
J. Appl. Prob. 49, 1036–1051 (2012)
Printed in England

© Applied Probability Trust 2012

APPROXIMATING QUASISTATIONARY
DISTRIBUTIONS OF BIRTH–DEATH PROCESSES

DAMIAN CLANCY,∗ University of Liverpool

Abstract

For a sequence of finite state space birth–death processes, each having a single absorbing
state, we show that, under certain conditions, as the size of the state space tends to
infinity, the quasistationary distributions converge to the stationary distribution of a
limiting infinite state space birth–death process. This generalizes a result of Keilson
and Ramaswamy by allowing birth and death rates to depend upon the size of the state
space. We give sufficient conditions under which the convergence result of Keilson
and Ramaswamy remains valid. The generalization allows us to apply our convergence
result to examples from population biology: a Pearl–Verhulst logistic population
growth model and the susceptible-infective-susceptible (SIS) model for infectious spread.
The limit distributions obtained suggest new finite-population approximations to the
quasistationary distributions of these models, obtained by the method of cumulant closure.
The new approximations are found to be both simple in form and accurate.
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1. Introduction

Consider a birth–death process {X(k)(t) : t ≥ 0} on the state space S(k) = {0, 1, 2, . . . , k+1}.
Suppose that there is one absorbing state at k + 1, with the remaining states forming a single
communicating class C(k). Then the long-term behaviour of the process prior to eventual
absorption is described by the limiting conditional distribution q(k) = {q(k)

i : i ∈ C(k)}, where

q
(k)
i = lim

t→∞ Pr(X(k)(t) = i | X(k)(t) ∈ C(k)).

This distribution is known to be unique, and is also the unique quasistationary distribution, in the
sense that if Pr(X(k)(0) = i) = q

(k)
i for i ∈ C(k) then Pr(X(k)(t) = i | X(k)(t) ∈ C(k)) = q

(k)
i

for all t > 0 (see [6]). Henceforth, we shall follow common usage in referring to q(k) as the
quasistationary distribution.

In general, no explicit closed form can be found for the elements q
(k)
i of the quasistationary

distribution, and so in specific applications one may seek to approximate. One general technique
is to approximate the quasistationary distribution by the stationary distribution of a limiting
diffusion process; see, e.g. [20]. Another general approach, which we discuss in more detail
in Section 4, is cumulant closure (or, equivalently, moment closure): having first chosen some
standard distributional form with which to approximate the quasistationary distribution, one
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QSDs of birth–death processes 1037

then seeks to evaluate the first few cumulants of the approximating distribution; see, e.g. [12]. In
the specific case of the widely studied susceptible-infective-susceptible (SIS) infection model,
the recent monograph by Nåsell [16] (see also [17]) gives a very thorough asymptotic analysis
of the quasistationary distribution in the large population limit, while a review of various other
approximations from the literature appears in Clancy and Mendy [3]. A more general Pearl–
Verhulst logistic population growth model, which includes the SIS model as a special case, has
been similarly analysed by Nåsell [13], [14], [15].

In a different vein, Keilson and Ramaswamy [8] showed that, under certain conditions, the
quasistationary distributions of a sequence of birth–death processes X(k) converge as k → ∞
to the stationary distribution of a limiting birth–death process on the infinite, irreducible state
space S = {0, 1, . . . }, implying that the probabilities q

(k)
i may be approximated using the

stationary distribution of the limiting process. In [8], the birth and death rates from any given
state i remain fixed as k → ∞. In Section 2 we extend this result to allow transition rates to
vary with k. The extension is motivated by examples such as those of Section 3, where we
apply our convergence result to the Pearl–Verhulst logistic population growth model and the SIS
infection model. The rigorous convergence results of Section 3 suggest new cumulant-closure
approximations to the quasistationary distributions of the Pearl–Verhulst and SIS models, which
we develop in Section 4. In Section 5 we present some numerical work, demonstrating that our
new cumulant-closure approximations can improve upon previously known approximations.
Finally, Section 6 contains some concluding discussion.

All numerical work was carried out using MATLAB® on a desktop PC.

