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Transitions in the Organization of Human Societies

Introduction

In Chapter 8 I presented an overview of my vision of the long-term
evolution of human societies with an emphasis on the transition from a
biologically constrained cognitive evolution to a socially constrained one.
In Chapter 9 I introduced the concept of dissipative flow structure as a
tool to understand that information flow drives the coevolution between
cognition, environment, and society. In Chapter 10, I drilled down into
history and showed how technological advances in a region, made neces-
sary by environmental circumstances and in interaction with the econ-
omy, transformed society and its institutions in a continuous back and
forth between solutions and the challenges that these raised. Ultimately,
they lead to the current landscape, technology, economy, and political
organization of the Western Netherlands. In this chapter I want to step
back again to a more general perspective and emphasize the nature of the
principal, different system states that occurred in the second, sociocultural
part of the long-term trajectory outlined in Chapter 8. This will show the
role of changes in information processing structures that are responsible
for such transitions.

Ever since the classic series of proposals by Sahlins and Service about
the evolution of societal organization that appeared in the 1960s (Sahlins
& Service 1960), it has generally been acknowledged that there have been
a number of transitions in societal structure as societies grew in size and
complexity, even though the details of these transitions have been open to
much discussion. In the perspective that I am developing in this book,
such transitions are essentially transformations of the structure of their
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information processing apparatus. In this chapter, I will look in some
detail at these structures from an organization perspective.

Information Processing and Social Control

The wide literature on information-processing, communication, and con-
trol structures in very different domains presents us with (for the moment)
three fundamentally different kinds of such structures. These differ
notably in the form of control exerted over the information processing,
regulating who has access to the information and who does not, but also
determining to an important extent these structures’ efficiency in process-
ing information and in adapting to changing circumstances, such as the
growth of networks, or to various kinds of external disturbances. These
differences have a number of consequences for the conditions under
which each kind of communication structure operates best. I will first
describe some of these consequences for each of these types of control
structure.

Processing under Universal Control

When the universe of participating individuals is small enough that all
know each other, messages can be sent between all participants. Even
though, inevitably, some members of the society associate with each other
more than others, the contacts between individual members are so fre-
quent that information can spread in myriad ways between them. Com-
munication therefore does not follow particular channels, except maybe
in special situations. Moreover, because so many different channels link
the members, there are no major delays in getting information from one
individual to another. If a channel is temporarily blocked, a nearby
channel, which is hardly longer, will convey the information immediately
(Figure 11.1).

In addition, there is no control over information. Because each member
of the group receives information from a number of different directions,
and sends it on in different directions as well, there is ample opportunity
to compare stories and thus correct for biases and errors. Although it
takes time, groups in this situation usually manage eventually to have a
highly homogeneous “information pool” on which to base their collective
decisions.

The situation is that of small group interactions described by Mayhew
and Levinger (1976, 1977) in terms of the relationship between
information flow, group size, and dominance of individuals in the group.
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It applies to egalitarian societies, in which control over information is
very short lived and is accorded to specific individuals as a function of
their aptitude to deal with specific kinds of situations, because these
individuals have a particular know-how of the kind of problem faced.
As a result, no single individual or group can ever gain longer-lasting
control over such a society. In such situations, the homogeneity of the
information pool is further aided by face-to-face contact. In such a
contact situation, it is possible for the sender and the receiver of messages
to communicate over many channels: words, tone of voice, gestures, eyes,
body language, etc. Communication is therefore potentially very com-
plete, detailed, and subtle. Mutual understanding can be subtle and can
connect many cognitive dimensions, even though these remain relatively
fuzzily defined.

Mayhew and Levinger (1976, 1977) also show how the amount of
time needed for each interaction between the members of the group
effectively limits the size of such groups. The (logistic) information flow
curve in a small group rises exponentially with the addition of members,
until there is not enough time in the day to talk sufficiently long to
everyone to keep the information pool homogeneous. Yet homogeneity
is essential for the survival of the group because it keeps the incidence of
conflict down. Increasing heterogeneity will immediately cause fission
until the maximum sustainable group size is reached again. Johnson
(1982) presents a large number of cases of societies organized along these
lines. It should be noted that this kind of communication model is thus
confined to very small-scale societies. It limits communication to what can
be mastered by all individuals in the group and avoids the emergence of
any specialized knowledge such as we see in more complex societies, thus
also limiting the overall knowledge/information that can be shared.

figure 11.1 Graph of egalitarian information processing with universal control:
all individuals are communicating with all others. (Source: van der Leeuw)
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For an ethnographic study that highlights these dynamics, without using
the terminology I have adopted, see Birdsell (1973).

Processing under Partial Control

When some participants know of all others, but others do not, some
people can directly get messages to all concerned whereas others cannot
do so. Such asymmetric situations arise when the group concerned is too
large to maintain an egalitarian communication system or a homogeneous
information pool. From ethnography and history, we know a wide range
of societies that communicate and decide in this manner. They are
extremely variable in overall size, as well as in the size of their component
units, their communications, information processing structure, etc.

Processing under partial control is fundamentally different from uni-
versal control over communication and decision-making because it relies
both on communication and on noncommunication between members.
Members of the group usually communicate with some others, but not
with the remainder of the group. The usual form that communications
structures take in these societies is a hierarchical one (Figure 11.2),
because it is the most efficient way to reduce the number of communi-
cations needed to (eventually) spread information from the center to the
whole group (Mayhew & Levinger 1976, fig. 8).

Evidently, such communication structures generate considerable het-
erogeneity in the information pool. As stories are transmitted they will
inevitably change, and for most individual members of the society there is
no way to correct this by comparing stories from a wide enough range of
different sources.

But because there is relatively little communication crosscutting habit-
ual channels, few are aware of that heterogeneity. This creates a potential
problem: when information spreads in unusual ways, its heterogeneity is

figure 11.2 Graph of hierarchical organization with partial control: some
people have more information at their disposal than others. (Source: van der
Leeuw)
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suddenly highlighted, causing explosive increases in conflict and strong
fissionary tendencies. Suppression and control of information is therefore
an essential characteristic of hierarchical systems.

As long as the society needs the communication capacity of its hier-
archical control structure to remain intact, that structure is acceptable;
but whenever the information flow either drops too low or exceeds
channel capacity, the hierarchy will be under stress. In other words, as
long as it is experienced as an enabling feature, the delegation of individ-
ual responsibility to those in control is acceptable. But as soon as the
hierarchy is experienced as a constraint, the members of the group will try
to forge links that circumvent the established channels. This starves the
hierarchy of vital information and reduces its power and efficiency.
Hence, frequent system stresses favor the implementation of hierarchical
information flow structures, and such structures have a stake in maintain-
ing the stresses concerned, but also in ensuring that they do not exceed
certain levels that would tear the societal structure asunder.

Many essential communication channels in hierarchical systems are
longer than in egalitarian ones, so that the risk that signals are lost is
enhanced. Communications need a stronger signal-to-noise ratio. What is
a signal in one cognitive dimension may be noise in relation to most other
dimensions. One way in which to create a stronger signal is therefore to
reduce the number of cognitive dimensions to which it refers. This can be
achieved by strictly defining the contexts of interpretation, for example by
imposing taboos or by ritual sanctioning. The establishment of such
reduced-dimension cognitive structures manifests itself in the emergence
of specialized knowledge in the group, thus widening the spectrum of
knowledge, whether that is technological, commercial, religious, or other.

