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Abstract

Conditionally on the generalized Lindelöf hypothesis, we obtain an asymptotic for the

fourth moment of Hecke–Maass cusp forms of large Laplacian eigenvalue for the full

modular group. This lends support to the random wave conjecture.

1. Introduction

A central question in arithmetic quantum chaos concerns the distribution of Hecke–Maass forms

for the full modular group. The random wave conjecture (RWC) predicts that for large Laplacian

eigenvalue, the distribution is close to random. One way to formulate this is to conjecture that

on fixed compact sets, the moments of Hecke–Maass cusp forms of large Laplacian eigenvalue

asymptotically equal the moments of a random variable with Gaussian distribution. Until now,

only numerical work and heuristic arguments (see [HR92, HS01]) have supported this conjecture.

On the theoretical side, the fourth moment in particular is a natural and important case to study,

as it reduces, via Watson’s formula, to a problem on L-functions. But proving an asymptotic for

the fourth moment of Hecke–Maass forms seems to be beyond the reach of current technology.

The goal of this paper is to establish such an asymptotic (over Γ\H) on the assumption of

the generalized Lindelöf hypothesis (GLH). One may wonder what the benefit is of proving one

conjecture based on another. One answer is that these conjectures are unrelated. Another answer

is of course that the GLH is a much more well accepted conjecture in mathematics and its truth is

very firmly believed. This puts the RWC on more solid ground. Our main result is the following.

Theorem 1.1. Assume the GLH. Let f be an even or odd Hecke–Maass cusp form for Γ = SL2(Z)
with Laplacian eigenvalue λ = 1

4 + T 2, where T > 0. Let f be normalized as follows:

1∫
Γ\H 1(dx dy/y2)

∫
Γ\H

f(z)2 dx dy

y2
= 1. (1.1)

There exists a constant δ > 0 such that

1∫
Γ\H 1(dx dy/y2)

∫
Γ\H

f(z)4 dx dy

y2
=

1√
2π

∫ ∞
−∞

t4e−t
2/2 dt+O(T−δ) (1.2)

as T →∞.
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Our result confirms on GLH a prediction of the RWC, with a power saving. Note that f is
real-valued because it is assumed to be even or odd (and of weight 0, with trivial nebentypus).
The left-hand side of (1.2) will be studied by using Watson’s formula to relate it to a mean value
of L-functions. If the GLH were applied at this point, it would immediately yield the upper
bound O(T ε). To go beyond this and obtain an asymptotic with power saving, even on GLH,
requires a lot of work and the full power of spectral theory. Some care is also needed to avoid
reliance on the Ramanujan conjecture (both at the finite and infinite places). Our proof will
show that if not GLH, then at the very least what is required is a subconvexity bound for the
L-function associated to the Rankin–Selberg product of an (essentially) fixed Hecke cusp form
and the symmetric square lift of f , in the eigenvalue aspect of f . See the discussion following
Lemma 5.1 and the last sentence of this paper. This GL(2) × GL(3) subconvexity problem seems
to be very difficult and, interestingly, is also essentially what is required to get a power saving
error in the quantum unique ergodicity (QUE) problem. It is safe to say that our problem is
more difficult than the quantitative QUE problem.

There have been some unconditional results short of an asymptotic for the fourth moment
of automorphic forms on Γ\H. In the eigenvalue aspect, an essentially optimal upper bound
was proven by Spinu [Spi03] for the fourth moment of truncated Eisenstein series, and by Luo
[Luo14] for dihedral Maass forms. Both of these results hinged on the spectral large sieve. For
Hecke–Maass forms, Sarnak and Watson announced a sharp upper bound for the fourth moment
in [Sar03, Theorem 3], but a proof of this has not appeared. Holomorphic Hecke cusp forms
of large weight are expected to be modelled by a complex Gaussian distribution (see [Blo13,
Conjecture 1.2]). However, proving an asymptotic for the fourth moment in this case, on GLH
or any other reasonable hypothesis, seems to be much harder than the problem for Maass forms.
This is because the corresponding mean value of L-functions has a larger ‘log of conductor to
log of family size ratio’ (see the discussion below). The best known upper bound for the fourth
moment in the weight aspect is far from optimal; see [Blo13].

Let {uj : j > 1} denote an orthonormal basis of even and odd Hecke–Maass cusp forms for
Γ, ordered by Laplacian eigenvalue 1

4 + t2j , where tj > 1. Let L(s, uj) be the L-function attached
to uj , normalized so that its functional equation relates values at s and 1− s. The shape of the
mean value of L-functions that we will need to evaluate is essentially∑

tj<2T

1

tjT 1/2(1 + 2T − tj)1/2

L(1/2, uj)L(1/2, uj × sym2f)

L(1, sym2uj)
. (1.3)

The analytic conductors of L(1
2 , uj) and L(1

2 , uj×sym2f) are t2j and t2j (1+|4T 2−t2j |)2 respectively.
Thus, the denominator above is about the same size as the convexity bound for the numerator. In
the ‘bulk’ range T 1−ε < tj < 2T −T 1−ε, which is nearly a dyadic interval, the analytic conductor
of the triple product L-function L(1

2 , uj)L(1
2 , uj × sym2f) is about T 8, while the sum is over

about T 2 forms. Thus the ‘log of conductor to log of family size ratio’ is 4. Our main work will
be on treating this bulk range. The remaining ranges will handled immediately on the GLH.

A similar mean value of triple product L-functions was considered (unconditionally) by Li
in [Li09], but there the GL(3) form was fixed, while here it is not (T tends to infinity). Thus,
our problem is clearly more complex. A similar mean value was also considered by the authors
in [BK17], with L(1

2 , uj × sym2f) replaced by L(1
2 , uj × χ)L(uj × f), where χ is a quadratic

character. Such a factorization occurs when f is a dihedral form, and this was the motivation
for the work in [BK17], although in that paper we were not able to make any direct conclusions
about the fourth moment. In this paper, we use the methods of [BK17] together with GL(3)
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Voronoi summation as a new ingredient to treat the present case where L(1
2 , uj × sym2f) does

not factorize. The present analysis is more delicate, with the ranges of various parameters harder
to control (in the same way that many problems in number theory involving the divisor function
become more difficult when the divisor function is replaced by Fourier coefficients of cusp forms).
For this reason, it is not clear a priori that our previous methods would work for this problem.
Also, [BK17] used a simplified weight function in place of the one given in (2.3).

2. Reduction to L-functions

Convention. Throughout, ε will denote an arbitrarily small positive constant, which may not be
the same from one occurrence to another.

To prove Theorem 1.1, the starting point is to express the fourth moment as a mean value
of L-functions. Note that since

∫
Γ\H 1 (dx dy/y2) = π/3 and (1/

√
2π)

∫∞
−∞ t

4e−t
2/2 dt = 3, we

need to show that with the normalization 〈f, f〉 = 〈f2, 1〉 = π/3, where the inner product is the
Petersson inner product, we have

〈f2, f2〉 = π +O(T−δ).

By the spectral theorem (see [IK04, Theorem 15.5]) and Parseval’s theorem, we have

〈f2, f2〉 =

∣∣∣∣〈f2,

(
3

π

)1/2〉∣∣∣∣2 +
1

4π

∫ ∞
−∞

∣∣∣∣〈f2, E

(
·, 1

2
+ it

)〉∣∣∣∣2 dt+
∑
j>1

|〈f2, uj〉|2,

where E(z, s) is the standard Eisenstein series. By normalization of f , we have∣∣∣∣〈f2,

(
3

π

)1/2〉∣∣∣∣2 =
π

3
,

and we will show the following result.

Lemma 2.1. Let f be as in Theorem 1.1. On the GLH, we have∫ ∞
−∞

∣∣∣∣〈f2, E

(
·, 1

2
+ it

)〉∣∣∣∣2 dt� T−1+ε. (2.1)

Thus it remains to prove the following proposition.

Proposition 2.2. Let f be as in Theorem 1.1. On the GLH, there exists some δ > 0 such that∑
j>1

|〈f2, uj〉|2 =
2π

3
+O(T−δ). (2.2)

Since
√

(3/π)f has L2-norm equal to 1, applying Watson’s formula [Wat02, Theorem 3] (see
also [Blo13, p. 2624]) to the inner product of (3/π)f2 and uj , we get∣∣∣∣〈 3

π
f2, uj

〉∣∣∣∣2 =
π

23
H(tj)

L(1/2, f × f × uj)
L(1, sym2f)2L(1, sym2uj)

,

where the L-functions appearing above are defined in the next section and

H(t) =
|Γ((1/2 + 2iT + it)/2)|2|Γ((1/2 + 2iT − it)/2)|2|Γ((1/2 + it)/2)|4

|Γ((1 + 2iT )/2)|4|Γ((1 + 2it)/2)|2
. (2.3)
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Equivalently, as uj is real,

|〈f2, uj〉|2 =
π3

72
H(tj)

L(1/2, uj)L(1/2, uj × sym2f)

L(1, sym2f)2L(1, sym2uj)
. (2.4)

For the weight function H(tj), we have by Stirling’s approximation (see (3.1) or [Spi03, § 5.1.1])
that

H(t) =
8π exp(−πq(t, T ))

(1 + |t|)
∏
±(1 + |2T ± t|)1/2

{
1 +O

(
1

1 + |t|
+

1

1 + |2T + t|
+

1

1 + |2T − t|

)}
, (2.5)

where

q(t, T ) =

{
0 for |t| 6 2T,

|t| − 2T for |t| > 2T.
(2.6)

Thus, the right-hand side of (2.4) looks essentially like (1.3).

3. Preliminaries

3.1 Stirling’s approximation
For σ > 0 fixed, as a first-order approximation we have

Γ(σ + iγ) =
√

2π|σ + iγ|σ−1/2+iγ

× exp

(
−π

2
|γ|+ isgn(γ)

(
π

2

(
σ − 1

2

)
− γ
))

(1 +O((1 + |γ|)−1)),

|Γ(σ + iγ)| =
√

2π(1 + |γ|)σ−1/2 exp

(
−π

2
|γ|
)

(1 +O((1 + |γ|)−1)), (3.1)

where sgn(γ) is 1 if γ is positive and −1 if γ is negative. As |γ|→∞, this gives

Γ(σ + iγ) =
√

2π|γ|σ−1/2+iγ exp

(
−π

2
|γ|+ isgn(γ)

(
π

2

(
σ − 1

2

)
− γ
))

(1 +O(|γ|−1)).

