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Note on the Geometries in which Straight Lines
are represented by Circles.

By DUNCAN M. Y. SOMMERVILLE, M.A., D.Sc.

(Read and Received 13th May 1910).

§0. In a recent paper read before the Society, Professor Carslaw
gave an account, from the point of view of elementary geometry, of
the well-known and beautiful concrete representation of hyperbolic
geometry in which the non-Euclidean straight lines are represented
by Euclidean circles which cut a fixed circle orthogonally. He also
considered the case in which the fixed circle vanishes to a point,
and showed that this corresponds to Euclidean geometry. The
remaining case, in which the fixed circle is imaginary and which
corresponds to elliptic or spherical geometry, is not open to the same
elementary geometrical treatment, and Professor Carslaw therefore
omitted any reference to it. As this might be misleading, the
present note has been written primarily to supply this gap. I t has
been thought best, however, to give a short connected account of
the whole matter from the foundation, from the point of view of
analysis, omitting the detailed consequences which properly find a
place in Professor Carslaw's paper.

§1. Let us first find the conditions under which the straight
lines of a geometry may be represented by Euclidean circles.

The defining characteristic of a straight line is that it is in
general uniquely determined by two points. Hence if the circle

represents a straight line, the constants, g, /, c, must be connected
by a linear relation, of which the general form may be written

But this relation expresses that the circle cuts orthogonally the
fixed circle

a,-2 + f + 2g'x + 2fy + c' = 0.
Hence the circles which represent the straight lines of a geometry
form a linear system cutting a fixed circle orthogonally.
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§2. Thus we find at once that there are three forms of
geometry, according as the fundamental circle is real, vanishing,
or imaginary. In the first case two orthogonal circles cut in
two points, which may be real, coincident, or imaginary; in the
second case every orthogonal circle passes through one fixed point,
and they cut in pairs in one other real point which may be coin-
cident with the fixed point; in the third case they cut always
in two real points which may coincide. Thus we have the three
sorts of line-pairs, intersecting, non-intersecting, and parallel.
If we fix the condition that two straight lines cut in only one
point, it will be convenient to consider the point-pair (which are
inverse points with respect to the fundamental circle) as being the
representative of a point.* Then the geometry with a real circle
is called Hyperbolic, and the geometry with an imaginary circle is
called Elliptic. If we abandon the condition that two straight
lines are only to cut in one point, we get in the latter case a
geometry which we shall see is identical with Spherical geometry.
In the former case we see from §5 that the distance between two
points which are separated by the fixed circle is unreal, so that
we cannot consider them as distinct real points. When the
fundamental circle vanishes the geometry is called Parabolic, and
we shall see that it is identical with Euclidean geometry.

§3. Next, to fix the representation, we have to consider the
measurement of distances and angles.

Let us make the condition that angles are to be the same in the
geometry and in its representation, i.e. that the representation is to
be conform, f We shall find that this fixes also the distance
function.

* When the fundamental circle is real we may employ another artifice
and consider only the points in the interior (or exterior) of the fundamental
circle. When the fundamental circle vanishes to a point, this point may be
considered as the representative of all the points at infinity. (See §7.)

t C. E. Stromquist, in a paper " On the geometries in which circles are
the shortest lines," New York, Trans. Amer. Math. Soc, 7 (1906), 175-183,
has shown that " the necessary and sufficient oondition that a geometry be
such that extremals are perpendicular to their transversals is that the
geometry be obtained by a conformal transformation of some surface upon
the plane." The language and his methods are those of the calculus of
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First let us find how a circle is represented. A circle is the
locus of points equidistant from a fixed point, or it is the orthogonal
trajectory of a system of concurrent straight lines. Now a system
of concurrent straight lines will be represented by a linear one-
parameter system of circles, i.e. a system of coaxal circles. The
orthogonal system is also a system of coaxal circles, and the fixed
circle belongs to this system. Hence a circle is represented always
by a circle, and its centre is the pair of limiting (or common) points
of the coaxal system determined by the circle and the fixed circle.

The distance function has thus to satisfy the condition that the
points upon the circle which represents a circle are to be at a
constant distance from the point which represents its centre. To
determine this function let us consider motions. A motion is a
point-transformation in which circles remain circles; and further,
the fundamental circle must be transformed into itself, and angles
must be unchanged.