Processing without Central Control

When none of the participants know all the others, none can send any
direct messages to all concerned (Figure 11.3). More importantly, in such
a situation people necessarily send out messages without knowing whom
they will reach or what the effect will be.

Whereas in our first example everyone was in the know and in our
second one some were informed and some were not, in this case everyone
is partly informed. People depend entirely on this partial information,
which they cannot complete. Their information pool is much more
heterogeneous, but because it is homogeneous in its heterogeneity, the
situation is relatively stable.
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In this situation, there are no set communication channels. Instead,
there are multiple alternative channels if information stagnates anywhere
or if it becomes too garbled. The system is thus more flexible and there-
fore more resistant to disruption from the outside; consequently it allows
for a larger interactive group and a quantum increase in total amount of
information processed. By the same token, no set individuals are in
control of the whole information flow, which also makes the situation
less vulnerable to individual incidents, such as those that regularly mar
succession in hierarchical systems.

But on the other hand, more is demanded of the means of communi-
cation. More information needs to be passed, and more efficiently,
between individuals who are less frequently and less directly in contact
with one another. That is, paradoxically enough, facilitated when com-
munications no longer depend on face-to-face situations in which com-
munication occurs across a wide range of media or channels. Written
communications can transcend space and time, and they become import-
ant because they fix a signal immutably on a material substrate, reducing
down-the-line loss or deformation of the signal. But they also avoid
transmitting certain dimensions that can be, and are, transmitted in
face-to-face communication, and such communication can thus be more
precise and avoid simultaneous transmission of contradictory signals.

This third mode of communication is the one that is generally present
in (proto-) urban situations. But there it always occurs alongside univer-
sally controlled networks (families and other face-to-face groups) and

figure 11.3 Graph of random communication network, without any control, in
which all individuals have partial knowledge. (Source: van der Leeuw)
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often together with hierarchical communication networks. The different
networks are connected via individuals who function in more than one of
them. We will get back to such mixed or heterarchical networks in a later
part of this chapter.

Phase Transitions in the Organization of Communication

To understand the differences in information processing dynamic that are
responsible for these different kinds of social organization, it is useful to
look at them from the perspective of a spreading activation network. That
will allow us to begin to answer the following two questions:

• How may these different communication structures have come
into being?

• How are they affected by changes in the size of the group and in the
amount of information processed?

Such a spreading activation net consists of a set of randomly placed nodes
(representing individuals) that have various potentially active (communi-
cative) states (μ: the average number of connections leaving one node)
with weighted links between them (Huberman & Hogg 1987). Their
weight determines how much the activation (α) of a given node directly
affects others (such as the degree to which messages get across and/or the
degree to which people spread a message further, etc.). After a certain
time, the action has run its course and the connection between the nodes
lapses into “relaxation” (γ)

The behavior of such networks is thus controlled by two parameters,
one specifying their shape or topology (μ) and the other describing local
interactivity (α/γ: activation over relaxation), an estimate of the volume of
information flow being processed. Visualization of the system is dependent
on the transformative twists and turns of topology and the curving forms of
dimensional nonlinearities to understand its statistical mechanics.

In assessing its dynamics, it is important to be aware of the fact that in
such a model the interactivity (represented by α/γ) and the connectivity of
the system (μ) are independent variables. In the two-dimensional graph of
α/γ and μ, (Figure 11.4), different zones appear that one can identify as
characterizing different types of information processing systems by com-
bining different values for the two variables.

The precise nature of each state of the information processing system is
the result of the interaction between these two parameters. We shall see
that this only strengthens the implications of the model.
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The behaviors of both an infinite and a finite case of such a system are
represented in Figure 11.4. Essentially, for the two variables μ and α/γ
there are three states of the system. In the first (state I), both are small and
activation remains localized in time and space. One can think of such
activation as taking place in finite clusters with little temporal continuity.
This leads to a kind of balancing out. Hence, as long as the activation
intervals of the different sources do not change much in relation to the
overall relaxation time t, a net in which different nodes give different
activation impulses will almost always remain near the point where
activation started (state I in Figure 11.4). It is, moreover, remarkable that,
in the finite case this stable state is, for very low α/γ, valid irrespective of
the value of μ across its entire spectrum left to right. As we shall see, this is
one of the key insights of the model.

As α/γ increases while μ is small (state II near 1; i.e., on average each
node is connected to only one other node), relaxation becomes more and
more sluggish. This initially causes the event horizon to grow in time but
remain localized in space: the interactive clusters remain small but gain
temporal continuity (state II in Figure 11.4). In a second step, with
equally small μ and further increasing α/γ, the interactive nodes also
expand in space: the clusters involve more and more nodes (state III in

figure 11.4 Phase diagram of a spreading activation net. The vertical axis
represents the parameter α/γ and the horizontal axis represents the connectivity
parameter μ. Phase space I represents localized activation in space and time; phase
space II represents localized but continuous activation; phase space III represents
infinite activation. (Source: van der Leeuw after Huberman & Hogg 1986)
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Figure 10.4). Under those conditions, “ancient history matters in determin-
ing the activation of any node, and [. . .] since the activity keeps increasing,
the assumption of an equilibrium between the net and the time variations at
the source no longer holds” (Huberman & Hogg 1987, 27). A further
peculiarity of the transition between states II and III is that, for μ near 1,
the size of the clusters involved will know very large fluctuations.

For yet larger α/γ and higher μ, the amount of spreading grows
indefinitely in both space and time, and therefore far regions of the net
can significantly affect each other, another key insight. The transition to
this state (state III in Figure 11.4) is abrupt: a large number of finite
clusters is suddenly transformed into a single giant one as the number
of nodes with values above this activation threshold grows explosively.

There are many interesting implications of this work for an
information-processing approach to societal dynamics. For our immedi-
ate concerns, we are particularly interested in the following:

• As long as the α/γ of the different nodes is much longer than the overall
relaxation time t, all interaction in such a net remains localized, and the
overall system remains in a stable state (state I).Moreover, the above is
true irrespective of the number of people with which each individual
interacts (the connectivity μ of the network). This might answer one of
the most poignant questions of them all: “Why are the first 60,000
years of anatomically and cognitively modern man so particularly
devoid of change?” The answer is that there was not enough inter-
action between the members of the sparse population to make infor-
mation processing and communication take off. With so little
information to process, the degree of interactivity of the people sharing
that task does not seem to matter.

• The fact that as α/γ increases while μ remains near 1, small clusters
initially only gain in continuity (state IIa), and that only for even
higher values of α/γ they spread in space (state IIb). Hence, when the
quantity of information processed is only moderately increased,
group size will remain small, but individual groups will exist longer
in terms of travel through the graph. The quantity of information
processed must increase considerably before larger groups of indi-
viduals can durably be drawn together in a network. I interpret this
as a transition from rather unstable, short-lived, small groups to
more stable, longer-living groups of people such as (small) tribes.