3.2 Approximate functional equations
Let λj(n) and λf (n) denote the (real) eigenvalues of the nth Hecke operator corresponding to
uj and f respectively, where we write λj(−n) = λj(n) for uj even and λj(−n) = −λj(n) for uj
odd. The L-function associated to uj is given by

L(s, uj) =
∑
n>1

λj(n)

ns

for <(s) > 1. Let Af (n, 1) = Af (1, n) be given by∑
n>1

Af (n, 1)

ns
:= ζ(2s)

∑
n>1

λf (n2)

ns
.

The right-hand side above equals L(s, sym2f) for <(s) > 1. Now define Af (n,m) = Af (m,n) by
the Hecke relations

Af (n,m) =
∑

v|(n,m)

µ(v)Af

(
n

v
, 1

)
Af

(
m

v
, 1

)
. (3.2)
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With this, we can define

L(s, uj × sym2f) =
∑
m,r>1

λj(m)Af (m, r)

(r2m)s

for <(s) > 1.
Kim and Sarnak [Kim03, Appendix 2] have proven the following bounds towards the

Ramanujan conjecture:

|λj(n)| � n7/64+ε,

|Af (n, 1)| � n7/32+ε.

On average, the best possible bounds are known by [Iwa92, Lemma 1] and [HL94, Lemma 2.2]:∑
n6x

|λj(n)|2 � x(|tj |x)ε,∑
n6x

|A(n, 1)|2 � x(Tx)ε. (3.3)

This implies by the Cauchy–Schwarz inequality and the Hecke relations (3.2) that∑
n6x

|λj(n)| � x(|tj |x)ε, (3.4)∑
n6x
m6y

|A(n,m)| � xy(Txy)ε.

Let

ΓR(s) = π−s/2Γ

(
s

2

)
,

G1(s) =
∏
±

ΓR(s± itj),

G2(s) =
∏
±

ΓR(s± itj + i2T )ΓR(s± itj)ΓR(s± itj − i2T ).

For uj even we have the functional equations

L(s, uj)G1(s) = L(1− s, uj)G1(1− s),
L(s, uj × sym2f)G2(s) = L(1− s, uj × sym2f)G2(1− s).

For uj odd we have the functional equation

L(s, uj)G1(1 + s) = −L(1− s, uj)G1(2− s),

which implies that L(1
2 , uj) = 0. All of these may be found in [Gol06, ch. 3] and [Li09, p. 1670].

We now set up approximate functional equations for the central values. But first we explain
what we will need. Usually one takes an approximate functional equation with the shortest
possible Dirichlet series. For uj even, this means taking

L

(
1

2
, uj

)
∼

∑
n<t1+εj

λj(n)

n1/2
+
∑

n<t1+εj

λj(n)

n1/2
,
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and for uj odd, we could take

L

(
1

2
, uj

)
∼

∑
n<t1+εj

λj(n)

n1/2
−
∑

n<t1+εj

λj(n)

n1/2
,

which vanishes. Since λj(−n) = λj(n) for uj even and λj(−n) = −λj(n) for uj odd, in both cases
we have

L

(
1

2
, uj

)
∼

∑
n<t1+εj

λj(n)

n1/2
+
∑

n<t1+εj

λj(−n)

n1/2
.

As we will see below, to understand a mean value of the form
∑

T<tj<2T λj(±n)λj(m) using

Kuznetsov’s formula, the same sign Kuznetsov (the + sign) leads to a J-Bessel transform while
the opposite sign Kuznetsov (the − sign) leads to a K-Bessel transform. Both transforms can be
evaluated asymptotically and it turns out that the main term of the K-Bessel transform has no
oscillation. We find this easier to work with, so we reduce the analysis involving the same sign
terms by taking an approximate functional equation with two Dirichlet series of unequal length
as follows:

L

(
1

2
, uj

)
∼

∑
n<t1+εj T−β

λj(n)

n1/2
+

∑
n<t1+εj Tβ

λj(−n)

n1/2
.

In this way, the Dirichlet series leading to the same sign terms is shorter. We now state this
precisely.

Lemma 3.1. For uj even, we have

L

(
1

2
, uj

)
= 2

∑
n>1

λj(n)

n1/2
V1(n, tj), (3.5)

L

(
1

2
, uj × sym2f

)
= 2

∑
m,r>1

λj(m)Af (r,m)

rm1/2
V2(r2m, tj), (3.6)

where

Vi(x, t) =
1

2πi

∫
(σ)
es

2
x−s

Gi(1/2 + s)

Gi(1/2)

ds

s
(3.7)

for any σ > 0.
Let 0 < α, β < 1

100 be some fixed constants to be determined later. For uj even or odd, and
T 1−α < |tj | < T 1+ε, we have

L

(
1

2
, uj

)
=
∑
±

∑
n>1

λj(±n)

n1/2
V ±1 (n, tj) +O(T−1/2+β/2+α+ε), (3.8)

where

V ±1 (x, t) =
1

2πi

∫
(σ)
es

2
(xT±β)−s

G1(1/2 + s)

G1(1/2)

ds

s

for any σ > 0.
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Proof. This follows from [IK04, Theorem 5.3] and the functional equations given above. For (3.5)
and (3.6), take G(u) = eu

2
and X = 1 in that theorem. For (3.8), take G(u) = eu

2
and X = T β

to get

L

(
1

2
, uj

)
=
∑
±

∑
n>1

λj(±n)

n1/2

1

2πi

∫
(σ)
es

2
(xT±β)−s

G1(1/2 + κj + s)

G1(1/2 + κk)

ds

s
, (3.9)

where κj = 0 or 1 as uj is even or odd. By the rapid decay of es
2

in vertical lines, we may restrict
the integral above to |=(s)| < T ε. By Stirling’s approximation, for <(s) > 0 fixed, |=(s)| < T ε

and |t| > T 1−α, we have

G1(1/2 + 1 + s)

G1(1/2 + 1)
=
G1(1/2 + s)

G1(1/2)
+O(T−1+α+ε). (3.10)

Thus, up to a small error, the ratio of Gamma functions in (3.9) does not depend on κj . Also
note that the sum in (3.9) can be restricted to n < T 1+β+ε up to admissible error by Stirling’s
approximation. Thus (3.8) follows, using (3.4). 2

Consider those values of |t| that are roughly of size 2T but not too close to 2T . That is,
suppose that for some 0 < α < 1

100 to be fixed later, we have

T 1−α < |t| < 2T − T 1−α. (3.11)

In the integrals appearing in Lemma 3.1, write s = σ + iγ. By the rapid decay of es
2

in vertical
lines, we may restrict these integrals to |γ| < T ε. We have by Stirling’s approximation that

V ±1 (x, t) =
1

2πi

∫
(σ)
es

2

(
2πxT±β

|t|

)−s(
1 +

∑
n6N

Bn(σ, γ)

|t|n

)
ds

s
+O(T−N/2) (3.12)

and

V2(x, t) =
1

2πi

∫
(σ)
es

2

(
8π3x

|t(4T 2 − t2)|

)−s(
1 +

∑
n6N

Bn(σ, γ)

|t|n

)(
1 +

∑
n6N

Cn(σ, γ)

|2T + t|n

)
×
(

1 +
∑
n6N

Cn(σ, γ)

|2T − t|n

)
ds

s
+O(T−N/2) (3.13)

for any N > 1 and some Bn(σ, γ) and Cn(σ, γ) polynomial in σ and γ. By thinking of |t| and
|t(4T 2 − t2)| as being of size about T and T 3 in the range (3.11), and taking σ as large as we
like in the expressions (3.12)–(3.13), we see that the sums in (3.8) and (3.6) have length about
T 1∓β and T 3 respectively. We have

∂k

∂tk
V ±1 (x, t)� |t|−k+ε � T k(−1+α+ε) (3.14)

in the range (3.11) by taking N large enough and σ = ε. Similarly,

∂k

∂tk
V2(x, t)� |t(4T 2 − t2)|−k+ε � T k(−3+2α+ε) (3.15)

for k > 0.
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3.3 Kuznetsov trace formula
Let

λ(n, t) =
∑
ab=n

(
a

b

)it
and

J+(x, t) =
2i

sinh(πt)
J2it(4πx), J−(x, t) =

4

π
K2it(4πx) cosh(πt).

We have

Lemma 3.2. Let h(z) be an even, holomorphic function on |=(z)| < 1
4 + θ with decay |h(z)| �

(1 + |z|)−2−θ on that strip, for some θ > 0. Then for n,m > 0, we have∑
j>1

λj(±n)λj(m)

L(1, sym2uj)
h(tj) +

∫ ∞
−∞

λ(n, t)λ(m,−t)
|ζ(1 + 2it)|2

h(t)
dt

2π

= δ±n,m

∫ ∞
−∞

h(t)
d∗t

2π2
+
∑
c>1

S(±n,m, c)
c

∫ ∞
−∞

J±
(√

nm

c
, t

)
h(t)

d∗t

2π
, (3.16)

where δn,m is 1 if n = m and 0 otherwise (thus δ−n,m is always 0) and d∗t = tanh(πt)t dt.

Proof. See [Mot97, Theorems 2.2 and 2.4]. There, the function h(z) must be a holomorphic
function on |=(z)| < 1

2 + θ. The relaxation of this condition to |=(z)| < 1
4 + θ is due to Yoshida

[Yos97]. We need this version because H(t), which was defined in § 2, has a pole at t = 1
2 i. 2

For the Kuznetsov trace formula, we will need to asymptotically evaluate some Bessel
transforms. The following lemmas, taken from [BK17, § 3.8] together with the correction noted
after Lemma 3.4 below, are analogous to the averages of real Bessel functions given in [ILS00,
Corollary 8.2]:∑

k≡0 mod 2

ikJk−1(x)h

(
k

K

)
∼ oscillatory function supported on x� K2−ε,

∑
k≡0 mod 2

Jk−1(x)h

(
k

K

)
∼ non-oscillatory function supported on x � K.