§4. The equation of any circle may be written*

zz+pz + pz + c = 0

where z = x + iy, p = ff + if and z, p are the conjugate complex
numbers. Now the most general transformation which preserves
angles and leaves the form of this equation unaltered is

_, _ az + j8 g,
" ~ yz + S'

This is a confonnal transformation since any transformation between
two complex variables is so.

variations. The extremals are the curves along which the integral which
represents the distance function is a minimum, i.e. the curves which represent
shortest lines; and the transversals are the curves which intercept between
them arcs along which the integral under consideration has a oonstant value.
Thus in ordinary geometry, where the extremals are straight lines, the
transversals to a one-parameter system of extremals are the involutes of the
curve which is the envelope of the system. In particular, when the straight
lines pass through a fixed point the transversals are concentric circles.

* Cf. Liebmann, Niohteuklidisohe Geometric (Leipzig, 1905), §§8, 11.
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To find the relations between the coefficients in order that the
fundamental circle may be unchanged, let its equation be

3? + y"- + k = 0 or zz + k = 0.

This becomes (az + B)(az + /8) + k(yz + 5)(yz + 6) = 0.

Hence aB + kyS = 0

and k(aa + kyy) = #8 + k88

therefore aa = SS,

a 8 ky B ,
so that — = — = - — = —= = A.

8 a B ley

We have a = A8 and a = AS, and also a = —8
A

therefore | A | = 1.

The general transformation is therefore *

z' = A— =, where | A | = 1.
Bz + a

By any such homographic transformation the cross-ratio of four
numbers remains unchanged, i.e.,

To find the condition that this cross-ratio may be real, let 013 be the
amplitude, and r13 the modulus of zx — z3 and so on, then

- V _ ^ r°-i Wn - »M + 024 " #23)
* ; — — • ~ — e

Hence we must have

^13 ~ ^14 + ^24 — ^23 = WIT,

and the four points zu «a z3, z4 are concyclic.

§5. Now to find the function of two points which is invariant
during a motion ; the two points determine uniquely an orthogonal
circle, and if the transformation leaves this circle unaltered it leaves

* When, as is often taken to be the case, the fundamental circle is
the x-axis the conditions are simply that the coefficients a, §, y, S, be all real
numbers.

https://doi.org/10.1017/S0013091500034842 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500034842


85

unaltered the two points where it cuts the fixed circle. Hence if
these points are x, y the cross-ratio (zfa, xy) for all points on this
circle depends only on zl and %„. If the distance function is
(PQ)=./-((S!I*B xy)} or, as we may write it,/(z,, z2), then for three
points P, Q, R, (PQ) + (QR) = (PR), or

This is a functional equation by which the form of the function is
determined. Differentiating with respect to zs, which may for the
moment be regarded simply as a parameter, we have

. QY 9/PXN RY 3 /PX\
2) • QX • a^VPYJ = / ( % I 2s) • RX • (

H A*,*,) QXRY / P X R Y \ _ / P X Q Y \ (Zjz3, xy)
/ (*, , a,) ~ QY RX ~ VPY EX ) ' \FY QXj (z,z2, xy?

and ( % *y)/' {(zfa xy)} = const. = /x.

Integrating, we have

The constant of integration, C, is determined ^ 0 by substituting in
the original equation. Hence

(PQ) = /ilog(,1,2, xy) = / d o g ( | | g ) .

§6. The expression for the line-element can now be found by
making PQ infinitesimal.

We have, by Ptolemy's Theorem,

PX.QY = PQ.XY + PY.QX.

(
1

Let OP (Fig. 1) cut the circle PXY again in R and the fixed
circle in A, B. Then R is a fixed point so that PR is constant.

. . RX RY
Also =^: = = = = a fixed ratio = e,

and PR.XY = PX.RY + P Y . R X = 2e.PX.PY.
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XY 2e
==—=r=. = -=r= and is therefore a function of the position
ji.. Jr x P K

of P alone.

Pig. 1.

To find its value we may take any orthogonal circle through P,
say the straight line PR.

Then

Hence

/vnf. , /PXQ'Y\ / PXQY\
(PQ ) = ̂ l o g ^ ^ = Mlog( - ^ ^ )

§7. The distance function is thus periodic with period
If P, P' are inverse with respect to the fixed circle

(PA P'R\

and

When Q is on the fixed circle (PQ) = oo. The fundamental
circle is thus the assemblage of points at infinity.

If the fundamental circle is imaginary, k is positive and |t is
purely imaginary and may be put = i. Then if inverse points are
considered distinct their distance is T and the period is 2ir, but if
inverse points are identified the period must be taken as jr.
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If the fundamental circle is real, k is negative and y. is real and
may be put = 1. Then the period must be taken as iir and inverse
points must be identified, otherwise we should have two real points
with an imaginary distance. In this geometry there are three sorts
of point-pairs, real, coincident, and imaginary, or actual, infinite,
and ultra-infinite or ideal.