• The fact that very large fluctuations in stability and size occur (for μ
near 1) at the transition between states II and III; i.e., as the spatial
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extent of the activation network grows. According to the model,
even as the information flow increases very considerably, provided
the interactivity of the people drawn into the network remains
limited, both the size range and the degree of permanence of the
groups will vary wildly. This would indicate that at this point in
development, groups of similar density and interactivity, which
process similar volumes of information per capita, might exhibit
spectacular differences in size, and that their interaction was far
from durable. This would support the view that chiefdoms are
unstable transitional organizations. It also applies to our under-
standing of the size differences in tribes and segmented lineages.

• After this period of heavy instability, a third transition suddenly
occurs from groups of very many different sizes (state IIb) to a con-
tinuous communication network (state III). This transition is attained
by simultaneously increasing both α/γ and μ. In effect, as the volume of
the information flow and the connectivity of the population grow,
participation in one infinite network is inevitable. But the following
particularities of this transition have interesting implications:
� If one introduces a measure of physical communication distance in

themodel, and imposes the constraint that the individuals in strongly
interacting parts must physically be close to one another, the perco-
lation model develops “clumpiness” in the spatial distribution of
interaction in state II. This suggests that although theoretically very
large rural social systems are a possibility, practical constraintsmake
the emergence of spatial centers (such as villages or towns) highly
probable in the absence of the equivalent of the Internet.

� The suddenness of the transition is explained by the exponential
increase in interactivity and information flow as population dens-
ity increases. This is compatible with the thesis that large-scale
communications systems do not slowly spread from one center,
but that a number of centers come about virtually simultan-
eously. This clearly is the case with urban systems, which always
emerge as clusters of towns rather than as single towns.

� Long-range interactions emerge in state III. As soon as the whole
of the system is in effect interactive, it is of course possible that
interactions occur that link nodes in very distant parts of the
system. This transition is reflected in the archaeological record
in the form of long-distance trade.

� The model seems to indicate that an increase in the volume of
information processed alone is not enough to really make the
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network develop long distance connectivity. In other words, it is a
necessary condition but not a sufficient one: increasing interac-
tivity between participant units is at least as important. Indeed,
with low interactivity the effect of a unit increase in the volume of
information flow on activation is at best linear, whereas the effect
of a unit increase in connectivity is exponential, both on the
volume of information flow and on activation.1

Modes of Communication in Early Societies

For this section, I am tentatively according the percolation model above
the status of a metaphor applicable to the different observed forms of
social organization and the changes between them. This metaphor distin-
guishes several different states of the percolation network and at least four
important transitions.

The first state is a very stable state overall, though the individual
interactive groups in it are small, very fluid, and ephemeral. The number
of nodes in direct contact with any other node may vary. The anthropolo-
gist is, of course, immediately reminded of the very fluid and mobile social
organization into small groups that was successfully maintained by gath-
erer-hunter-fisher societies for all of the Palaeolithic. It is generally esti-
mated that such groups consisted of a few families, maybe up to about
fifty people. In cases such as those of the Australian Aborigines, the Inuit,
and the !Kung, individual members of such societies frequently move
from band to band, while bands themselves frequently fuse or fission.

The first transition from this state that becomes visible in the percola-
tion model, as α/γ is increased, transforms small ephemeral groups (state
I) into groups of about the same size, but with communications channels
that are stable for somewhat longer periods (state IIa). These groups may
represent both “great men” and “big men” societies (Godelier 1982;
Godelier & Strathern 1991). In “great men” societies, typically consisting
of a few hundred people, particular individuals come to play the upper
hand in the context of a specific (set of ) problem(s). Such individuals as
achieve this are generally accorded that status because of their particular
knowledge or capability to deal with a situation. As such their influence is
delegated to them by the society. In the case of “big men” societies, the
individuals who have come to the fore have done so by virtue of their
wealth and their role in redistributing wealth among the members of the
group. The groups would generally seem to be of about the same size. In
neither case is there hereditary transmission of power, although it is easier
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to become a great (or big) man if your father was so. As far as the model is
concerned, this state of the system would seem to include both mobile and
sedentary groups.

As α/γ grows further, the percolation model predicts a second transi-
tion, from such small, periodically stable groups to groups that are stable
over longer periods and exhibit a growing spatial presence (state IIb).
I would associate this state of the model with a wide range of generally
sedentary societies counting minimally a few hundred or a thousand
members (tribes?). All acknowledge some sort of boss. As α/γ grows,
these groups become larger and more enduring societies. In the process,
μ may also be increasing, but much more slowly. These larger groups
I tentatively propose to equate with what anthropologists such as Service
(1962, 1975) at one time called “segmentary lineages” and “chiefdoms,”
more or less stable social formations that may include up to several tens of
thousands of people.1

If this interpretation is correct, the small, mobile, and ephemeral
groups of state I are generally egalitarian, those of state IIa alternate
egalitarian information processing with occasional moments of hierarch-
ical organization, particularly in times of stress, and the larger groups of
state IIb are usually hierarchically organized. In many instances, cross-
cutting affiliations do to some extent mitigate the negative effects of a
hierarchical organization among segmentary lineages and chiefdoms.

A detailed comparison between properties of small hierarchies as
outlined above (Huberman & Hogg 1987) and empirical observations,
suggests (topological) answers to some aspects of the observed behavior
of social systems documented by ethnographers (e.g., Johnson 1982).
First, it is interesting to note that cooperation between members of
randomly interacting graph structures reduces the stability of such
groups. This seems to indicate that fission among small face-to-face
groups (“bands” in Service’s 1962 terms) in “empty space” must have
had a very high incidence indeed, which undoubtedly contributed to the
long absolute time span over which such groups dominated human social
organization.

Next, if we take into account that in small face-to-face groups
dominance relations develop with great frequency (Mayhew & Levinger,
1976, 1977), we may conclude from Hogg et al. (1989) that the emer-
gence of hierarchies can be argued to be statistically probable under a
wide range of topological conditions. Hierarchies, therefore, need not have
emerged under pressure. By implication, we must begin to ask why hier-
archies did not develop much earlier in human history, rather than
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question how their development was possible at all. One possible answer
seems to be that there was not enough information to go around to
maintain the (much more efficient) hierarchical networks. Under those
circumstances, the advantages of a homogeneous information pool may
well have outweighed the potential gains in efficiency that hierarchy and
stability could have offered. But we should also consider the possibility
that such hierarchies emerged much more frequently than the ethno-
graphic record seems to indicate. The speed with which information
diffuses increases exponentially in a hierarchy that grows linearly in
number of levels. Huberman and Kerzberg (1985) call this effect
“ultradiffusion” (discussed here and in Appendix A). This could explain
why, if scalar stress increases as a function of size, an increment in
the response to stress could decrease with increments of group size
(see Johnson 1982, 413).

Indeed, ultradiffusion implies that with linear increases in the number
of levels of a hierarchy, the size of the group that communicates by means
of that hierarchy can grow exponentially. Ultradiffusion may thus explain
the wide range of sizes (102–104 or more) of the groups that are organized
along hierarchical lines, a fact that has long been noted in the study of
what archaeologists and anthropologists call, following Service (1975)
chiefdoms.