Lemma 3.3. Let 0 < α < 1
100 . For any x > 0 and any smooth, even function h compactly

supported on (T−α, Tα) ∪ (−Tα,−T−α) with derivatives satisfying ‖h(k)‖∞ � (Tα)k, we have∫ ∞
−∞

J2it(2πx)

cosh(πt)
h

(
t

T

)
t dt

=
−i
√

2

π

T 2

√
x
<
(

(1 + i)e(x)

∫ ∞
0

th(t)e

(
−t2T 2

2π2x

)
dt

)
+O

(
x

T 3−12α

)
+O(T−100). (3.17)

The main term is O(T−100) if x < T 2−3α.

Lemma 3.4. Let 0 < α < 1
100 . For any 0 < x 6 T 3 and any smooth even function h,

compactly supported on (T−α, Tα)∪ (−Tα,−T−α) with derivatives satisfying ‖h(k)‖∞ � (Tα)k,

1486

https://doi.org/10.1112/S0010437X17007199 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X17007199


On the fourth moment of Hecke–Maass forms

we have ∫ ∞
−∞

sinh(πt)K2it(2πx)h

(
t

T

)
t dt =

πT

2
~
(
πx

T

)
− iπ3

12T
~(3)

(
πx

T

)
+O

(
x

T 4−14α

)
+O

(
x2

T 5−16α

)
+O(T−100), (3.18)

where ~(y) = yh(y).

Note that in [BK17, Lemma 3.8], the error term O(x2/T 5−16α) has been erroneously left out.
Such a term should be present, as it is for the average of real Bessel functions (see the remark
following [Iwa97, Lemma 5.8]). For our purposes we will have 0 < x 6 T 2+4α, so the total error
for Lemma 3.4 will be essentially the same as for Lemma 3.3.

3.4 Kuznetsov’s formula for sums of Kloosterman sums
Let Φ be a smooth function compactly supported on the positive reals.

Let

Φ̇(k) = ik
∫ ∞

0
Jk−1(w)Φ(w)

dw

w
,

Φ̂(t) =
i

2 sinh(πt)

∫ ∞
0

(J2it(w)− J−2it(w))Φ(w)
dw

w
,

Φ̌(t) =
2

π
cosh(πt)

∫ ∞
0

K2it(w)Φ(w)
dw

w
.

For q > 1 and k > 2, let Bk(q) denote an orthonormal basis of weight k holomorphic cusp forms
for Γ0(q). For each element g in this basis, let nk/2ρg(n) denote the nth Fourier coefficient of g.
Let B0(q) denote an orthonormal basis of Maass cusp forms for Γ0(q). For each element g in
this basis, let ρg(n) denote the nth Fourier coefficient of g, and let 1

4 + t2g denote its Laplacian
eigenvalue. By a result of Kim and Sarnak [Kim03, Appendix 2] towards Selberg’s eigenvalue
conjecture, we have that

tg ∈ R ∪ (− 7
64 i,

7
64 i). (3.19)

Let τa(n, t) denote the nth Fourier coefficient of the Eisenstein series Ea(s,
1
2 + it) at the cusp a

of Γ0(q).

Lemma 3.5. Keep the notation above and let q > 1. For positive integers n and m, we have∑
c>1

S(n,m, qc)

qc
Φ

(
4π
√
nm

c

)
=

∑
k>2

g∈Bk(q)

Φ̇(k)
(k − 1)!

√
nm

π(4π)k−1
ρg(n)ρg(m)

+
∑

g∈B0(q)

Φ̂(tg)
4π
√
nm

cosh(πtg)
ρg(n)ρg(−m)

+
∑
a

∫ ∞
−∞

Φ̂(t)

√
nm

cosh(πt)
τa(n, t)τa(−m, t) dt,

and ∑
c>1

S(n,−m, qc)
qc

Φ

(
4π
√
nm

c

)
=

∑
g∈B0(q)

Φ̌(tg)
4π
√
nm

cosh(πtg)
ρg(n)ρg(m)

+
∑
a

∫ ∞
−∞

Φ̌(t)

√
nm

cosh(πt)
τa(n, t)τa(−m, t) dt.
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Proof. See [IK04, Theorem 16.5], but note that we normalize differently. 2

We now record some properties of the transforms of Φ given above, based on the situation
we will be in (see (9.18)). Essentially the same result may be found elsewhere; see, for example,
[Blo07, Lemma 1].

Lemma 3.6. Suppose that Φ(w) is supported on

X−1T−ε < w < X−1T ε (3.20)

for some T−ε < X < T 10 and satisfies

Φ(k)(w)� Y XkT ε (3.21)

for some T−10 < Y < T 10.

Case 1. If t ∈ R and k > 2 then

|Φ̇(k)|, |Φ̂(t)|, |Φ̌(t)| � Y T ε. (3.22)

Unless

k, |t| < T ε,

we have

|Φ̇(k)|, |Φ̂(t)|, |Φ̌(t)| � T−B

for any B > 0.

Case 2. If t ∈ (− 7
64 i,

7
64 i), then

|Φ̂(t)|, |Φ̌(t)| � Y X7/32T ε. (3.23)

Proof. We demonstrate the claims for Φ̂ only, the other cases being similar. Suppose first that
t ∈ R. Note the bound

J2it(w)

sinh(πt)
� min{1, w−1/2}, (3.24)

which follows for 0 < w < 1 from the power series [GR00, 8.402]

Jν(w) =
∑
n>0

(−1)n(w/2)2n+ν

n!Γ(n+ ν + 1)
(3.25)

and for w > 1 by [BM15, Lemma 6]. By (3.20), we may restrict the integral in the definition of
Φ̂ to T−11 < w < T ε/3 and then apply (3.21) with k = 0 and (3.24) to get

|Φ̂(t)| � Y T ε
∫ T ε/3

T−11

dw

w
� Y T ε.

This proves (3.22). Now suppose that |t| > T ε. By the power series (3.25), we have

Φ̂(t) =
i

2 sinh(πt)

∫ T ε/3

T−11

Φ(w)

(∑
n>0

(−1)n(w/2)2n+2it

n!Γ(n+ 2it+ 1)
−
∑
n>0

(−1)n(w/2)2n−2it

n!Γ(n− 2it+ 1)

)
dw

w
.
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Integrating by parts k times, we get

Φ̂(t) =
i

2 sinh(πt)

∫ T ε/3

T−11

dk

dwk

(
Φ(w)

w

)∑
n>0

(−1)n(w/2)2n+2itwk

n!Γ(n+ 2it+ 1)
∏k
j=1(2n+ 2it+ j)

dw

− i

2 sinh(πt)

∫ T ε/3

T−11

dk

dwk

(
Φ(w)

w

)∑
n>0

(−1)n(w/2)2n−2itwk

n!Γ(n− 2it+ 1)
∏k
j=1(2n− 2it+ j)

dw. (3.26)

By Stirling’s approximation, we have for |t| > T ε and 0 < w < T ε/3 that

w2n

sinh(πt)Γ(n+ 1± 2it)
� w2n

|n+ 1± 2it|n+1/2
� 1.

By (3.20), we have that

wk
dk

dwk

(
Φ(w)

w

)
� Y XT ε

for any k > 0. Using these bounds in (3.26) and taking k large, we see that |Φ̂(t)| � |t|−B for
any B > 0 unless |t| < T ε.

Now suppose t ∈ (− 7
64 i,

7
64 i). By [BM15, Lemma 6] and (3.25), we have that

J2it(w)

sinh(πt)
� min{T εX7/32, w−1/2}

for w in the interval (3.20). This gives (3.23) by the same argument as above for (3.22). 2

3.5 Orthonormal basis of newforms
The right-hand side of Lemma 3.5 involves sums over orthonormal bases of cusp forms. We will
need these basis elements to be linear combinations of lifts of newforms. Let Sk(q) denote for
k > 2 the space of holomorphic cusp forms of weight k > 2 and level q, and for k = 0 the space
of Maass cusp forms of level q. For d|q, let B∗k(d) denote a basis for the space of newforms of
Sk(d), which is orthonormal with respect to the Petersson inner product on Sk(q). For h ∈ Sk(d)
and b|(q/d), let

h|b(z) = bk/2h(bz). (3.27)

Lemma 3.7. There exists an orthonormal basis for Sk(q) of the form⋃
d|q

⋃
h∈B∗k(d)

{
hc : c

∣∣∣∣ qd
}
,

where

hc =
∑
b|c

κf (c, b)h|b

for some numbers κf (c, b)� qε.

Proof. See [BM15, Lemma 9 and equation (5.6)]. This builds on [ILS00, § 2] and [Rou11]. 2
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3.6 Voronoi summation
The GL(3) Voronoi summation formula was proven by Miller and Schmid [MS06]. Later, Goldfeld
and Li [GL06] gave another proof, and we follow their presentation.

Lemma 3.8. Let ψ be a smooth, compactly supported function on the positive real numbers.
Let (b, c) = 1, and let b denote the multiplicative inverse of b modulo c. We have∑

m>1

Af (m, r)e

(
mb

c

)
ψ

(
mr2

M

)

=
∑
±

c

2

∑
k>1
l|cr

Af (k, l)

kl
S

(
rb,±k, cr

l

)
1

2πi

∫
(σ)

(
kMl2

c3r3

)1−s
G±(s)ψ̃(1− s) ds, (3.28)

where σ > 0, ψ̃ denotes the Mellin transform of ψ and

G±(s) =
ΓR(s+ 2iT )ΓR(s)ΓR(s− 2iT )

ΓR(1− s− 2iT )ΓR(1− s)ΓR(1− s+ 2iT )

∓ iΓR(1 + s+ 2iT )ΓR(1 + s)ΓR(1 + s− 2iT )

ΓR(2− s− 2iT )ΓR(2− s)ΓR(2− s+ 2iT )
.

Suppose that ‖ψ(k)‖∞� (T ε)k. By integration by parts, we can see that ψ̃(1−s)� (T ε)N (1+
|s|)−N for any N > 1. By Stirling’s approximation, we have

|G±(s)| � (|s+ 2iT ||s||s− 2iT |)σ−1/2.

