_{i} \geq 0 \quad(i=1, \ldots, n)$. There exists a graph with degree sequence

$$
\begin{aligned}
& \frac{n-1}{2}-d_{1}, \ldots, \frac{n-1}{2}-d_{n}\left[\text { respectively } \frac{n+3}{2}-d_{1}, \ldots, \frac{n+3}{2}-d_{n}\right] \text { if and } \\
& \text { only if } n \equiv 1 \quad(\bmod 4) \quad \text { and } \frac{n-1}{2}-d_{i} \geq 0 \quad(i=1, \ldots, n)[\text { respectively, } \\
& \left.\frac{n+3}{2}-d_{i} \geq 0(i=1, \ldots, n)\right] .
\end{aligned}
$$

Proof. Let r_{1} and r_{2} be defined as in the proof of Corollary 4.
(a) In this case $r_{1}=r_{2}=\frac{n+1}{2}$ and the conclusion follows by applying the theorem with $\Delta=\frac{n+1}{2}$.
(b) Since $m<\left(\frac{n+1}{2}\right)^{2}$ and n is odd, it follows that $(n+1)^{2}-4 m \geq 4$ and hence that $r_{1} \geq \frac{n+3}{2}, r_{2} \leq \frac{n-1}{2}$. Thus $\Delta=\frac{n-1}{2}, \frac{n+1}{2}, \frac{n+3}{2}$ all satisfy (6). Then conclusions now follow from the theorem using the assumptions that n and m are both odd.
(c) Again $\Delta=\frac{n-1}{2}, \frac{n+1}{2}, \frac{n+3}{2}$ all satisfy (6) and the conclusions follow from the theorem using the assumptions that n is odd and m is even.

Let d_{1}, \ldots, d_{n} be a sequence of positive integers where n is an odd integer. Let $m=d_{1}+\cdots+d_{n} \leq\left(\frac{n+1}{2}\right)^{2}$. From corollary 5 we obtain the following. If $m=\left(\frac{n+1}{2}\right)^{2}$, then $\Delta\left(d_{1}, \ldots, d_{n}\right) \leq \frac{n+1}{2}$ if $d_{i} \leq \frac{n+1}{2}(i=1, \ldots, n)$. If m is odd and $m<\left(\frac{n+1}{2}\right)^{2}$, then $\Delta\left(d_{1}, \ldots, d_{n}\right) \leq \frac{n+1}{2}$ if $d_{i} \leq \frac{n+1}{2}(i=1, \ldots, n)$ and $n \equiv 1(\bmod 4)$ while $\Delta\left(d_{1}, \ldots, d_{n}\right) \leq \frac{n-1}{2}\left(\right.$ respectively, $\left.\frac{n+3}{2}\right)$ if $d_{i} \leq \frac{n-1}{2}$ $\left(\right.$ respectively, $\left.\frac{n+3}{2}\right)(i=1, \ldots, n)$ and $n \equiv 3(\bmod 4)$. If m is even and $m<$ $\frac{n+1}{2}$, then $\Delta\left(d_{1}, \ldots, d_{n}\right) \leq \frac{n+1}{2}$ if $d_{i} \leq \frac{n+1}{2}(i=1, \ldots, n)$ and $n \equiv 3(\bmod 4)$ while $\Delta\left(d_{1}, \ldots, d_{n}\right) \leq \frac{n-1}{2} \quad\left(\right.$ respectively, $\left.\frac{n+3}{2}\right)$ if $d_{i} \leq \frac{n-1}{2}$ (respectively, $\left.\frac{n+3}{2}\right)(i=1, \ldots, n)$ and $n \equiv 1(\bmod 4)$.

For additional results on degree sequences of graphs, see Chapter 6 of [1] and the references given there.

References

1. C. Berge, Graphs and Hypergraphs, North Holland (Amsterdam), 1973.
2. F. Harary, Graph Theory, Addison-Wesley (Reading, Mass.), 1969.
3. S. Kundu, The k-factor conjecture is true, Discrete Math. 6 (1973), 367-376.
4. L. Lovász, Valencies of graphs with 1-factors, Periodica Math. Hungarica 5 (2) (1974), 149-151.

Department of Mathematics
University of Wisconsin
Van Vleck Hall
Madison-Wisconsin 53706

[^0]: ${ }^{(1)}$ Research partially supported by National Science Foundation Grant No. MCS 76-06374 A0 1.

 Received by the editors February 15, 1978 and, in revised form, January 3, 1979.