The percolation model predicts a very sudden third transition from
spatially localized systems (state IIb) to infinite ones (state III), owing to
an extension of the communications network to a (near) infinite number
of individuals, with remarkable long-distance interactions. It essentially
seems to represent what is known in archaeology and anthropology as the
transition to states or even empires, which potentially include millions of
people spread out over very large areas. As Wallerstein (1974) has shown,
such states and empires also activate large numbers of people outside their
boundaries, so that the total number of people involved in their networks
may be much larger than it seems.2

As I do not know of any enduring infinitely large purely hierarchical
systems, I interpret this transition as leading to the introduction of dis-
tributed information processing alongside complex and large hierarchical
organizations. The distortions and delays inherent in communicating
through long hierarchical channels combined with the physical proximity
of individuals belonging to different hierarchies will eventually have led to
the formation of cross-links in and between hierarchies. This has the
advantage that the individuals concerned can collect information received
through many channels.
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As soon as the average channel capacity can no longer cope with the
amounts of information to be processed, the maintenance of the hierarch-
ies concerned will then have become combined with other information
processing avenues. We know that the information flows in both states
and empires are maintained by both hierarchical (administrative) and
distributed (market) systems. Such “complex societies” are the subject
of the next part of this chapter.

Hierarchical, Distributed, and Heterarchical Systems

The remainder of this chapter will be devoted to answering questions
about the dynamic properties of various forms of information-processing
organization. For this I turn to the stretching and transforming capabil-
ities of their topologies, which requires a rather technical discussion of the
mathematical underpinnings of the behavior of these organizations, the
details of which will not be of great interest to many readers. I will
therefore attempt a summary of their main characteristics in this chapter
and present some of the mathematical basis in Appendix A.

I begin this inquiry by distinguishing, with Simon (1962, 1969), two
fundamental processes that generate structure in complex systems:
hierarchies and market systems. I have already presented a (simple)
outline of the structure of a hierarchy in Figure 11.2. The essential thing
to remember about hierarchies is that they have a central authority. The
person or (small) group at the top of the hierarchy gathers all available
information from people lower down, and then decides and instructs
people lower down the hierarchy. Markets, on the other hand, are dis-
tributed horizontal organizations, without central control over informa-
tion processing. An example is presented in Figure 11.3. Their collective
behavior emerges from the interaction of individual and generally inde-
pendent elements involved in the pursuit of different goals. All individuals
participating in them have equal access to partial information, but the
knowledge at each individual’s disposal differs. Examples of such market
systems abound in biological, ecological, and physical systems, and their
societal counterparts include the stock exchange, the global trade system,
and local or regional markets.

Each of these two modes of information processing has different
advantages and disadvantages, and these are fundamental for our under-
standing of the evolution of information processing in complex societies,
as such societies combine features of both these kinds of dynamic struc-
tures. These differences concern the systems’ stability or instability, their
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efficiency, the oscillations they are subject to, the likelihood of transitions
from one state to another, etc.

The first difference to be noted between hierarchies and market systems
concerns their efficiency in information processing. In multilevel hierarch-
ical structures each level is characterized by units that have a limited
degree of autonomy and considerable internal coherence owing to the
overall control at the top of the hierarchy. As the number of hierarchical
levels increases linearly, the number of elements at the bottom (in tech-
nical language called leaves) increases geometrically (see the next section,
point 1, and Appendix A for an explanation of this phenomenon). Under
ideal conditions, the goal-seeking strategies of hierarchical structures
maximize or optimize given resources, and can harness and process
greater quantities of material, energy, and information per capita than
market organizations.

An important feature of market systems is their inherently nonoptimiz-
ing behavior. There are two basic reasons for this. First, optimality in
such structures would require that each actor have perfect information.
But this is impossible since, as Simon (1969) points out, we inhabit a
world of incomplete and erroneous information. As a consequence, the
mode of operation of distributed systems is best defined as satisficing
rather than optimizing. Second, rather than by hierarchical control,
behaviors in market systems are constrained by their nonlinear structure.
The strength of existing structures, for example, can prevent the emer-
gence of competing structures in their nearby environment – even though
these new structures may be more obviously efficient. A useful modern
example is to be seen in the American motor industry, which continued
the production of large, energy inefficient cars long after it was apparent
that smaller cars were more fuel-efficient and less polluting. Overall
therefore, market systems are less efficient than their hierarchical coun-
terparts in processing matter, energy, and information. The differences
between the market and hierarchical systems probably explain why, even
in modern political systems such as those examined by Fukuyama (2015),
the best choice of government is a mix of the two (see also next section,
point 1).

The next difference concerns the organizational stability of these two
kinds of information processing structures. Since they operate on prin-
ciples of competitive gain and self-interest, market systems are highly
flexible and diverse. Political and legislative control in such systems is
always difficult, as we see in our current democracies, because people in
such distributed systems act on partial and different information and have
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more freedom to foster different perspectives. Such systems’ behaviors can
therefore relatively easily become potentially disruptive and even destruc-
tive of the organizational stability of society.

This is, of course, not so in the case of hierarchical structures, whose
main raison d’être lies in the efficiency with which authoritative control
over decision-making is exercised at the top. But this means that the
people lower down the hierarchy must sublimate many of their personal
desires and aspirations for the good of the system. Autocratic and
authoritarian rule systems may emerge to preserve the hierarchy’s pyram-
idal structure and maintain its organizational goals until they are no
longer accepted by the base of society.

In view of these characteristics, it is highly improbable that either fully
hierarchical or entirely market-based systems would have been able to
provide a durable, coherent, structural organization for large societal
systems. But the limitations of both hierarchical and market organizations
can be avoided if they are coupled in complementary ways (Simon
1969).3 Such societal structures that combine hierarchical and distributed
processing are here called heterarchies.4 Their hybrid nature dampens or
reduces the potential for runaway chaotic behavior and thus increases the
information processing capacity of the system. Our next task is therefore
to analyze in more detail the relationships between the structure and the
information processing dynamics of hierarchies and market systems, and
then to determine how they might interact in a heterarchy.

The first issue is the speed of information diffusion in hierarchical and
market systems respectively.

Information Diffusion in Complex Hierarchical and Distributed Systems

Complex Hierarchies

Unfortunately, large hierarchies cannot be studied by observing the
behavior of their parts (as one can do with small systems), nor can they
be treated in a statistical manner, as if the individual components behave
with infinite degrees of freedom. They are essentially hybrids of micro-
and macrolevel structures, and need an approach of their own.5 That
would involve treating the individual leaves at the lowest levels of a
hierarchy statistically, by integrating over them, while considering those
at the top static, as they constrain the intervening levels of the hierarchy
everywhere in the same fashion (Huberman & Kerzberg 1985; Bachas &
Huberman 1987). With that as a point of departure, Huberman’s team
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has developed a number of ideas about the information-processing
characteristics of hierarchies that can be summarized as follows (see
Appendix A):

1. Independent of the size of the population that a hierarchy inte-
grates, there is an upper limit to the time it takes to diffuse infor-
mation throughout it. For example, when expanding a hierarchy
from five levels to six, the additional time needed to diffuse the
information is a root of the time added upon expansion from four
levels to five. There is a power-law involved, which relates the speed
of information diffusion to the number of levels in the hierarchy.
Hierarchies are therefore very efficient in passing information
throughout a system and, although somewhat counterintuitive,
the more levels the hierarchy has, the more rapidly information is
(on average) distributed.