2. Convergence of quasistationary distributions

For k = 1, 2, . . . , suppose that {X(k)(t) : t ≥ 0} is a continuous-time birth–death process
on the state space S(k) = {0, 1, 2, . . . , k + 1}, with S(k) consisting of a communicating class
C(k) = {0, 1, 2, . . . , k} and an absorbing state k+1. Equivalently, denoting by λ

(k)
i and µ

(k)
i the

birth and death rates, respectively, from state i, then we have λ
(k)
0 , λ

(k)
1 , . . . , λ

(k)
k > 0, λ(k)

k+1 = 0,

µ
(k)
0 = 0, µ

(k)
1 , µ

(k)
2 , . . . , µ

(k)
k > 0, and µ

(k)
k+1 = 0. Denote by q(k) = (q

(k)
0 , q

(k)
1 , . . . , q

(k)
k ) the

unique quasistationary distribution of X(k).
Following Keilson and Ramaswamy [8], consider two modified versions of the process X(k).

First, consider the process reflected at k (equivalently, set λ
(k)
k = 0), and denote by ρ(k) the

stationary distribution of this reflected process. Next, consider the process re-started from
state 0 whenever state k + 1 is reached, and denote by ν(k) the stationary distribution of this
re-started process. Keilson and Ramaswamy [8] showed that

ν(k) ≺st q(k) ≺st ρ(k), (2.1)

where ‘≺st’ denotes the usual stochastic ordering of distributions. An alternative proof of the
relations in (2.1) appears in Clancy and Pollett [4], where an explicit algebraic form for the
stationary distribution of the re-started process is given. Note that the reflected process may
equally well be regarded as being re-started from state k whenever state k + 1 is reached, so
that this process also falls within the framework of re-started processes studied by Clancy and
Pollett [4], following Ferrari et al. [7].

Defining π
(k)
0 = 1 and

π
(k)
i = λ

(k)
0 λ

(k)
1 · · · λ(k)

i−1

µ
(k)
1 µ

(k)
2 · · · µ(k)

i

for i = 1, 2, . . . , k, (2.2)
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then it is well known that the elements of ρ(k) are given by

ρ
(k)
i = π

(k)
i∑k

j=0 π
(k)
j

for i = 0, 1, . . . , k. (2.3)

On the other hand, from Clancy and Pollett [4], the elements of ν(k) are given by

ν
(k)
i = π

(k)
i

∑k
j=i (λ

(k)
j π

(k)
j )−1∑k

j=0(λ
(k)
j π

(k)
j )−1

∑j
r=0 π

(k)
r

for i = 0, 1, . . . , k. (2.4)

Suppose now that {X(t) : t ≥ 0} is some continuous-time birth–death process on the
irreducible state space S = {0, 1, 2, . . . }, so that, denoting by λi and µi the birth and death
rates, respectively, from state i, we have λ0, λ1, . . . > 0, µ0 = 0, µ1, µ2, . . . > 0. With
π0 = 1, and πi defined for i = 1, 2, . . . by (2.2) with the superscript (k) omitted, define

mi = πi∑∞
j=0 πj

for i = 0, 1, . . . . (2.5)

We will assume that
∑∞

j=0 πj < ∞, so that m = (m0, m1, . . . ) is a proper distribution. If
also

∑∞
j=0(λjπj )

−1 = ∞ then the process X is nonexplosive with stationary distribution m.
In what follows, we do not require that

∑∞
j=0(λjπj )

−1 = ∞; if this condition is not satisfied
then the interpretation of m becomes a little more complicated, in that the process X is now
explosive and m is not the stationary distribution of the minimal process, but rather the stationary
distribution of a nonminimal process having birth and death rates λi and µi .

The proof of our main result, Theorem 2.1 below, is based upon ideas from Keilson and
Ramaswamy [8], but, on the one hand, we are able to proceed more directly using the explicit
expressions (2.4) for the elements of ν(k) (in addition to the explicit expressions (2.3) for the
elements of ρ(k)), while, on the other hand, the dependence of λ

(k)
i and µ

(k)
i upon k means that

a little more care is needed in dealing with various summations.

Theorem 2.1. Suppose that
∑k

j=1 |π(k)
j − πj | → 0 as k → ∞. Furthermore, defining

a
(k)
i = (λ

(k)
i π

(k)
i )−1∑k

j=0(λ
(k)
j π

(k)
j )−1

for i = 0, 1, . . . , k,

suppose that a
(k)
i → 0 as k → ∞ for each i = 0, 1, . . . .

Then q(k) → m elementwise as k → ∞.