§8. Now if we change x, y into x', y' with the help of an
additional variable z' by the equations

x' _ y _ z' - R _ 2R.J&
x y ~ Jk x' + y^+k

Then a^ + ̂  + z '^R2,

so that (x, y) is the stereographic projection of the point (x\ y', z)
on a sphere of radius R.

Obtaining the differentials dx', dy', dz', we find
4Ryfc

da" = dx'2 + dy'2 + dzn- = „ (dx? + dy}).
[x +y + K)

Hence R;= -ft2.
Hence when k is positive and /u. purely imaginary and = iR, the

geometry is the same as that upon a sphere of radius R, and the
representation is by taking the stereographic projection.

When k is negative the sphere has an imaginary radius, but
such an imaginary sphere can be conformly represented (by an
imaginary transformation) upon a real surface of constant negative
curvature, such as the surface of revolution of the tractrix about
its asymptote (the pseudo-sphere).*

When A; is zero /x must be infinite and the sphere becomes a
plane.

Let

Then

By the transformation r' = —, ff = 6

this becomes cfc2 = dr" + r^dff1 = dx'- + dy'\

• Cf. Darboux, Theorie des surfaces, vii., chap. XI.
Also Klein, Niohteuklidische Geometrie, Vorles'ungen.
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Hence when k is zero the geometry is the same as that upon a
plane, i.e. Euclidean geometry, and the representation is by
inversion.

§9. Let us now return to the consideration of motions and
investigate the nature of the general displacement of a rigid plane
figure.* In ordinary space the general displacement of a rigid
plane figure is equivalent to a rotation about a definite point, and
this again is equivalent to two successive reflexions in two straight
lines through the point. Now the operation which corresponds to
reflexion in a straight line is inversion in an orthogonal circle.
The formulae for inversion in the circle

zz+pz+pz- k-0,

which is any circle cutting zz + k = 0 orthogonally, are

or, using complex numbers,

z' +p =

Whence *'

(z+p)(z+p)

k-pz

z+p
A second inversion in the circle

zz + qz + qz - k = 0

gives z"=

This will not hold when the circle of inversion is a straight line,
0 = (j>. Here inversion becomes reflexion and the formula is

This combined with an inversion gives

s+p

* Ct. Weber u. Wellstein, Eneyklopadie dor Elementar-Mathematik (2
Aufl. Leipzig, 1907), Bd. 2, Abschn. 2. Also, Klein u. Fricke, Vorleeungen
iiber die Theorie der automorphen Funetionen (Leipzig, 1897), Bd. 1.
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Now these transformations are always of the general form

z = A— —, where | A. | = 1.
flz + a

In fact this transformation is always of one or other of the two
forms

z'
(when /3 = 0) or

z+p

(by dividing above and below by /3).

Hence the general displacement of a plane Jigure is equivalent to
a pair of inversions in two orthogonal circles.

§10. In the general transformation there are always two points
which are unaltered, for if z' = z we have the quadratic- equation

(is? + (o - \a)z + k\(3 = 0.

These form the centre of rotation, and the circles with these points
as limiting points are the paths of the moving points.

There are three kinds of motions according as the roots of this
quadratic are real, equal, or imaginary, or according as the centre
of rotation is real, upon the fundamental circle, or imaginary. The
first case is similar to ordinary rotation. In the second the paths
are all circles touching the fundamental circle. In the third the
paths all cut the fundamental circle; one of these paths is an
orthogonal circle, the other paths are the equidistant curves.

§11. In conclusion, let us consider the connection between the
representation by circles and the representation by straight lines.
In the representation by straight lines, or circles with their centres
at infinity, the fixed circle is the line infinity. If the representa-
tion is to be conformal, distances as well as angles must be repre-
sented unaltered, and the geometry can only be Euclidean.

Abandoning the conformal representation, the transformation
which changes circles orthogonal to ar! + y2 + & = 0 into straight
lines is
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k
The points (r, 6), ( , 6) are both represented by the same

point, so that this transformation gives a (1 ,1) correspondence
between the pairs of real points which are inverse with respect to
the circle a? + xf + k = 0 and the points which lie within the circle

«2 «2

x2 + y2 + ̂ - = 0, since for real values of r, r ' 2 < - -£- . Every point

upon the circle r2 + & = 0 is thus to be considered double. To a
pair ii imaginary points corresponds a point outside the new fixed
circle Any circle, not orthogonal, is transformed into a conic
having contact with the circle krs+p1 = 0 a t the two points which
correspond to the intersections of the circle with the fixed circle

I n fact, any curve in the r'-plane which cuts the fixed circle a t
a finite angle is represented in the r-plane by a curve cutting the
fixed circle orthogonally, and any curve in the r-plane which cuts
the fixed circle a t a finite angle other than a right angle corresponds
in the r'-plane to a curve touching the fixed circle.