Thus, we may restrict the integral in (3.28) to |=(s)| < T ε. In this range, taking σ = ε, we get
the bound

|G±(s)| � T−1+ε. (3.29)

Moving the line of integration in (3.28) far to the right, we see that the sum on the right-hand
side of (3.28) may be restricted to

k<
c3r3T 2+ε

Ml2
,

up to an error of O(T−100). We also observe that in the range |=(s)| < T ε, writing s = σ + iγ,
Stirling’s approximation gives

ΓR(s+ 2iT )ΓR(s)ΓR(s− 2iT )

ΓR(1− s− 2iT )ΓR(1− s)ΓR(1− s+ 2iT )

=

(
T

π

)2s−1 ΓR(s)

ΓR(1− s)

(
1 +

∑
n6N

Bn(σ, γ)

Tn
+O(T−N/2)

)
, (3.30)

ΓR(1 + s+ 2iT )ΓR(1 + s)ΓR(1 + s− 2iT )

ΓR(2− s− 2iT )ΓR(2− s)ΓR(2− s+ 2iT )

=

(
T

π

)2s−2 ΓR(1 + s)

ΓR(2− s)

(
1 +

∑
n6N

Cn(σ, γ)

Tn
+O(T−N/2)

)
for any N > 1 and some Bn(σ, γ) and Cn(σ, γ) polynomial in σ and γ.
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4. Proof of Lemma 2.1

It is more convenient to renormalize f so that ‖f‖2 = 1. This does affect what needs to be
proved, for in Lemma 2.1 we need only an upper bound. So let

f(x+ iy) = ρf (1)
∑
n6=0

λf (n)
√
yKiT (2πny)e(nx) (4.1)

denote the Fourier series expansion of f , where

ρf (1)2 =
2 cosh(πT )

L(1, sym2f)
.

By unfolding, we have for <(s) > 1,

〈f2, E(·, s)〉 = 2ρf (1)2
∑
n>1

λf (n)2

(2πn)s

∫ ∞
0

ys(KiT (y))2 dy

y
.

We have that ∑
n>1

λf (n)2

(2πn)s
=
ζ(s)L(s, sym2f)

(2π)sζ(2s)

by [Gol06, ch. 7], ∫ ∞
0

ys(KiT (y))2 dy

y
=

2s−3Γ2(s/2)Γ(s/2 + iT )Γ(s/2− iT )

Γ(s)

by [GR00, (6.576)], and

cosh(πT ) =
π

|Γ(1/2 + iT )|2
.

Thus, taking s = 1
2 + it by analytic continuation, we have∣∣∣∣〈f2, E

(
·, 1

2
+ it

)〉∣∣∣∣2 =
π

4
H(t)

|ζ(1/2 + it)L(1/2 + it, sym2f)|2

L(1, sym2f)2|ζ(1 + 2it)|2
. (4.2)

This may be compared with (2.4).
By (2.5), we may restrict the integral in Lemma 2.1 to |t| < T 1+ε. The zeta and L-value

in the denominator of (4.2) are on the edge of the region of absolute convergence, so they are
bounded below by T−ε. Thus,∫ ∞

−∞

∣∣∣∣〈f2, E

(
·, 1

2
+ it

)〉∣∣∣∣2 dt� T ε
∫ T 1+ε

−T 1+ε

|ζ(1/2 + it)L(1/2 + it, sym2f)|2

(1 + |t|)
∏
±(1 + |2T ± t|)1/2

dt.

On the GLH, this is bounded by

T ε
∫ T 1+ε

−T 1+ε

1

(1 + |t|)
∏
±(1 + |2T ± t|)1/2

dt� T−1+ε.
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5. Proof of Proposition 2.2: applying the trace formula

We first refine what needs to be proved for Proposition 2.2. We can immediately treat the
contribution to (2.2) of tj close to zero and close to 2T . Let 0 < α < 1

100 be a fixed constant to
be determined later. On the GLH, we have by (2.4) and (2.5) that∑

|tj |<T 1−α

+
∑

|tj−2T |<T 1−α

|〈f2, uj〉|2 � T−1+ε

×
∑

|tj |<T 1−α

1

1 + |t|
+ T−3/2+ε

∑
|tj−2T |<T 1−α

1

(1 + |tj − 2T |)1/2
.

By Weyl’s law (see [IK04, p. 391]), we have that this is less than T−α/2+ε. Thus, we may restrict
the left-hand side of (2.2) to values of tj that are roughly of size 2T but not too close to 2T . We
have to take care when making this restriction because we must use functions that will satisfy
the conditions of Kuznetsov’s trace formula.

Lemma 5.1. Let 0 < α < 1
100 be a fixed constant to be determined later and, define the even

function

W (t) = Wα(t) =

(
1− exp

(
−
(

t

(2T )1−α/2

)2d1000/αe))(
1− exp

(
−
(

4T 2 − t2

4T 2−α/2

)2d1000/αe))
,

where dxe denotes the least integer greater than or equal to x. We have that H(t)W (t)� T−100

unless

T 1−α < |t| < 2T − T 1−α, (5.1)

in which range

dk

dtk
H(t)W (t)� T−2(T−1+α)k (5.2)

for k > 0. In the range T 1−α/4 < |t| < 2T − T 1−α/4, we have that W (t) = 1 +O(T−100).

Proof. Suppose that |t| 6 T 1−α. Then(
t

(2T )1−α/2

)2d1000/αe
� T−100 =⇒ 1− exp

(
−
(

t

(2T )1−α/2

)2d1000/αe)
� T−100

and trivially

1− exp

(
−
(

4T 2 − t2

4T 2−α/2

)2d1000/αe)
� 1.

Therefore, H(t)W (t)�W (t)� T−100 for |t| 6 T 1−α. Now suppose that |t| > 2T −T 1−α. If also
|t| > 2T + T ε, then by (2.5) we have H(t)� T−100, and so W (t)H(t)� T−100. So suppose that
2T − T 1−α 6 |t| 6 2T + T ε. Then(

4T 2 − t2

4T 2−α/2

)2d1000/αe
� T−100 =⇒ 1− exp

(
−
(

4T 2 − t2

4T 2−α/2

)2d1000/αe)
� T−100

and trivially

1− exp

(
−
(

t

(2T )1−α/2

)2d1000/αe)
� 1.

This proves the first claim.
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For the second claim, observe that for x > 0 and N > 0, we have dk/dxk exp(−xN )� 1. So

W (k)(t)� (T−1+α)k. (5.3)

To prove the same sort of bound for H(t), we need more terms in the Stirling expansion (2.5).
In the range (5.1), we have

H(t) =
1

2T 2
H0

(
|t|
2T

)
, (5.4)

where

H0(x) =
8π

x(1− x2)1/2

×
(

1 +
∑
n6N

Bn
Tn

)(
1 +

∑
n6N

Cn
(Tx)n

)
×
(

1 +
∑
n6N

Dn

(2T (1 + x))n

)(
1 +

∑
n6N

Dn

(2T (1− x))n

)
+O(T−N/2)

for some constants Bn, Cn, Dn. By taking N large enough we see that if T−α � |x| � 1− T−α,
then

H
(k)
0 (x)� (Tα)k. (5.5)

Thus,

H(k)(t)� T−2(T−1+α)k (5.6)

in the range (5.1).
For the third claim, suppose that T 1−α/4 < |t| < 2T − T 1−α/4. Then(

t

(2T )1−α/2

)2d1000/αe
� T 100 =⇒ 1− exp

(
−
(

t

(2T )1−α/2

)2d1000/αe)
= 1 +O(T−100)

and (
4T 2 − t2

4T 2−α/2

)2d1000/αe
� T 100 =⇒ 1− exp

(
−
(

4T 2 − t2

4T 2−α/2

)2d1000/αe)
= 1 +O(T−100).

Proposition 2.2 is thus reduced to proving∑
j>1

|〈f2, uj〉|2W (tj) =
2π

3
+O(T−δ) (5.7)

for some δ > 0.
We remark that since L(1

2 , uj) and L(1
2 , uj× sym2f) are non-negative (by the work of [LR03]

and [Lap03]), the contribution of the very small eigenvalues is at least∑
|tj |<T ε

|〈f2, uj〉|2 � T−ε
∑
|tj |<T ε

L(1/2, uj)L(1/2, uj × sym2f)

T
.

Thus, even if we were not assuming GLH, a subconvexity bound for L(1
2 , uj × sym2f) in the T

aspect, which is polynomial in |tj | < T ε, would be required, but this is an unsolved and very
difficult problem.
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By (2.4), we have∑
j>1

|〈f2, uj〉|2W (tj) =
π3

72L(1, sym2f)2

∑
j>1

H(tj)W (tj)
L(1/2, uj)L(1/2, uj × sym2f)

L(1, sym2uj)
. (5.8)

For uj even, we may use the approximate functional equation (3.6) to write

L

(
1

2
, uj

)
L

(
1

2
, uj × sym2f

)
= 2L

(
1

2
, uj

) ∑
m,r>1

λj(m)Af (r,m)

rm1/2
V2(r2m, tj).

But this equality holds for uj odd as well, since in this case both sides vanish. Now we may use
the approximate functional equation (3.8) for L(1

2 , uj), which holds for both even and odd forms.
This idea is an important feature of our proof, which, as mentioned in the remarks following
Lemma 3.1, will make the analysis more pleasant. Thus, we get that the right-hand side of (5.8)
equals∑

±

π3

72L(1, sym2f)2

∑
j>1

∑
n>1

λj(±n)

n1/2
L(uj × sym2f)H(tj)W (tj)V

±
1 (n, tj)V2(r2m, tj)

+O

(
T−1/2+β/2+α+ε

∑
T 1−α<tj<T 1+ε

|H(tj)W (tj)|
∣∣∣∣ ∑
m,r>1

λj(m)Af (r,m)

rm1/2
V2(r2m, tj)

∣∣∣∣). (5.9)

By (5.2) and (3.7), the error term is

O

(
T−5/2+β/2+α+ε

∑
T 1−α<tj<T 1+ε

∣∣∣∣∫
(ε)
L

(
1

2
+ s, uj × sym2f

)
es

2G2(1/2 + s)

G2(1/2)

ds

s

∣∣∣∣),
which is O(T−1/2+β/2+α/2+ε) on the GLH. By the approximate functional equation (3.6), the
main term of (5.9) equals∑

±

π3

36L(1, sym2f)2

∑
n,m,r>1

Af (m, r)

r(nm)1/2

∑
j>1

λj(±n)λj(m)H(tj)W (tj)V
±

1 (n, tj)V2(r2m, tj).