2. If a hierarchical tree is asymmetrical around a vertical axis, such as
when the number of offspring is three per node on one side and two
per node on the other, then overall diffusion is slower because it
takes more time for the information to be diffused on one side than
it does on the other side, and that may in turn garble information
because, as all transfers pass in part through the same channels,
interference and loss of signal will occur. Such constraints might
lead one to predict that under unconstrained circumstances, fat and
symmetrical trees would tend to develop. Evidence of asymmetrical
ones or particularly narrow ones could therefore serve as pointers
to such constraints.

3. This may be a major constraint on the hierarchy’s capacity to stably
transfer undistorted information. To quantify this, we need to look
at the overall complexity of the tree (again, for mathematical detail
see Appendix A). It turns out that for large hierarchies, very com-
plex trees will have a complexity that at most increases linearly with
the number of its levels. That complexity is inversely proportional
to the tree’s information diffusion capacity.

4. But is the number of levels unlimited? Theoretically, adding one
more level to a hierarchy allows for an exponential increase in the
number of individuals that it connects. If we assume a constant
signal emission rate for leaves at the base of the hierarchy, it follows
that the number of signals produced by the individuals at the base
also increases exponentially. The diffusion of information through
the whole system (see point 1) that permits this exponential
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increase, however, is achieved at the expense of reducing the
increase in the amount of information that circulates to a linear
one. This is done by “coarse-graining,” or suppressing detail every
time a signal moves up to the next level. Thus, while the speed of
diffusion of information increases, the precision of the information
distributed decreases.

5. Defining adaptability as the ability to satisfy variations in con-
straints with minimal changes in the structure, Huberman and
Hogg (1986, 381) argue that the most adaptable systems are the
most complex, because such systems are the most diverse, whereas
the most adapted systems tend to have a lower complexity than
the adaptable ones, because the development of situation-specific
connections will lower the diversity of the structure. Complexity
seems to be lowered when a system adapts to more static con-
straints, thus lowering its adaptability and its potential rate of
evolution.

The fact that these results are due to mathematical/topological properties
of hierarchies, and are independent of the nature of the nodes or the
connections between them, gives them wide implications, not only for
computing systems, but also for social systems in which hierarchies play
an important part.

Distributed Systems

Distributed systems are characterized by structural variables such as the
degree of independence of the individual participants; the degree to which
they compete or cooperate; the fact that knowledge about what happens
in the remainder of the system is incomplete and/or that the individual
actors are informed with considerable delays, and finally the ways in
which finite resources are allocated within the system. Although a formal
information processing structure is missing, distributed systems behave in
some respects with considerable regularity, whereas in other respects their
behavior is fundamentally unstable and irregular. The regularity is evi-
dent at the overall level, and is exemplified by the so-called Power-law of
Learning (Anderson 1982; Huberman 2001), which states that those
parts of a system that have started to perform a task first are more efficient
at it. As a result, distributed systems structure themselves universally
according to a Pareto distribution.6

Huberman and Hogg (1988) study the behavior of such distributed
systems by building a model that fits the following description:
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The model consists of a number of agents engaging in various tasks, and free to
choose among a number of strategies according to their perceived payoffs.
Because of the lack of central controls, they make these choices asynchronously.
Imperfect knowledge is modeled by assuming the perceived payoff to be a slightly
inaccurate version of the actual payoff. Finally, in the case when the payoffs
depend on what the other agents are doing, delays can be introduced in the
evaluation of the payoffs by assuming each agent only has access to the relevant
state of the system at earlier times. (ibid., 80)

After analyzing one by one the impact of a number of the variables
mentioned above, their conclusions give us the following ideas about
the behavior of distributed systems:

1. First, they calculate the number of agents engaged in each of the
different strategies at any point in time. These strategies have differ-
ent degrees of efficiency. Only in the case of complete independence
of action and completely perfect knowledge by all actors do they
achieve optimal overall efficiency. But if imperfect knowledge is
introduced, the distributed system operates below optimality: never
are all agents using the optimal strategy. In real life, distributed
systems satisfice rather than optimize.

2. Where action depends in part on what other agents are doing, the
payoff for each actor will also depend on how many others are
choosing the same strategy and bidding for the same resources.
Independent of the initial values chosen, with perfect knowledge
the system will converge on the same suboptimal point attractor,
which is the highest available given the constraints involved. That is
evidently an entirely stable situation. With imperfect knowledge,
however, an optimality gap develops of a size that is dependent on
the uncertainty involved. The result is the same for competitive and
co-operative strategies.

3. Time delays can also introduce oscillations into distributed systems.
If the evaluation of payoff is delayed for a period shorter than the
relaxation rate of the system the system evidently remains stable.
But longer evaluation delays give rise to damped oscillations that
signify initial alternate overshooting and undershooting of the opti-
mal efficiency, and really long delays create persistent oscillations
that grow until bounded by nonlinearities in the system. The oscil-
lations depend on the degree of uncertainty in evaluating the payoff:
large uncertainty means that the delays are less likely to push the
system away from stability.
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4. In a system of freely choosing agents, the reduced payoff due to
competition for resources and the increase in efficiency resulting
from cooperation will push the system in opposite directions. In that
situation, a wide range of parameter values generates a chaotic and
inherently unpredictable behavior of the systemwith fewwindows of
regularity. Very narrowly different initial conditions will lead to
vastly different developments, while rapid and random changes in
the number of agents applying themmake it impossible to determine
optimal mixtures of strategies. In certain circumstances, regular
and chaotic behaviors can alternate periodically so that the nature
of our observations is directly determined by their duration.

5. Open distributed systems have a tendency not to optimize if they
include long-range interactions. Under fairly general conditions the
time it takes for a system to cross over from a local fixed point that
is not optimal into a global one that is optimal can grow exponen-
tially with the number of agents in the system. When such a cross-
over does occur, it happens extremely fast, giving rise to a
phenomenon analogous to a punctuated equilibrium in biology.

6. A corollary of these results is that open systems with metastable
strategies cannot spontaneously adapt to changing constraints,
thereby “necessitating the introduction of globally coordinating
agents to do so” (Huberman & Hogg 1988, 147, my italics). I will
return to this point in discussing hybrid information-processing
systems.

Instability and Differentiation

If a system is nonlinear and can undergo transitions into undesirable
chaotic regimes, what are the conditions under which it can keep operat-
ing within desired constraints in the presence of strong perturbations?
Glance and Huberman (1997) demonstrate (for the mathematical deriv-
ation, see Glance & Huberman 1997, 120–130) that:

1. In a purely competitive environment the payoff tends to decrease as
more agents make use of it, but in a (partly) cooperative environ-
ment (agents exchanging information) the payoff increases up to a
certain point with the number of agents that make use of a certain
strategy. Increases beyond that point will not be rewarded.

