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VARIETIES WITH MODULAR SUBALGEBRA LATTICES

TREVOR EVANS AND BERNHARD GANTER

A classification is begun of varieties of algebras with the

property that each algebra in the variety has a modular lattice

of subalgebras. This turns out to be a very restrictive

condition. Such a variety is hamiltonian. If the algebras in i t

are idempotent, then i t is a variety of sets. A variety is

subalgebra-modular if and only if i t is hamiltonian and satisfies

certain conditions on the terms in its three generator free

algebras.

The lattice of subalgebras of an abelian group is modular, the lattice

of subalgebras of any unary algebra is distributive, and there are

varieties ^ of algebras, for example, semigroups satisfying xy = x and

natural central groupoids [1], [5], where the lattice of subalgebras of any

^-algebra is a boolean algebra. On the other hand, for the variety of

groups, no non-trivial identity is common to all lattices of subalgebras.

Is i t possible to classify those (finltary) varieties in which every

algebra has a modular lattice of subalgebras? In this paper, we take a

first step towards such a classification by showing that subalgebra-

modularity is indeed a very restrictive condition on a variety. Our main

results are

(i) a subalgebra-modular variety is hamiltonian (hence, a
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subalgebra-modular variety of loops is a variety of

abelian groups),

(ii) a subalgebra-modular variety of Idempotent algebras is a

variety of sets,

( i i i ) a variety is subalgebra-modular if and only if i t is

hamiltonian and satisfies certain "Malcev-type"

conditions.

We remark that, where necessary, we allow the empty subalgebra.

LEMMA. Let (A; ft) be an algebra with a modular lattice of sub-

algebras, let B be a subalgebra of A and y an element such that

A = <5 <J {y}) .

Then, for every element p € A , we have

p € (S A ( p , y)) v <y> .

(Here ( X) denotes the subalgebra generated by the subset X .)

Proof. Consider the subalgebras

A , B , ( p , y ) , B A ( p , y ) , ( J A f p . j ) ) \i < y ) .

They form a sublattice of the lattice of subalgebras, which cannot be the

nonmodular lattice N . Thus <p, y) = (B A <p, z/>) v(y> , which proves

the lemma.

(S A < p , y)) v < y)

B A <p, y)

A variety is hamiltonian if every nonempty subalgebra is a class of

some congruence.

THEOREM 1. If the lattice of subalgebras of every free algebra in a

variety V_ is modular, then V_ is hamiltonian.

Proof. Klukovits [3] has characterized the hamiltonian varieties as
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the varieties satisfying the following conditions: for every (n+l)-ary

term p[x, x_, . . . , x , y) there exists a ternary term c (x, y, z) such

that

e
p O 0 v X 2 ' •••• V *}' Z> y^ = P K ' •••> x

n> V) •

We construct such a a(x, y, z) , given p[x, ..., x , y) , by

applying the lemma to f +, (V) = (a; , . . . , x , J/) , where

B = ( x , . . . , x ) . Since p € ( 5 A < p , j / ) ) v { i / } , there are f in i t e ly

many terms a , ..., a in B h <p, y > and an (tf!+l)-ary term <7 such

tha t

' v
Each a• i s in < p , y > , thus we find binary terms q , ..., q such that

% 1 TH

a. = q-{p, y) . More prec i se ly , we have

. ix , . . . , x ; - o . y? \x , . . . , x , y) , yj ,

and since the a . do not depend on y , we get

(• i ) = a fpd 1 1

Now l e t

e p ( x , 3 , y) = q{fix{x, z), . . . , ^ ( x , z ) , y) ,

t hen

op[p[xlt . . . , xn, z), z, y) = p[xx, . . . , xn, y) .

COROLLARY. A subalgebra-modular variety of loops is a variety of

abelian groups.

This follows from the fact that every hamiltonian variety of loops is

a variety of abelian groups; Evans [2].

A direct proof of the corollary may be easily obtained. Let V be a

subalgebra-modular variety of loops and consider the following forbidden

subalgebra lattice diagram.
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< a;, z

F3(V) = <x, y, z)

Here < y > denotes the normal closure of (y) in F . Since

<y> = <y> , both xy/x and xyz/x'yz belong to < y > . The commutative

and associative laws follow immediately.

Not every hamiltonian variety is subalgebra-modular. Consider the

variety of groupoids with operation x o y , defined by the identities

X o X = X ,

x ° y = y o x ,

X o {x o y) = y ,

(x o y) o (s o w) = {x o a) o (y o u) .