Applying the Kuznetsov trace formula to the inner sum gives∑
j>1

|〈f2, uj〉|2W (tj) = D+ E+ O+ + O− +O(T−δ) (5.10)

for some δ > 0, where

D =
π3

36L(1, sym2f)2

∑
n,r>1

Af (n, r)

rn

∫ ∞
−∞

H(t)W (t)V ±1 (n, t)V2(r2n, t)
d∗t

2π2
, (5.11)

E=
−π3

18L(1, sym2f)2

∫ ∞
−∞

∑
±

∑
n,m,r>1

Af (m, r)λ(n, t)λ(m,−t)
r(nm)1/2|ζ(1 + 2it)|2

H(t)W (t)V ±1 (n, t)V2(r2m, t)
dt

2π

and

O± =
π3

36L(1, sym2f)2

∑
n,m,r>1

∑
c>1

Af (m, r)

r(nm)1/2

S(±n,m, c)
c

×
∫ ∞
−∞

J±
(√

nm

c
, t

)
H(t)W (t)V ±1 (n, t)V2(r2m, t)

d∗t

2π
.
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By the decay of V ±1 and V2 , we may restrict the sum above to n < T 1∓β+ε and mr2 < T 3+ε.
We may also restrict to c 6 T 3, say, by a standard method (see [Blo12, Lemma 5], for example).
To see this, consider, for instance, O+, and move the line of the t-integral from =(t) = 0 to
=(t) = −1

2 + ε. On the new line, we have by the power series (3.25) that

J+

(√
nm

c
, t

)
�
(√

nm

c

)1−ε

for
√
nm/c < 1, as is the case when c > T 3. The rest of the integrand satisfies

H(t)W (t)V ±1 (n, t)V2(r2m, t) tanh(πt)� exp(−πq(t, T )),

where q(t, T ) is given in (2.6). Thus the contribution of the terms with c > T 3 is bounded by∑
n6T 1+ε

mr26T 3+ε

∑
c>T 3

|Af (m, r)|
r(nm)1/2

|S(±n,m, c)|
c

∫ T 1+ε

−T 1+ε

(√
nm

c

)1−ε
dt� T 1+ε

∑
c>T 3

1

c3/2−ε .

The last bound uses the average version of the Ramanujan bound given in (3.4) and Weil’s bound
for the Kloosterman sum. The result is less than a negative power of T .

We will prove that D yields the main term, while E and O± are bounded by a negative power
of T .

6. Proof of Proposition 2.2: the diagonal

The goal of this section (see (5.7)) is to show that

D =
2π

3
+O(T−δ)

for some δ > 0. This was sketched in [Blo13, § 4] but here we provide the details. By (3.12)–(3.13)
and (5.11), we have

D =
π3

36L(1, sym2f)2

∫ ∞
−∞

H(t)W (t)
1

(2πi)2

∫
(ε)

∫
(ε)
es

2
1+s22T−βs1

(
|t|
2π

)s1( |t(4T 2 − t2)|
8π3

)s2
×
∑
n,r>1

Af (n, r)

r1+2s2n1+s1+s2

ds1

s1

ds2

s2

d∗t

2π2
(1 +O(T−1+α)), (6.1)

where 0 < α < 1
100 is as in Lemma 5.1. By [Gol06, Proposition 6.6.3], we have∑
n,r>1

Af (n, r)

r1+2s2n1+s1+s2
=
L(1 + 2s2, sym2f)L(1 + s1 + s2, sym2f)

ζ(2 + s1 + 3s2)
.

Thus, assuming the GLH, we have that the error term in (6.1) contributes

O

(
T−1+α+ε

∫ ∞
−∞
|H(t)W (t)|t tanh(πt) dt

)
.

From Lemma 5.1, the weight function H(t)W (t) is O(T−100) unless T 1−α < |t| < 2T −T 1−α. By
the estimate for H(t) given in (2.5), we have∫ 2T−T 1−α

T 1−α
|H(t)W (t)|t tanh(πt) dt�

∫ 2T

0

1

(4T 2 − t2)1/2
dt� 1

and so the error term of (6.1) is O(T−1/2).
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Consider the main term of (6.1). Moving the line of integration to <(s1) = − 1
10 , we pick up

a simple pole at s1 = 0, getting

D =
π3

36L(1, sym2f)2

∫ ∞
−∞

H(t)W (t)
1

(2πi)2

∫
(ε)
es

2
2

(
|t(4T 2 − t2)|

8π3

)s2
× L(1 + 2s2, sym2f)L(1 + s2, sym2f)

ζ(2 + 3s2)

ds2

s2

d∗t

2π2
+O(T−(1−β)/10+ε). (6.2)

The new error term arises by applying GLH on the shifted line of integration, and it is O(T−1/20).
Now, moving the line of integration to <(s2) = − 1

10 and picking up a simple pole at s2 = 0, we
get

D =
π3

36L(1, sym2f)2

∫ ∞
−∞

L(1, sym2f)2

ζ(2)
H(t)W (t)

d∗t

2π2
+O(T−(3−α)/10+ε + T−1/20).

The error term is O(T−1/20). The main term equals

1

6π

∫ ∞
0

H(t)W (t)t tanh(πt) dt.

We can now restrict the integrand to the range T 1−α < t < 2T − T 1−α, on which interval
tanh(πt) = 1 +O(T−100). Further, for T 1−α/4 < t < 2T −T 1−α/4 we have W (t) = 1 +O(T−100).
Thus,

D =
1

6π

∫ 2T−T 1−α

T 1−α
H(t)W (t)t dt+O(T−1/20)

=
1

6π

∫ 2T−T 1−α/4

T 1−α/4
H(t)t dt+O(T−α/8).

By (2.5) we have

D =
1

6π

∫ 2T−T 1−α/4

T 1−α/4

8π

(4T 2 − t2)1/2
dt+O(T−α/8)

=
4

3

(
arcsin

(
2T − T 1−α/4

2T

)
− arcsin

(
T 1−α/4

2T

))
+O(T−α/8)

=
4

3

(
π

2
− 0

)
+O(T−α/8).

The error term is some negative power of T . This completes the evaluation of the diagonal.

7. Proof of Proposition 2.2: the Eisenstein series contribution

In this section we show that E is bounded by a negative power of T . We first rewrite the
expression for E using the following approximate functional equations, which are analogous to
those in Lemma 3.1: ∣∣∣∣ζ(1

2
+ it

)∣∣∣∣2 =
∑
±

∑
n>1

λ(n, t)

n1/2
V ±1 (n, t),∣∣∣∣L(1

2
+ it, sym2f

)∣∣∣∣2 =
∑
m,r>1

Af (m, r)λ(m,−t)
rm1/2

V2(r2m, t).
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We get that

E=
−π3

9L(1, sym2f)2

∫ ∞
0

|ζ(1/2 + it)|2|L(1/2 + it, sym2f)|2

|ζ(1 + 2it)|2
H(t)W (t)

dt

2π
.

By the decay of the weight function H(t)W (t), we may restrict the integral to T 1−α < t <
2T − T 1−α and then apply the GLH and the estimate for H(t) given in (2.5) to see that

E =
−π3

9L(1, sym2f)2

∫ 2T−T 1−α

T 1−α

|ζ(1/2 + it)|2|L(1/2 + it, sym2f)|2

|ζ(1 + 2it)|2
H(t)W (t)

dt

2π

� T ε
∫ 2T−T 1−α

T 1−α

1

t(4T 2 − t2)1/2
dt

� T−1+α+ε.

8. Proof of Proposition 2.2: the short off-diagonal

The goal of this section is to show that O+ is bounded by a negative power of T . We have seen
that for any 0 < α < 1

100 we have H(t)W (t)� T−100 unless T 1−α < |t| < 2T − T 1−α. Thus, in
the expression for O+ we may restrict the integral to this range. We may also replace d∗t by t dt
because tanh t = 1 +O(T−100) in the given range of t. Thus,

O+ � T ε
∑

n<T 1−β+ε

mr2<T 3+ε

∑
c6T 3

Af (m, r)

r(nm)1/2

S(n,m, c)

c

×
∫ 2T−T 1−α

T 1−α
+

∫ −T 1−α

−2T+T 1−α
J+

(√
nm

c
, t

)
H(t)W (t)V +

1 (n, t)V2(r2m, t)t dt.

Let Z be any smooth, even function compactly supported on (T−α, 2− T−α) ∪ (−2 + T−α,
−T−α) with derivatives satisfying

‖Z(k)‖∞ � (Tα)k.

Then Z(t/T ) is supported on T 1−α < |t| < 2T − T 1−α, on which (dk/dtk)Z(t/T ) � T (−1+α)k,
and we may use such a function to approximate the characteristic function of this interval. We
may absorb W (t) into the function Z(t/T ) by property (5.3). Writing

H(t) =
1

2T 2
H0

(
t

T

)
as in (5.4), we may also absorb H0(t/T ) into Z(t/T ) by property (5.5). Thus it suffices to prove
that for any function Z as above, we have

1

T 2

∑
n,m,r>1

∑
c6T 3

Af (m, r)

r(nm)1/2

S(n,m, c)

c

∫ ∞
−∞

J+

(√
nm

c
, t

)
Z

(
t

T

)
V +

1 (n, t)V2(r2m, t)t dt� T−δ

for some δ > 0. We apply Lemma 3.3 to evaluate the Bessel transform. Note that the function
Z(t/T )V +

1 (n, t)V2(r2m, t) satisfies the conditions of the lemma by the remarks above and by
(3.14)–(3.15).

The contribution of the main term of Lemma 3.3 is O(T−100), unless

2
√
nm

c
> T 2−3α.
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Since by the decay of V +
1 (n, t)V2(r2m, t) we may take n < T 1−β+ε and m< T 3+ε up to O(T−100),

this imposes

c < T 3α−β/2.

We now fix

β = 7α

so that the above condition on c is impossible and the main term is O(T−100). This of course
leads to an acceptable bound for O+.