2. In the case of a mixture of cooperative and competitive payoffs, as
long as delays are limited the system converges to an equilibrium
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that is close to the optimum that a central controller could obtain
without loss of information. But with increasing delays, as well as
with increasing uncertainty, the number of agents using a particular
resource continues to vary so that the overall performance is far
from optimal. The system will eventually become unstable, leading
to oscillation and potential chaos unless differential payoffs related
to actual performance are accorded to actors.

3. Accordingly, such differential payoffs have the net effect of increas-
ing the proportion of agents that perform successfully and decreas-
ing the number of those that perform with less success, which will in
turn modify the choices that each actor makes. Choices that may
merit a reward at one point in time need no longer be rewarded at a
later point in time, so that evolving diversity ensues. This has two
effects (Glance & Huberman 1997): (a) a diverse community of
agents emerges out of an essentially homogeneous one and (b) a
series of bifurcations will render chaos a transient phenomenon (see
Appendix A for a more elaborate explanation).

In assessing the relevance of this work for the problems we are dealing
with, we must first caution that as far as I know it has not (yet) been
proven that one may generalize the conclusions at all. But if they can
indeed be generalized, the results seem of direct relevance to societal
systems. They seem to point to the fact that diversification is a necessary
correlate of the stability of distributed systems. This certainly seems to be
so in urban systems, which in all cases show considerable craft specializa-
tion as well as administrative differentiation, for example.

Heterarchical Systems

I argued earlier that urban systems are, in all probability, hybrid or mixed
systems, consisting of egalitarian groups and small hierarchies as well as
complex hierarchies and distributed systems. I call these mixed systems
heterarchies.7 Unfortunately, we know even less about such heterarchical
systems than we do about either distributed or hierarchical ones.
Research in this area is badly needed, notably in order to quantify the
values of the variables involved, as there is no overall approach to hybrid
systems such as Huberman and Hogg have developed for complex hier-
archies and distributed systems. I can therefore do no more than create a
composite picture out of bits and pieces concerning each of the kinds of
information processing systems we have discussed so far, and then ask
some questions.
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I will begin with mixtures of egalitarian and small-scale hierarchical
communication networks. I conclude from Mayhew & Levinger’s (1976,
1977) and Johnson’s (1982) arguments that there are substantial advan-
tages to a hierarchical communications structure as soon as unit size
exceeds four or five people. At the lowest level this implies hierarchization
when more than five people are commonly involved in the same decisions,
but at a higher level this also applies to hierarchization of lower-level
units. This probably indicates a bottom up pressure for small- and
intermediate-scale hierarchization in large, complex organizations.

Reynolds (1984), in an inspired response to early questions on the
origins of small-group hierarchization posed by Wright (1977) and John-
son (1978, 1981, 1983), studies the gain in efficiency that is achieved by
subdividing problem-solving tasks, rather than treating them as a unit.
Depending on whether it is the size of certain problems or their frequency
that increases, greater efficiency gains are achieved by what he calls
“divide and rule” (D&R) and “pipe-lining” (P) strategies (Reynolds
1984, 180–182). In the divide and rule strategy, the lower-level units are
kept independent, and the integrative part of the task is delegated to the
lower-level units among themselves in a sequence of independent sub-
processes, each of which is executed by a separate unit under overall
process control from higher hierarchical levels.8

Pipe-lining (P) is a hybrid strategy that involves both horizontal and
vertical movement in a hierarchy. It seems to be more efficient when
increases in both size and frequency of problem-solving tasks occur, as
it optimizes the amount of information flowing through each participat-
ing unit. It does so by regulating the balance between routine and
nonroutine operations.

Unfortunately, once the systems considered are more complex, it is not
so easy to generalize, as each different system may exhibit a range of very
different kinds of behavior. One aspect of complex hybrid systems that
may have general importance reminds us of pipe-lining. There is a need
for reduction of error-making because in such systems many interfering
communications pass through long lines of communication and do so
with different frequencies. To reduce such error-making, higher-level
units may compare information gathered from different sources at their
own level with the information coming from sources lower down the
hierarchy, and correct errors when they pass the information on to a
node higher up. The disadvantage is that this also entails coarse-graining,
generalizing by ignoring part of the total information content transmitted
through the hierarchy.
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Most other arguments in favor of heterarchical systems center on their
efficiency and stability. We have seen in this chapter that Ceccato and
Huberman (1988) argue that after an initial period the complexity of
hierarchical self-organizing systems is reduced, and their rate of evolution
and their adaptability with it. The systems become adapted to the par-
ticular environment in which they operate. As a result, certain links are
continuously activated whereas others are not. The unactivated, nonopti-
mal ones disappear, so that when circumstances change, new links need to
be forged. That takes time and energy.

In distributed systems, on the other hand, nonoptimal strategies persist
(Ceccato & Huberman 1988), which seems to affect very large market
systems; these therefore also have difficulty adapting. Combining the two
kinds of systems into hybrid systems has two advantages. First, the
introduction of globally controlled (hierarchical) communications in
distributed systems causes the latter to lose their penchant for retaining
nonoptimal strategies. Secondly, the existence of distributed
connections in the system increases the adaptability of the hybrid struc-
ture as well.

The next aspect of heterarchical systems we need to consider is their
efficiency. Upon adopting a hybrid strategy, a system will have to deal
with many new challenges. It would ideally need the optimum efficiency
afforded by a hierarchical system and the optimum adaptability inherent
in a distributed one. In practice, a hybrid structure will develop that is a
best fit in the particular context involved. As it develops solutions to the
specific problems that it faces, its hierarchically organized pathways will
become simpler, reducing overall adaptability and possibly reducing effi-
ciency as the original random hierarchy becomes more diverse. On the
other hand, its distributed interactions may become better informed and/
or improve their decision-making efficiency, and their adaptability will
not necessarily be reduced.

Innovation introduces new resources into a system, and will therefore
reduce competition or at least mitigate its negative effects. It will increase
the efficiency of the distributed actors, which in turn will prompt more
and more of them to cooperate, further increasing efficiency gains for a
limited time until competition for resources becomes dominant again.
This inherent fluctuation of the market aspect of the system is reduced
by the much more stable efficiency of the hierarchy.

Similarly, in market systems both the time delays and their oscillations
increase rapidly with increasing numbers of actors, whereas in hierarch-
ical systems time delays proportionately decrease with each increase in the
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number of participants and oscillations are virtually nonexistent. Again,
heterarchical systems seem to have the advantage.

Conclusion

The main point of this chapter is to argue that one can indeed make a
coherent argument for considering the major societal transformations
that we know from archaeology, history, and anthropology as due to
an increase in knowledge and understanding, and thus an increase in the
information processing capacity of human societies. Viewing this as part
of a dissipative flow structure dynamic enables us to understand these
transitions as being driven by the need to enable the communications
structure of human groups to adapt to the growth in numbers that is in
turn inherent in the increase in knowledge and understanding. It therefore
presents us with an ultimate explanation for the different societal forms of
organization that we encounter in the real world and the transitions
between them, an explanation that does not need any other parameters
(such as climate pressures, etc.). All these are subsumed under the variable
“information-processing capacity.”
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Appendix A

So that Chapter 11 is readable for a non-mathematically oriented public,
and yet it has the solid basis it merits as one of the fundamental chapters
underpinning the whole book, I have taken two major sections out of it
and present them here.