Let the equation of a curve in the r'-plane be f(r, ff) = 0.

dff df I df
lhen —r = -irrh^-dr or I dff

df
U ~drr~

Therefore

Hence when

results.

r> +

dr
dr'

(t»-kf df of 8/
' dr' dd' ~ dd'2p(r! + k) ' dr' dd' ~ dd'

{r-kf de

dr' 2p(r* + A) dr

dff dd
, ~rr'=a> unless - j - = 0, which proves the

§12. This transformation receives its simplest expression through
the medium of the sphere.

Let a point Q be projected stereographically into P and centrally
upon the same plane or a parallel plane into P' (Fig. 2).
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Then ff = 6,
and r = OP = OStan<£ = ctan<£, r' = OF = OCtan2<£ = c'tan2<£,

therefore •leer

which agrees with the former equation if <? = k and cc = -p,so that

c'*=^ = k-

P'

Pier. 2.

Hence as the representation by circles corresponds to stereo-
graphic projection, the representation by straight lines corresponds
to central projection.

The transformation from the sphere to the plane is in this case
given by the equations

x y Jk' 1

where

Then*

x'1 + yn + z'1 = R2.

[or + if + k)

* It may be noticed that the line-element oan be expressed in terms of
x', y' alone. Thus expressing z', dr! in terms of x", y' by means of the equation

z'2 = R!, we have
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p 3 . To determine the distance and angle functions in this
representation we have first the relation between the angles from
§11.

where <f> is the angle which the tangent at P to the curve J\r, 0) = 0
makes with the initial line.

Draw the tangents P'Tj, FT, from P' to the circle (Fig. 3) and

let ^
Then

Therefore

Pig. 3.
Also draw P T parallel to the a-axis.

tana:

sin(a - <j>) sinX'P'Tj sinOFT
_ _
= sin(a + <̂ ') = sinX'FT2' sinOP'T,
= F(X'O, T,T,).

Here x', y', -^- are the so-called Weierstrass' coordinates. Let the position

of a point F on the sphere be fixed by its distances (, rj from two fixed great
circles intersecting at right angles at Si, and let OV=p, all the distances being
measured on the sphere along arcs of great circles. Then

On the pseudosphere the oiroular funotions become hyperbolic functions.
(See Killing, Die nichteuklidischen Raumformen, Leipzig 1885, p. 17.)
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Thus the true angle <f> is given by

£ ly ' , T,T2).

Hence the angle between two lines P'X', F Y ' through P' is given

ylog(OY', T1T2)--l-log(OX'> TIT-) = ylog(X'Y', T,T2).

Next to determine the distance function; let P, Q become
P', Q' (Fig. 4). The orthogonal circle PQXY becomes a straight

Pig. 4.

line P'Q'X'Y', and OPP', OQQ', etc., are collinear since angles at O
are unaltered.

We have then

But

and

PX sinXOP PY sinYOP
OP sinOXP' OP sinOYP

PX QY sinXOP sinYOQ sinOYP sinOXQ
PY " QX ~ sinYOP" sinXOQ ' sinOXP ' sinOYQ

fFX' Q ^ V P Y QX\
;VP'Yr"Q'X'APX"QY/

therefore
/PX QYV-_FX; QT'
VPY'QX/ "FY ' "Q'X'"
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Hence we have the true distance (PQ) given by

, m , . /PX QY\ /PX' Q'Y'
(PQ) =/.log(—. — ) = ^log(— ) = ̂ log( — . _

\ X'Y') =

Then the line-element can be obtained in a manner similar to
that of §6.

XY
We find as before that (PQ, XY) = 1 + 5 ^ - 7 ^ • PQ ;

but in this case PX . PY = x2 + y* + k'

and XY2 = - A{k(da? + dy") + (ydx - xdyY)l{da? + dy"-) :

so that as = -fir. (ar' + jr + A)-

Comparing this with the expression in §12 we find

§14. Finally, this representation may be transformed projectivelv
(distances and angles being unaltered as they are functions of cross-
ratios), and we get the usual generalised representation in which
the fixed circle or absolute becomes any conic ; straight lines are
represented by straight lines, and distances, and angles in circular
measure, are expressed by the formulae

^ XY)

(Pi) = y

where X, Y are the points in which the straight line PQ cuts the
conic, and x, y are the tangents from the point of intersection of
the lines p, q to the conic.
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