The error term O(
√
nm/cT 3−12α) arising from Lemma 3.3 contributes

O

(
1

T 2

∑
n<T 1−7α+ε

mr2<T 3+ε

∑
c6T 3

|Af (m, r)|
r(nm)1/2

|S(n,m, c)|
c

√
nm

cT 3−12α

)
.

By (3.4) and Weil’s bound for the Kloosterman sum, this is

O

(
T−5+12α+ε

∑
n<T 1−7α+ε

mr2<T 3+ε

∑
c6T 3

1

rc3/2

)
.

The innermost c-sum is O(1), so the line above is O(T−1+5α+ε), which is admissible as we assume
α < 1

100 .

9. Proof of Proposition 2.2: the long off-diagonal

The goal now is to show that O− is bounded by a negative power of T . This proof is the heart
of our paper. As in the previous section, it suffices to prove that for any smooth, even function
Z compactly supported on

(T−α, 2− T−α) ∪ (−2 + T−α,−T−α)

with derivatives satisfying ‖Z(k)‖∞ � (Tα)k, we have

1

T 2

∑
n<T 1+7α+ε

mr2<T 3+ε

∑
c6T 3

Af (m, r)

r(nm)1/2

S(−n,m, c)
c

∫ ∞
−∞

J−
(√

nm

c
, t

)
Z

(
t

T

)
V −1 (n, t)V2(r2m, t)t dt� T−δ

for some δ > 0. We may replace V −1 (n, t) and V2(r2m, t) by the main terms in their Stirling
expansions (3.12) and (3.13) since the lower-order terms can be treated similarly. Thus, we need
to show that

1

T 2

∑
n<T 1+7α+ε

mr2<T 3+ε

∑
c6T 3

Af (m, r)

r(nm)1/2

S(−n,m, c)
c

∫ ∞
−∞

J−
(√

nm

c
, t

)
Z

(
t

T

)
V

(
n

T
,
mr2

T 3
,
t

T

)
t dt (9.1)

is bounded by a negative power of T where

V (x1, x2; y) =

∫
(σ)
es

2
1(2πx1)−s1 |T 7αy|s1 ds1

s1
·
∫

(σ)
es

2
2(8π3x2)−s2 |y(4− y2)|−s2 ds2

s2

for any σ > 0. We apply Lemma 3.4 to evaluate the Bessel transform in (9.1). The error term
arising from this result contributes less than a negative power of T , just as in the previous
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section. There are two similar, non-oscillatory main terms in the asymptotic given by Lemma 3.4.
It suffices to treat only the leading main term as the other will contribute a factor of T less.
Therefore the goal is to bound by a negative power of T the sum

1

T 2

∑
n<T 1+7α+ε

mr2<T 3+ε

∑
c6T 3

Af (m, r)

r

S(−n,m, c)
c2

Z

(
2π
√
nm

Tc

)
V

(
n

T
,
mr2

T 3
,
2π
√
nm

Tc

)
.

Applying a smooth partition of unity, we consider the sum above in dyadic intervals. Let U be a
smooth bump function supported on (1, 2)×(1, 2) and possessing bounded derivatives. It suffices
to prove that

1

T 2

∑
n,m,r>1

∑
c>1

Af (m, r)

r

S(−n,m, c)
c2

Z

(
2π
√
nm

Tc

)
V

(
n

T
,
mr2

T 3
,
2π
√
nm

Tc

)
U

(
n

N
,
mr2

M

)
� T−δ

(9.2)

for some δ > 0, where

N < T 1+7α+ε, M < T 3+ε,

√
NM

rT
� c�

√
NM

rT 1−α .

The bounds on c are enforced by the function Z and make the condition c 6 T 3 redundant. It
will be apparent from the proof that as long as α is smaller than some fixed constant, there exists
some absolute δ > 0 independent of the value of α. For this reason it will be very convenient to
rename α to ε and apply the ε-convention. Therefore we have

N < T 1+ε, M < T 3+ε,

√
NM

rT
� c�

√
NM

rT 1−ε . (9.3)

9.1 Poisson and Voronoi summation
By separating the n-sum in (9.2) into residue classes mod c and applying the Poisson summation
formula, we get that the left-hand side of (9.2) equals

N

T 2

∑
m,r,c>1

∑
a mod c

Af (m, r)

r

S(−a,m, c)
c3

×
∑

−∞<j<∞
e

(
ja

c

)∫ ∞
−∞

U

(
ξ,
mr2

M

)
Z

(
2π
√
ξNm

Tc

)
×V

(
ξN

T
,
mr2

T 3
,
2π
√
ξNm

Tc

)
e

(
−jNξ
c

)
dξ. (9.4)

Now, in this expression, writing x = mr2/M , we may replace m by Mx/r2. Writing y =√
NM/crT , we may replace N by y2c2r2T 2/M . Thus (9.4) equals

N

T 2

∑
c,m,r>1
−∞<j<∞

∑
a mod c

Af (m, r)

r

S(−a,m, c)
c3

e

(
ja

c

)
ψ

(
mr2

M
,

√
NM

crT
;
jcr2T 2

M

)
(9.5)

where

ψ(x, y;u) =

∫ ∞
−∞

U(ξ, x)Z(2πy
√
ξx)V

(
ξN

T
,
xM

T 3
, 2πy

√
ξx

)
e(−ξy2u) dξ. (9.6)
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In the integrand above, x and ξ must lie in the interval (1, 2) by the definition of U , while y
must lie in the interval (T−ε, T ε) by the definition of Z. Thus all three variables x, ξ, y should
be thought of as roughly constant and bounded away from zero.

We first observe that we may restrict (9.5) to j 6= 0. First, note that the contribution of
j= 0 is nil unless c = 1, because

∑
a mod c S(−a,m, c) = 0 for c > 1. This leaves the case j= 0

and c = 1, whose contribution is

N

T 2

∑
m,r>1

Af (m, r)

r
ψ

(
mr2

M
,

√
NM

rT
; 0

)

=
∑
m,r>1

Af (m, r)

mr

mr2

M

NM

r2T 2
ψ

(
mr2

M
,

√
NM

rT
; 0

)

=
∑

m,r,v>1

µ(v)

v2

Af (m, 1)Af (r, 1)

mr

mr2v3

M

NM

r2v2T 2
ψ

(
mr2v3

M
,

√
NM

rvT
; 0

)
, (9.7)

where the last equality follows by the Hecke relations (3.2). The sum is trivially O(T ε), using
(3.4), so we must save any negative power of T . We are done, unless

v � T ε and
mr2v3

M
� T−ε,

in which case, since

mr2v3

M
� T ε and T−ε � NM

r2v2T 2
� T ε

are enforced by the weight function, we have

T 2−ε

N
� m� T 2+ε

N
.

This shows that the interval of summation of m is at least as long as T 1−ε, by (9.3). On the
GLH we can show in a standard way (see § 9.4) that∑

m6x

Af (m, 1)� x1/2+ε.

Using this and partial summation gives the required saving in (9.7).
The next step is to transform the m-sum using GL(3) Voronoi summation (see Lemma 3.8).

Writing

S(−a,m, c) =

?∑
b mod c

e

(
−ab+mb

c

)
,

we get by Voronoi summation that the part of (9.5) with j 6= 0 equals

N

T 2

∑
±

∑
c,r,k,|j|>1

l|cr

Af (k, l)

klrc2

?∑
b mod c

S

(
rb,±k, cr

l

) ∑
a mod c

e

(
a(j− b)

c

)

× 1

4πi

∫
(ε)

(
kMl2

c3r3

)1−s
G±(s)

∫ ∞
0

ψ

(
x,

√
NM

crT
;
jcr2T 2

M

)
x−s dx ds, (9.8)
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where G±(s) is as defined in Lemma 3.8. We have that
∑

a mod c e(a(j− b)/c) equals c if b ≡
jmod c and 0 otherwise. In the case b ≡ jmod c, we have br ≡ jr mod cr. Thus (9.8) equals

N

T 2

∑
±

∑
c,r,k,|j|>1

(j,c)=1
l|cr

Af (k, l)

klrc
S

(
jr,±k, cr

l

)

× 1

4πi

∫
(ε)

(
kMl2

c3r3

)1−s
G±(s)

∫ ∞
0

ψ

(
x,

√
NM

crT
;
jcr2T 2

M

)
x−s dx ds. (9.9)

Recall by the remarks following Lemma 3.8 that, up to negligible error, we can restrict the sum
to

kMl2

c3r3
< T 2+ε. (9.10)

So, if we set z = kMl2/c3r3T 2 then T−6 < z < T ε and we can write M = zc3r3T 2/kl2 in the
fraction jcr2T 2/M appearing in (9.9), and k = zc3r3T 2/Ml2. Thus (9.9) equals

NM

T 2

∑
±

∑
c,r,k,|j|>1

(j,c)=1
l|cr

lAf (k, l)

c4r4
S

(
rj,±k, cr

l

)
Ψ±
(√

NM

crT
,
kMl2

c3r3T 2
;
jkl2

c2r

)
, (9.11)

where

Ψ±(y, z;u) =
1

4πi

∫
(ε)
z−sT−2sG±(s)

∫ ∞
0

ψ(x, y; z−1u)x−s dx ds. (9.12)

The goal is to show that (9.11) is bounded by a negative power of T . Using G±(s)� T−1+ε, a
bound given in (3.29), and repeatedly integrating by parts in (9.6), we have

∂k

∂uk
Ψ±(y, z;u)� T−1+εz−k|z−1u|−A (9.13)

for any k > 0 and A > 0. Thus, up to negligible error, we may assume

|u| < zT ε. (9.14)

Using this, we have

∂k

∂yk
Ψ±(y, z;u)� T−1+ε,

∂k

∂zk
Ψ±(y, z;u)� T−1+εz−k. (9.15)

9.2 Preparation for Kuznetsov’s formula
We first explain the idea of what we are about to do next. Our task is to bound by a negative
power of T a sum like (when r = l = 1),

NM

T 2

∑
c,k,|j|>1

Af (k, 1)

c4
S(j,±k, c)Ψ±

(√
NM

cT
,
kM

c3T 2
;
jk

c2

)
. (9.16)

By (9.14) and z < T ε, we see that, up to negligible error, we may assume |j|k � c2T ε. Also
recall that |Ψ±(y, z;u)| � T−1+ε. By these remarks, the trivial bound for (9.16) is O(T 1/2+ε),
and now we must save this much and a little more. We have already exploited the sums over j
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and k (they arose through Poisson and Voronoi summation). Now we will exploit the sum over
c. Since the range of c in the sum is at least as large as T−ε

√
|j|k, a range sometimes referred

to as the Linnik range (see [ST09]), we are in a good position to use Kuznetsov’s formula to
transform the sum of Kloosterman sums into a sum of Hecke eigenvalues. This final sum will be
estimated under the GLH to complete the proof. To get a feel for how this works, consider the
generic ranges c � T,N � T,M � T 3 that imply j� T ε,k � T 2. Using Kuznetsov’s formula,
we will get an identity of the shape∑

c�
√
|j|k

c−1S(±j,k, c) �
∑
tj<T ε

λj(j)λj(k) + · · · .