The algebras in this variety are obtained from vector spaces over GF(3)

where x o y = 2x + 2y (see, for example, Ganter and Werner [3]). The

variety is hamiltonian, but the free algebra on three generators is not

subalgebra-modular.

Idempotency in an algebra is in fact an obstacle to subalgebra

modularity and the example of semigroups satisfying xy = x reflects the

general situation.

THEOREM 2. The only subalgebra-modular varieties of idenpotent

algebras are varieties of sets (that is, varieties where the only

operations are projections).

Proof. Let ^ be a subalgebra-modular variety of idempotent algebras

and l e t F~(V) = (x, y) be the free V-algebra on two generators. If

F_(v;) contains an element other than x and y , say p{x, y) , then the

impossibility of the diagram below implies that Fo is generated by y
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and p . Hence, F is generated "by any two elements in it.

If p ? q are in F , then the endomorphism x -*• p , y -*• q must

have all of its congruence classes singletons (otherwise, one would be all

of F J and so the endomorphism is actually an automorphism.

Continuing under the assumption that F~ contains an element

p(x, y) t x, y , the invertibility of the automorphism x •*• p(x, y) ,

y •*• y implies that p(r(x, y), y) = x , r[p(x, y), y) = x for some

r(x, y) . Similarly, there is an element s(x, y) such that

p[x, s(x, y)) = y , s[x, p(x, y)) = y . Thus the derived operation

p(x, y) is a quasigroup operation on each algebra in ^ and so

congruences on V-algebras are regular; that is, congruence classes have

the same cardinality.

Now consider the congruence on F~(X) = (x, y, z> induced by the

endomorphism x -*• x , y •* x , z -*• z . The congruence class containing x

is the subalgebra generated by x and y and the congruence class

containing z consists of one element only.

This is a contradiction and so we conclude that F (V) contains only

a; and y .

It is now easy to prove that |F (V)| = n by induction. If

n+1' map onto = <x, y) by

x -»• x , x •*• y . The congruence classes are the sub-

algebras (x , x , ..., x^) and {xn+1J •

in one of these two classes.

element in F must lie
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I t follows that the only operations in .V are projections and so V
is a variety of se ts .

We conclude with a theorem giving, in terms of Malcev-type conditions,
a sufficient condition for a hamiltonian variety to be subalgebra-modular.
We need the following property of hamiltonian varieties (the 2-generation
property) implicit in Winkler [6, Theorems 1, U].

PROPOSITION. If B, C are non-empty subalgebras of an algebra in a
hamiltonian variety and x € B v C , then there are elements b , 2>2 d B ,

c l ' °2 € C Suah that x € 0 * i ' b2' c l * °2^) '

THEOREM 3. For a variety i , the following conditions are

equivalent:

(i) i is subalgebra-modular;

(ii) i is hamiltonian and satisfies the following condition:
for every ternary term t{x, y , z) ^ <s> (that is, which
involves essentially at least one of x, y ) in V , there
are binary terms b , b., c , £„ and a ternary term q

such that, for i = 1 , 2 ,

t(x, y, z) = q[bx{x, y), b^x, y), z) ,

b.(.x, y) = c. [t(x, y, z), z)

hold in

Proof. Let i be a subalgebra-modular, thus hamiltonian, variety,
and le t t{x, y, z) € ^(V) . By the lemma,

t € (< x , y > A < t , z ) ) v < z ) ,

and by the 2-generation property there are elements

\ , b2 € < x , y) A < t , z)

such that t € {£> , b , z) .

Now assume ^ i s h a m i l t o n i a n and s a t i s f i e s t h e p r o p e r t y s t a t e d in t h e

t h e o r e m . Let B, C, C be suba lgeb ra s such t h a t C <=_ C , S A C = S A C "

and B v C = B v C . We have t o prove t h a t C = C . Let p € C .
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Since C £ 5 v C , we can apply the 2-generation property to find

elements b^, b^ € B , c^, c 2 € C such that

V &2' V
Using the property again, we obtain elements d , d_ € {b-^, b^, e^} such

that p f ( i , dp\ V ̂ e \ . Now we apply the condition in the theorem to

obtain e^, e^ in (d±, d2) such that p € (e.^ eg) v (e2) and

e. € {p, e2) for i = 1, 2 . Note that e^ € C" .

Since e^ € {d , we can use the property in

the theorem again to find elements / . , / .„ £ (^1 ' ^o) s u c n that

i2)Z<
ai'*i)ZC'. * = 1, 2 . Thus

€ C we havef. . € S A C c C . and since c, , e .
•̂ j — 1 2

Hence,

and so p € C and C = C
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