Proof. Due to the relations in (2.1), it suffices to show that ν(k) → m and ρ(k) → m.
First, consider convergence of ρ(k) to m. From (2.3) and (2.5),

(ρ
(k)
0 )−1 − (m0)

−1 =
k∑

j=0

π
(k)
j −

∞∑
j=0

πj ≤
k∑

j=1

|π(k)
j − πj | −

∞∑
j=k+1

πj ,

and so (recalling that
∑∞

j=0 πj < ∞) we have ρ
(k)
0 → m0 as k → ∞. Now, since ρ

(k)
i =

π
(k)
i ρ

(k)
0 for i = 1, 2, . . . , k and mi = πim0 for i = 1, 2, . . . , it is immediate that ρ

(k)
i → mi

as k → ∞ for each i.
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Next consider the convergence of ν(k) to m. From (2.4) we have

(ν
(k)
0 )−1 =

k∑
i=0

a
(k)
i

i∑
j=0

π
(k)
j ,

corresponding to Equation (3.25) of [8]. Noting that
∑k

i=0 a
(k)
i = 1, then

(ν
(k)
0 )−1 − (m0)

−1 =
k∑

i=0

a
(k)
i

i∑
j=0

π
(k)
j −

∞∑
j=0

πj

=
k∑

j=0

k∑
i=j

a
(k)
i (π

(k)
j − πj ) −

k∑
i=0

a
(k)
i

∞∑
j=i+1

πj .

For any fixed K , we have, for k > K ,

|(ν(k)
0 )−1 − (m0)

−1| ≤
k∑

j=1

|π(k)
j − πj | +

K∑
i=0

a
(k)
i

∞∑
j=i+1

πj +
k∑

i=K+1

a
(k)
i

∞∑
j=i+1

πj

≤
k∑

j=1

|π(k)
j − πj | +

K∑
i=0

a
(k)
i

∞∑
j=0

πj +
∞∑

j=K+2

πj .

Given ε > 0, fix K sufficiently large that
∑∞

j=K+2 πj < ε/3. Then take k0 > K sufficiently
large that, for k ≥ k0, we have a

(k)
i < ε(3(K + 1)

∑∞
j=0 πj )

−1 for i = 0, 1, . . . , K and also∑k
j=1 |π(k)

j − πj | < ε/3. Then, for k ≥ k0,

|(ν(k)
0 )−1 − (m0)

−1| ≤ ε.

Thus, ν
(k)
0 → m0 as k → ∞.

Now consider ν
(k)
i for i ≥ 1. From (2.4), we have, for i = 0, 1, 2, . . . , k,

ν
(k)
i = π

(k)
i ν

(k)
0

k∑
j=i

a
(k)
j = π

(k)
i ν

(k)
0

(
1 −

i−1∑
j=0

a
(k)
j

)
.

For fixed i ≥ 1, as k → ∞, we have π
(k)
i → πi , 0 ≤ ν

(k)
0 ≤ 1, and a

(k)
j → 0 for j =

0, 1, . . . , i − 1. Hence, ν
(k)
i − π

(k)
i ν

(k)
0 → 0 as k → ∞, and so ν

(k)
i → πim0 = mi .

From the relations in (2.1), it follows that q(k) → m elementwise as k → ∞, as required.

Note that if we set λ
(k)
i = λi and µ

(k)
i = µi for i = 0, 1, . . . , k, then the conditions of

Theorem 2.1 reduce to precisely the condition required by Keilson and Ramaswamy [8] that∑∞
j=0(λjπj )

−1 = ∞.

Remark. For any finite k, we have shown that the quasistationary distribution q(k) may
be approximated by the limiting stationary distribution m; alternatively, we may choose to
approximate q(k) by ν(k) or ρ(k). More generally, when the process X(k)(t) hits state k + 1,
we could re-start according to any (fixed) distribution p(k) on {0, 1, 2, . . . , k}, and denote by
�(p(k)) the stationary distribution of this re-started process. Clancy and Pollett [4] showed
that ν(k) ≺lr �(p(k)) ≺lr ρ(k) for any p(k), where ‘≺lr’ denotes the likelihood ratio ordering,
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which implies the usual stochastic ordering. It follows that, for any sequence of distributions
p(k) on {0, 1, 2, . . . , k}, we have �(p(k)) → m componentwise as k → ∞, so that, for large k,
�(p(k)) may be reasonably used as an approximation to q(k). The fact that in many practical
applications �(p(k)) provides a reasonable approximation to q(k) for any re-start distribution
p(k) has previously been observed by Barbour and Pollett [2].