Thus (9.16) essentially becomes, ignoring the j sum of length T ε and keeping in mind that
Ψ±(y, z, w) has a factor T−1 by (3.30),∑

tj<T ε

T−2
∑
k�T 2

Af (k, 1)λj(k) + · · · .

On the GLH, we get cancellation in the k-sum and obtain the required bound.
To carry out the above program, we must first take care of the technicalities posed by the

presence of the l and r parameters. First we detect the condition (j, c) = 1 in (9.11) using the
Möbius function by recalling that

∑
d|c,d|jµ(d) equals 1 if (j, c) = 1 and 0 otherwise. Thus we

need to bound the following sum, for each sign ±, by a negative power of T :

NM

T 2

∑
d,c,r,k,|j|>1

l|cdr

lµ(d)Af (k, l)

c4r4d4
S

(
rjd,±k, cdr

l

)
Ψ±
(√

NM

cdrT
,

kMl2

c3d3r3T 2
;
jkl2

c2dr

)
.

We can reorder this sum by the greatest common divisor of l and c to say that it equals

NM

T 2

∑
b>1

∑
d,c,r,k,|j|>1

l|cdr
(l,c)=b

lµ(d)Af (k, l)

c4r4d4
S

(
rjd,±k, cdr

l

)
Ψ±
(√

NM

cdrT
,

kMl2

c3d3r3T 2
;
jkl2

c2dr

)
.

Replacing l by lb and c by cb, this sum equals

NM

T 2

∑
b>1

∑
d,c,r,k,|j|>1

l|dr
(l,c)=1

lµ(d)Af (k, bl)

c4r4d4b3
S

(
rjd,±k, cdr

l

)
Ψ±
(√

NM

cbdrT
,

kMl2

c3d3r3bT 2
;
jkl2

c2dr

)
.

Now detecting (l, c) = 1 using the Möbius function, the sum above equals

NM

T 2

∑
b,d,c,r,k,|j|>1

al|dr

lµ(d)µ(a)Af (k, abl)

c4r4d4a3b3
S

(
rjd,±k, cdr

l

)
Ψ±
( √

NM

cabdrT
,

kMl2

c3d3r3abT 2
;
jkl2

c2dr

)
.
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Using the Hecke relations (3.2) and writing 1/(cabdr)3 = (
√
NM/cabdrT )3(T/

√
NM)3, it suffices

to show that

T√
NM

∑
b,d,r6T 2

al|dr
v|abl

|Af (abl, 1)|
∣∣∣∣ ∑
k,|j|,c>1

Af (k, 1)

cdr/l
S

(
drj,±kv, cdr

l

)

×
( √

NM

cabdrT

)3

Ψ±
( √

NM

cabdrT
,

kMl2

c3d3r3abT 2
;
jkvl2

c2dr

) ∣∣∣∣� T−δ (9.17)

for some δ > 0. The given bounds b, d, r 6 T 2 are enforced by the weight functions. Also note for
later that the desired bound of (9.17) is trivial for the sub-sum restricted to |jk| 6 T 1/10 using
Ψ±(y, z, u)� T−1+ε and T/

√
NM � T ε/cabdr and Kim and Sarnak’s bound

Af (abl, 1)� (abl)7/32+ε.

We continue to reshape the inner sum in order to apply Lemma 3.5. We write∑
c>1

S(drj,±kv, cdr/l)
cdr/l

( √
NM

cabdrT

)3

Ψ±
( √

NM

cabdrT
,

kMl2

c3d3r3abT 2
;
jkvl2

c2dr

)

=
∑
c>1

S(rjd,±kv, cdr/l)
cdr/l

Φ

(
4π
√
|j|krdv
cdr/l

)
,

where, after absorbing the factor (
√
NM/cabdrT )3 into the function Ψ±, we let

Φ(w) = Ψ±
(
w

√
NM

4πablT
√
|j|krdv

, w3 kM

ablT 2(4π
√
|j|krdv)3

;w2 sgn(j)

(4π)2

)
for w > 0. Since Ψ±(y, z;u) is restricted to T−ε � y � T ε, we have

support(Φ(w)) ⊂
(
T−ε

( √
NM

ablT
√
|j|krdv

)−1

,

( √
NM

ablT
√
|j|krdv

)−1

T ε
)
. (9.18)

Further, we have seen that Ψ±(y, z;u) may be restricted to z � T ε and u� zT ε up to an error
of O(T−100). Thus, by (9.13) and (9.15), we have

|Φ(k)(w)| � T−1+ε(1 + w−k)(z−1w2)−A +O(T−100)

for any k > 0 and A > 0. Equivalently, by (9.18) we have

|Φ(k)(w)| � 1

T 1−ε

(
1 +

( √
NM

ablT
√
|j|krdv

)k)( z

w2

)A
+O(T−100). (9.19)

We see that up to an error of O(T−100), say, we can assume

w2 � zT ε ⇒
l
√
|j|krdv
cdr

� T ε.

So, since
√
NM/cabdrT is restricted to (T−ε, T ε), we have

√
NM

ablT
√
|j|krdv

� T−ε. (9.20)
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Thus (9.19) implies

|Φ(k)(w)| � 1

T 1−ε

( √
NM

ablT
√
|j|krdv

)k
+O(T−100). (9.21)

Finally, we note some bounds on j and k. By (9.14), we may restrict to

jkvl2

c2dr
� kMl2

c3d3r3abT 2−ε ,

which gives

j� M

cd2r2abvT 2−ε .

We already have the bound (9.10) on k. So since T−ε <
√
NM/cabdrT < T ε, we may eliminate

c and record the bounds

|j| � M1/2

T 1−εN1/2drv
,

k� N3/2M1/2

a2b2l2T 1−ε .

Also note for later use that Φ(w) depends implicitly on j and k, and by (9.15) we have

∂n

∂jn
Φ(w)� T−1+εj−n,

∂n

∂kn
Φ(w)� T−1+εk−n. (9.22)

9.3 Kuznetsov’s trace formula and the large sieve
Consider the sub-sum of (9.17) consisting of the terms with j> 0 and the positive sign case, the
rest of the sum being similarly treated. Applying Lemma 3.5 and the remarks following it, we
see that it suffices to show that the following expression is bounded by a negative power of T :

T√
NM

∑
b,d,r6T 2

al|dr
v|abl

(abl)7/32

∣∣∣∣ ∑
K6k<2K
J6j<2J

Af (k, 1)
∑

g∈B0(dr/l)
|tg |<T ε

Φ̂(tg)
4π
√
jkdrv

cosh(πtg)
ρg(kv)ρg(jdr)

∣∣∣∣

+
T√
NM

∑
b,d,r6T 2

al|dr
v|abl

(abl)7/32

∣∣∣∣ ∑
K6k<2K
J6j<2J

Af (k, 1)
∑

g∈Bk(dr/l)
k<T ε

Φ̇(k)
(k − 1)!

√
jkdrv

π(4π)k−1
ρg(kv)ρg(jdr)

∣∣∣∣

+
T√
NM

∑
b,d,r6T 2

al|dr
v|abl

(abl)7/32

∣∣∣∣ ∑
K6k<2K
J6j<2J

Af (k, 1)
∑
a

∫
|t|<T ε

Φ̂(t)

√
jkdrv

cosh(πt)
τa(kv, t)τa(−jdr, t) dt

∣∣∣∣
(9.23)

for any positive integers

J <
M1/2

T 1−εN1/2drv
, K <

N3/2M1/2

a2b2l2T 1−ε (9.24)

with

JK > T 1/10.

For this last assumption, see the remark following (9.17). We only treat the first line of (9.23)
as the rest are similar.
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Let

X =

√
NM

T 1−εabl
√
JKrdv

,

so that Φ(w) is supported on X−1 � w � X−1, by (9.18). We first reduce to the case

bdr � T ε and X � T ε.

Non-exceptional eigenvalues. Consider the contribution of tg ∈ R to the first line of (9.23). We
have the bound

|Φ̂(tg)| � T−1+ε,

by (9.21) and (3.22). Using the Cauchy–Schwarz inequality, and enlarging the spectral sum to
|tg| < X (recall that X � T ε by (9.20)), we would like to say that the contribution of the
non-exceptional eigenvalues to the first line of (9.23) is bounded by

T ε√
NM

∑
b,d,r6T 2

al|dr
v|abl

(abl)7/32 l

dr

( ∑
g∈B0(dr/l)
|tg |<X

∣∣∣∣∑
j

αjρg(j)

∣∣∣∣2)1/2( ∑
g∈B0(dr/l)
|tg |<X

∣∣∣∣∑
k

βkρg(k)

∣∣∣∣2)1/2

,

(9.25)

where

αj =


(
dr

l

4πj

cosh(πtg)

)1/2

for Jdr 6 j< 2Jdr,j≡ 0 mod dr,

0 otherwise,

and

βk =

A
(
k

v
, 1

)(
dr

l

4πk

cosh(πtg)

)1/2

for Kv 6 k< 2Kv,k≡ 0 mod v,

0 otherwise.

However, although (9.25) is essentially the right upper bound, to make the argument rigorous we
must remember that Φ̂(tg) depends implicitly on j and k. We can separate variables as follows.
Write

Φ̂(tg) = Φ̂(tg,j,k).