Ultradiffusion in Complex Hierarchies

Huberman and his colleagues have developed the following approach to
the calculation of communication speeds in hierarchies. They treat the
individuals at the lowest level statistically, that is by integrating over
them, while considering the individuals at the top static, as they constrain
the intervening levels of the hierarchy everywhere in the same fashion
(Huberman & Kerzberg 1985; Bachas & Huberman 1987).

Huberman and Kerzberg (1985) first transformed hierarchies into
structures in which to travel between two points in the lowest branches
without leaving the tree, one must go up by a number of levels equal to
the ultrametric distance separating the points (Figure 11.5a). Next, those
structures were transformed into probabilistic ones, representing the
probability per unit time (εi) that a unit (of energy in their case, but in
ours a unit of information) would pass from one cell to another
(Figure 11.5b).

The higher the barrier, the lower the probability (because the infor-
mation has to pass through more nodes). They then postulated that the
time needed to pass between the most directly linked cells would be
considerably shorter than the time needed to pass between cells linked
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one step further up/down the hierarchy, so that the hierarchy of diffusion
times was well-defined.

This seems reasonable from our perspective: if we assume the inter-
action times needed to transmit a message between two nodes to be more
or less equal, going one step further up/down the hierarchy requires at
least twice the time to get the message across. After a time to ‒ 1/εo, the
statistical distribution on both sides of the lowest barriers will be roughly

figure 11.5 (a) Hierarchical array of barriers over which a particle diffuses. The
barriers are labeled by ε, the probability per unit time that they will be crossed;
ε is small for a tall barrier. The hierarchy may or may not extend down to infinity.
(b) Ultrametric structure: to travel between two points in the top branches of the
tree without leaving the tree, one must go down by a number of levels equal to the
ultrametric distance separating the points. (Source: van der Leeuw after Huber-
man & Kerzberg 1985)

Ultradiffusion in Complex Hierarchies 205

https://doi.org/10.1017/9781108595247.014 Published online by Cambridge University Press

https://doi.org/10.1017/9781108595247.014


equalized (and all the information diffused), so that these barriers can be
ignored. But this changes the relationship between the next highest bar-
riers, requiring that one renormalizes them, as is seen in Figure 11.5b.9

The same applies for all the further steps up, while after another similar
time interval the phenomenon repeats itself. Once the barriers at a certain
level have been overcome, the area from which any bit of information is
to cross the next barrier is effectively enlarged by a power 2 (see
Figure 11.5a), so that more information is transferred. Similarly, after
each time interval, the given probability of finding a specific bit of infor-
mation is effectively valid over a region twice the size of the original one.

The results of this work can be summarized as follows. Independent of
the size of the population that a hierarchy integrates, there is an upper
limit to the time it takes to diffuse information throughout it. Although
that limit is related to the number of levels in the hierarchy, increasing
that number does not linearly increase the time involved. When
expanding a hierarchy from five levels to six, the additional time is a root
of the time added upon expansion from four levels to five. There is a
power-law involved, which relates the diffusion to the number of levels
in the hierarchy. Huberman and Kerzberg (1985) call this effect
ultra-diffusion.10

Hierarchy Structure and Interference in Communications

In any hierarchical structure, the frequency of local transfer will be much
higher than that of more distant transfer. A hierarchy of timescales will
therefore develop, reflecting the rate at which diffusion takes place. As all
transfers pass in part through the same channels, interference and loss of
signal will occur. This may be a major constraint. One of the conse-
quences is that diffusion is fastest in either uniformly or randomly multi-
furcating trees, while it is slower in very diverse ones.11

In order to quantify this aspect, Huberman & Hogg (1986) define the
“tree silhouette” of the hierarchy as follows. Let branching occur at
integral multiples of a minimum height interval (Δh), so that the mth

generation of all branches, which occurs at height h = m.Δh, has a
total number of branches n (h). Then the silhouette slope can be defined
as follows:

s hð Þ ¼ �Δ log n hð Þ ¼ 1 log n hð Þ,ΔhΔh n hþ Δhð Þ ð11:1Þ

and its asymptotic value: s ¼ lim s hð Þ:hfi∞ ð11:2Þ
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Large and small values of s correspond to fat and thin trees respectively.
It so turns out that the dynamic critical exponent n, which rules diffu-
sion in a regular uniformly multifurcating tree, equals s; 1-s thus
depends only on that tree’s silhouette. Indeed, such diffusion is only
stable if 0 < s < 1. As soon as s > 1, diffusion becomes unstable and
therefore slows down. The same result is obtained when the multifurca-
tion is random, i.e., when the number of branches at each node is
determined by an independent random variable. That is intuitively easy
to accept, because if large enough, such a tree would also be essentially
balanced. But if a tree is asymmetrical around a vertical axis, such as
when the number of offspring is three per node on one side and one
per node on the other, then the critical exponent n equals s and diffusion
is slowest.

In order to characterize a tree’s diffusion capacities, it is therefore
necessary to devise a measure of a hierarchy’s diversity or complexity
(Huberman & Hogg 1986). On average, each level of a hierarchy
contributes to its complexity the fraction of its branches that generate
nonisomorphic trees. The average complexity per leaf is given by the
following equation:

Ch ¼ ΣNIm,Nlevels NBm ð11:3Þ
In this equation, NIm is the number of nonisomorphic trees at level m > 1

(m = 0 is the root) and NBm is the number of branches at this level. This
average complexity per leaf of very large numbers of trees with many
levels of complexity has a limit between 5 and 6, while for a large sample
the relative frequency of appearance of trees with complexity values
between n and n + 1 (in which n = 0, 1, . . .) has a normal distribution
with a maximum between 5 and 6. For large hierarchies, very complex
trees will therefore have a complexity that at most increases linearly with
the number of levels.

Distributed Information Processing

Distributed systems are characterized by structural variables such as:

• The degree of independence of the individual participants;

• The degree to which they compete or cooperate;

• The fact that knowledge about what happens in the remainder of
the system is incomplete and/or that the individual actors are
informed with considerable delays;

• The way in which finite resources are allocated within the system.
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Huberman and Hogg (1988) study the behavior of distributed systems by
analyzing one by one the impact of a number of the variables previously
mentioned. In order to do so they build a model that has been described
on p. 198. The operational conditions of the first simulation are that:

• The perceived payoffs are taken to be normally distributed, with
standard deviations around their correct values;

• The difference between correct and perceived values is increasing
with the amount of uncertainty in the information available to the
agents;

• Information delays cause each agent’s information to be slightly out
of date.