Insert the factors U1(j/J) and U2(k/K), where U1(x1) and U2(x2) are smooth bump functions
that are compactly supported on (1

2 ,
3
2) and equal 1 on [1, 2]. Using the Mellin transform, we

have

U1

(
j

J

)
U2

(
k

K

)
Φ̂(tg,j,k)

=
1

(2πi)2

∫
(ε)

∫
(ε)

(
j

J

)−s(
k

K

)−s
×
∫ 3/2

1/2

∫ 3/2

1/2
xs11 x

s2
2 U1(x1)U2(x2)Φ̂(tg, x1J, x2K)

dx1

x1

dx2

x2
ds1 ds2.

We can restrict the integrals to |=(s1)|, |=(s2)| < T ε by integrating by parts (using (9.22)).
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By the spectral large sieve [IK04, Theorem 7.24, equation (7.40)] and (3.3), we have that
(9.25) is bounded by

T ε√
NM

∑
b,d,r6T 2

al|dr
v|abl

(abl)7/32 l

dr

((
dr

l
X2 + Jdr

)
J

)1/2((dr
l
X2 +Kv

)
K

)1/2

. (9.26)

We expand this out and look at the cross terms one by one. We have

T ε√
NM

∑
b,d,r6T 2

al|dr
v|abl

(abl)7/32X2(JK)1/2 �
∑

b,d,r6T 2

al|dr
v|abl

(abl)7/32 (NM)1/2

T 2−εa2b2l2rdv(JK)1/2
. (9.27)

Now, because N � T 1+ε and M � T 3+ε and we assume JK > T 1/10, this is bounded by a
negative power of T . The next cross term is

T ε√
NM

∑
b,d,r6T 2

al|dr
v|abl

(abl)7/32

(
l

dr

)1/2

XJ1/2Kv1/2 �
∑

b,d,r6T 2

al|dr
v|abl

(abl)7/32 N3/4M1/4

rda2b2l3/2T 3/2−ε . (9.28)

Thus, the left-hand side is bounded by a negative power of T unless N � T 1−ε, M � T 3−ε,
abl� T ε, and

K � T−ε
N3/2M1/2

a2b2l2T
� T 2−ε.

The next cross term is

T ε√
NM

∑
b,d,r6T 2

al|dr
v|abl

(abl)7/32

(
l

dr

)1/2

XK1/2J(dr)1/2 �
∑

b,d,r6T 2

al|dr
v|abl

(abl)7/32 M1/4

T 3/2−εN1/4abl1/2drv
.

(9.29)

This is less than a negative power of T since M � T 3+ε. The final cross term is

T ε√
NM

∑
b,d,r6T 2

al|dr
v|abl

(abl)7/32 lv1/2

(dr)1/2
JK �

∑
b,d,r6T 2

al|dr
v|abl

(abl)7/32 (NM)1/2

T 2−εa2b2l(dr)3/2v1/2
. (9.30)

So the left-hand side is bounded by a negative power of T unless N � T 1−ε, M � T 3−ε,
abdr � T ε (which implies l� T ε) and

K � T−ε
N3/2M1/2

a2b2l2T
� T 2−ε.

We conclude that (9.26) is bounded by a negative power of T unless

T 1−ε � N � T 1+ε, T 3−ε �M � T 3+ε, b� T ε, T 2−ε � K � T 2+ε,

1506

https://doi.org/10.1112/S0010437X17007199 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X17007199


On the fourth moment of Hecke–Maass forms

which is the case we consider now. In these ranges, we deduce from (9.24) that we must have

J � T ε, dr � T ε.

The last bound holds because were the contrary true, we would have J � T−ε and that is
impossible for a positive integer. It follows that we also have a, l, v� T ε, since these are divisors
of small quantities. In summary, we can assume

T 1−ε � N � T 1+ε, T 3−ε �M � T 3+ε, J � T ε, T 2−ε � K � T 2+ε, ablvdr � T ε.

(9.31)

From this we get

X � T ε. (9.32)

Exceptional eigenvalues. We now consider the contribution of tg ∈ (− 7
64 i,

7
64 i) to the first line of

(9.23). This time we have the bound

|Φ̂(tg)| � T−1+εX7/32

by (9.21) and (3.23). By the Cauchy–Schwarz inequality, the contribution of the possible
exceptional eigenvalues is (essentially) bounded by

T ε√
NM

∑
b,d,r6T 2

al|dr
v|abl

(ablX)7/32 l

dr

( ∑
g∈B0(dr/l)
|tg |<1

∣∣∣∣∑
j

αjρg(j)

∣∣∣∣2)1/2( ∑
g∈B0(dr/l)
|tg |<1

∣∣∣∣∑
k

βkρg(k)

∣∣∣∣2)1/2

,

where αj and βk are as above. By the spectral large sieve again, this is bounded by

T ε√
NM

∑
b,d,r6T 2

al|dr
v|abl

(ablX)7/32 l

dr

((
dr

l
+ Jdr

)
J

)1/2((dr
l

+Kv

)
K

)1/2

. (9.33)

We know from (9.20) that X > T ε. Expand (9.33) and consider each cross term. The cross terms
corresponding to (9.27)–(9.29) are clearly smaller in size, because each of (9.27)–(9.29) has a
factor of X or X2, while the cross terms of (9.33) have a factor of X7/32 only. Thus it remains
only to consider the cross term

T ε√
NM

∑
b,d,r6T 2

al|dr
v|abl

(ablX)7/32 lv1/2

(dr)1/2
JK.

Since X > 1, this is less than

T ε√
NM

∑
b,d,r6T 2

al|dr
v|abl

(abl)7/32 lv1/2

(dr)1/2
X2JK �

∑
b,d,r6T 2

al|dr
v|abl

(abl)7/32 (NM)1/2

T 2−εa2b2l(dr)3/2v1/2
.

This is the same as (9.30) and so we arrive at the same conclusions (9.31)–(9.32).
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Summary. We have reduced everything to proving that the following sum is bounded by a
negative power of T :

T√
NM

∑
K<k<2K

Φ̂(tg)Af (k, 1)

√
jkdrv

cosh(πtg)
ρg(kv)ρg(jdr)

for any Maass cusp form g of level q � T ε and spectral parameter tg � T ε, and any positive
integers T 2−ε < K < T 2+ε, j, v, d, r � T ε. In the new ranges we have (remember that Φ̂(tg)
depends implicitly on k) that

d

dk
Φ̂(tg)� T−1+εk−1,

by (9.22). Thus by partial summation it suffices to show that

T−2+ε
∑

K<k<2K

Af (k, 1)

√
jkdrv

cosh(πtg)
ρg(kv)ρg(jdr)� T−δ (9.34)

for some δ > 0.

9.4 Generalized Lindelöf hypothesis
In order to use L-functions to obtain the required cancellation in (9.34), we must work with
primitive Hecke cusp forms. To this end, we can take g to be an element of the special basis
described in Lemma 3.7. That is, g = hc for some newform h of level dividing q. Writing out hc
has a linear combination of h|b as in the lemma, and using the fact that the coefficients in this
linear sum are small, it suffices to prove that

T−2+ε
∑

K<k<2K

Af (k, 1)

√
jkdrv

cosh(πth)
ρh|b(kv)ρh|b(jdr)� T−δ (9.35)

for some newform h of level q′|q (so that q′ < T ε) and spectral parameter th = tg < T ε, and some
positive integer b < T ε. If ρh(n) are the Fourier coefficients of h, then the Fourier coefficients of
h|b (see definition (3.27)) are ρh(n/b) for b|n and 0 otherwise. Thus, it suffices to prove that

T−2+ε
∑

K<k<2K

Af (bk, 1)

√
jkdrv

cosh(πth)
ρh(kv)ρh(jdr)� T−δ

for some δ > 0. We have

1

cosh(πtg)

√
kvρh(kv)

√
jdr ρh(jdr) =

1

cosh(πth)
|ρh(1)|2λh(kv)λh(jdr),

where λh(n) are the Hecke eigenvalues of h. By the standard (Rankin–Selberg) bound

|ρh(1)|2

cosh(πth)
� T ε,

we find that it suffices to prove that

T−2+ε
∑

K<k<2K

Af (bk, 1)λh(kv)� T−δ
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for some δ > 0. Thus the trivial bound is O(T ε), and to obtain further cancellation it suffices
to partition the interval [1, 2] using smooth bump functions ψ and bound the following by a
negative power of T :

T−2+ε
∑
k>1

ψ

(
k

K

)
Af (bk, 1)λh(kv)

= T−2+ε 1

2πi

∫
(2)
ψ̃(s)KsD(s)

ds

s
, (9.36)

where ψ̃ denotes the Mellin transform of ψ and

D(s) =
∑
k>1

Af (bk, 1)λh(kv)

ks
.

For any integers n,m, let n|m∞ mean that p|n⇒ p|m. By Hecke multiplicativity, we have

D(s) =
∑
k>1

(k,bv)=1

Af (k, 1)λh(k)

ks

∑
k>1

k|(bv)∞

Af (bk, 1)λh(kv)

ks
.

Comparing Euler products on both sides, we may write∑
k>1

(k,bv)=1

Af (k, 1)λh(k)

ks
= L(s, sym2f × h)G1(s),

where G1(s) is a Dirichlet series which absolutely converges for <s > 1 − δ for some δ > 0 and
satisfies G1(s)� 1 in this half-plane. For any integer n and prime p, let np denote the p-part of
n. That is, np|n and npp - n. We write

G2(s) =
∏
p|bv

(
A(bp, 1)λh(vp)

1
+
A(bpp, 1)λh(vpp)

ps
+
A(bpp

2, 1)λh(vpp
2)

p2s
+ · · ·

)

and note that for <(s) > 1
2 , we have

G2(s)� b7/32+εv7/64+ε exp

( ∑
p<log bv

p−1/2+7/32+7/64+ε

)
� T ε.

Thus

D(s) = L(s, sym2f × h)G(s),

where G(s) = G1(s)G2(s) is a Dirichlet series which absolutely converges for <s > 1−δ for some
δ > 0 and satisfies G(s) � T ε in this half-plane. Thus, moving the line of integration in (9.36)
to <(s) = 1 − δ and applying the GLH bound L(s, sym2f × h) � (1 + |s|)εT ε there completes
the proof (we save an absolute power of T , and all ε values can be adjusted). Note that what is
actually required here is any subconvexity bound for L(s, sym2f × h).
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