In the case of (1) two resources, (2) many agents, (3) a mixture of
cooperative and competitive payoffs, and (4) agents that are all subject
to the same effective delays, uncertainties, and preferences for resource
use, the dynamics are represented by Figure 11.6.12

As long as the delays are limited, the system converges to an equi-
librium that is close to the optimum that a central controller can obtain
without loss of information. But as the reliability of the information
decreases, the equilibrium moves away from optimality. With increas-
ing delays, it will eventually become unstable, leading to oscillation and
potential chaos. Under those conditions, the number of agents using a
particular resource continues to vary so that the overall performance is
far from optimal. Such behavior can effectively be avoided by
according differential payoffs related to actual performance of individ-
ual actors rather than a range of generalized payoffs. According differ-
ential payoffs has the net effect of increasing the proportion of agents
that perform successfully and decreasing the number of those that do
not, while modifying the choices that each actor makes. As a result, a
diverse community of agents emerges out of an essentially homoge-
neous one.

In a very interesting, intricate model, Glance and Huberman (1997)
then look at how these dynamics are impacted by the expectations of the
actors. By creating agents with different expectations and consequently
different performance characteristics in extrapolating from imperfect and
incomplete information, their decision delays can be related to the peri-
odicity of the dynamics of the system.

With a fixed oscillation, those agents that are able to discover its
periodicity will get better rewards, but their discovery may alter the
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frequency of the oscillation so that this advantage does not last. Differ-
ences in estimation can be due to the procedures used for analyzing
the system’s behavior. Under these conditions the potentially chaotic
oscillation quickly leads to several bifurcations and dampenings. As diver-
sity in performance rapidly increases, the system turns out to be stable
when perturbed (Figure 11.6).

I conclude that a very heterogeneously performing set of agents creates
a more effective distributed processing system than a homogeneous
group. Not only does this confirm the idea that diversity is the cause
and condition for stability in a distributed system, but it allows the
quantification of the minimum diversity needed in that system.

Figure 11.7 presents the stability regions of the system for very differ-
ent ranges of agents’ delays in evaluating system behavior (and drawing
the consequences from it). The parallels between the two diagrams

figure 11.6 Phase space stability portrait articulating the interaction between
the time horizon of the actors’ payoffs (H), their transaction cost (T), and the
stability of the system (σ) for a fixed set of payoffs: G1 = 4 + 7 f – 5.333f2 and G2 =
4+3f, α = 1, τ = 6. The system is always stable in region C, always unstable in
region A, and in region B it either relaxes to a fixed point or goes into a limit cycle,
depending on initial conditions (see Glance & Huberman 1997, 125). (Source:
van der Leeuw & McGlade 1977 by permission: Routledge)
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suggest to Glance and Huberman (1997) that regardless of the range, one
can always find a mix that will generate stability.13 The payoff mechan-
ism thus turns out to be critical for the behavior of the system, and
notably how the payoff delays relate to the information delays in the
system.

In all the examples presented by Glance and Huberman, the delays
have been shorter than the delays in the system. If payoff delays were
based on average past performance, and thus occurred after much longer
time lags, this would probably result in very different behavior. But the
distribution of rewards is also crucial. Giving rewards proportional to the
square of the actual performance increases the speed with which stability
is reached, for example, whereas giving all rewards to top performers
results in a system that does not reach stable behavior at all.

figure 11.7 Phase space stability portrait articulating the interaction between
the time horizon of the actors’ payoffs (H), their transaction cost (T) and the
stability of the system (σ) for a fixed set of payoffs: G1 = 4 + 7f � 5.333f2 and
G2 = 4+3f, α = 1, τ = 6 σ = 0.5, T = 1 The system is always stable in region
C, always unstable in region A, and in region B it either relaxes to a fixed point or
goes into a limit cycle, depending on initial conditions (see Glance & Huberman
1997, 125). (Source: van der Glance & Huberman 1997; by permission
Routledge)
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notes

1 One anonymous reviewer argues that this may explain why there was a
sudden explosion of “civilizations” in the second wave of complex social
organization, after about 1500 BCE, where they had not developed in the
first wave (4000–2000 BCE) (Day et al. 2012; Gunn et al. 2014).

2 Rather than detail examples here, I refer to the following papers for a
summary: Earle & Preucel 1987; Price & Feinman 1995, Pauketat 2007
and many others) The essence of the argument is that it is very difficult to
define clear categories as there are many external and internal conditions that
shape the actual social organizations concerned. However, the overall idea
that there are political and organizational characteristics of societies that are
related to their size and their permanence is accepted. It is therefore expedient
to see these as manifestations on a continuum, as I do here.

3 In essence, the current phenomenon of globalization is also part of this
process. Whereas until now cultural, socioeconomic and political barriers
combined with the relatively high cost of long-distance communication made
a global extension of the interactive sphere difficult, the information and
communications technology revolution has changed that profoundly over
the last fifty years by reducing communications cost to near zero.

4 This is consistent with Wallerstein’s idea (1974–1989) that a degree of organ-
izational heterogeneity was essential for the genesis and persistence of the
modern world system.

5 Archaeologists reading this section, please note that my use of the concept of
heterarchy follows Simon, rather than the somewhat different one used by
Crumley (1995), which is better known in archaeology.

6 The problem is not inherent in the hierarchical nature of the systems, but in
the differences in mathematical treatment required by problems of different
degrees of complexity, such as distinguished by Weaver as “organized simpli-
city,” “disorganized complexity,” and “organized complexity” (1969).

7 Indeed, Schrager et al. (1988) present a convincing general derivation of this
“law” from the same principles of graph theory that they used for hierarchical
information-processing structures.

8 The Encyclopedia Britannica defines heterarchy as follows: (www.britannica
.com/topic/heterarchy consulted January 7, 2018). “Heterarchy = form of
management or rule in which any unit can govern or be governed by others,
depending on circumstances, and, hence, no one unit dominates the rest.
Authority within a heterarchy is distributed. A heterarchy possesses a flexible
structure made up of interdependent units, and the relationships between
those units are characterized by multiple intricate linkages that create circular
paths rather than hierarchical ones. Heterarchies are best described as net-
works of actors – each of which may be made up of one or more
hierarchies – that are variously ranked according to different metrics.”

9 This implies, among other things, that the subordinate units do not have the
liberty to choose which tasks they execute, or how they do so, as is the case in
truly parallel processing systems.
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10 I refer those who wish to check the mathematical derivations to the original
paper (Huberman & Kerzberg 1985).

11 As they primarily deal with physical systems, they quantify the effect by
calculating the auto-correlation function, i.e., the probability that any particle
returns to its point of departure. That probability near-geometrically
approaches zero. Because it deals with physical systems, this power-law is
clearly also dependent upon temperature, i.e., on a potential across the
hierarchy. For the moment, it is difficult to define such a potential in the case
of information, but one possible way might be to define it in relation to
difference in the degree of abstraction with which the information is formu-
lated. This is predicated on the idea that the more abstract the form of
organization, the more dimensions of information transfer it applies to, and
thus the more chance it has of being transferred between any two individuals.

12 I refer the reader to the original paper for the lengthy mathematical treatment
of this issue.

13 Such as may be the result of learning or mutation. However, Huberman does
not discuss the details of that mechanism and constructs the model in such a
way that only existing types of agents can be rewarded.

212 Transitions in the Organization of Human Societies

https://doi.org/10.1017/9781108595247.014 Published online by Cambridge University Press

https://doi.org/10.1017/9781108595247.014