3. Applications

3.1. The Pearl–Verhulst logistic population model

Nåsell [13] formulated a stochastic version of the Pearl–Verhulst model for population
growth as follows. Take X̃(N)(t) to be a birth and death process on the state space {0, 1, . . . , N}
with birth and death rates

λ̃
(N)
i =

⎧⎨
⎩λi

(
1 − α1

i

N

)
for i = 0, 1, . . . , N − 1,

0 for i = N,

µ̃
(N)
i = µi

(
1 + α2

i

N

)
for i = 0, 1, . . . , N,

where λ, µ > 0, 0 ≤ α1 ≤ 1, and α2 ≥ 0. This process is ultimately absorbed at state 0, so in
order to apply Theorem 2.1, we set k+1 = N and define the process X(k)(t) = k + 1 − X̃(N)(t).
The process X(k) is ultimately absorbed at state k + 1 and has rates

λ
(k)
i = µ(k + 1 − i)

(
1 + α2

k + 1 − i

k + 1

)
for i = 0, 1, . . . , k,

µ
(k)
i =

⎧⎨
⎩

0 for i = 0,

λ(k + 1 − i)

(
1 − α1

k + 1 − i

k + 1

)
for i = 1, 2, . . . , k.

Hence, for i = 1, 2, . . . , k, we have

π
(k)
i = (µ/λ)i(k + 1)

k + 1 − i

i−1∏
j=0

(
1 + α2(k + 1 − j)/(k + 1)

1 − α1(k − j)/(k + 1)

)
,

so that, for fixed i, as k → ∞,

π
(k)
i →

(
µ(1 + α2)

λ(1 − α1)

)i

= πi.

We require the parameters to satisfy µ(1 + α2) < λ(1 − α1) in order that
∑∞

i=0 πi < ∞. Note
that the case α1 = 1 will be discussed separately in Section 3.2 below.

To apply Theorem 2.1, we must first check that
∑k

j=1 |π(k)
j − πj | → 0 as k → ∞. Setting

θ = µ(1 + α2)/λ(1 − α1) and

Bki = 1 − (α2/(1 + α2))((i − 1)/(k + 1))

1 + (α1/(1 − α1))(i/(k + 1))
,
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then, for i = 1, 2, . . . , k, we have πi = θi and

θiBi
ki ≤ π

(k)
i ≤ θi

(
1 + i

k + 1 − i

)
.

Since 0 < Bki ≤ 1, then 1 − Bi
ki ≤ i(1 − Bki), and so

k∑
i=1

|π(k)
i − πi |

≤
k∑

i=1

θi

(
i

k + 1 − i
+ 1 − Bi

ki

)

≤
k∑

i=1

θi

(
i

k + 1 − i
+ i(1 − Bki)

)

=
k∑

i=1

θii

(
1

k + 1 − i

+
(

(α1/(1 − α1))(i/(k + 1)) + (α2/(1 + α2))((i − 1)/(k + 1))

1 + (α1/(1 − α1))(i/(k + 1))

))

≤ rk

k + 1 − rk

rk∑
i=1

θi +
k∑

i=rk+1

iθ i

+ 1

k + 1

(
α1

1 − α1

∞∑
i=1

i2θi + α2

1 + α2

∞∑
i=1

i(i − 1)θ i

)
,

where rk is any sequence of integers with 1 ≤ rk ≤ k. Since all four series in the above
expression are convergent, then choosing the rk such that rk → ∞ and rk/k → 0 as k → ∞
ensures that all the terms on the right-hand side of the inequality converge to 0 as k → ∞, as
required.

To check the condition that a
(k)
i → 0 as k → ∞, note that

λ
(k)
i π

(k)
i

k + 1
= µ

(
µ

λ

)i(
1 + α2

k + 1 − i

k + 1

) i−1∏
j=0

(
1 + α2(k + 1 − j)/(k + 1)

1 − α1(k − j)/(k + 1)

)
,

so that λ
(k)
i π

(k)
i /(k + 1) → µ(1 + α2)θ

i as k → ∞, and also(
λ

(k)
i π

(k)
i

k + 1

)−1

≥ 1

µ(1 + α2)θ i
.

Hence, for θ < 1,

a
(k)
i ≤ µ(1 + α2)(λ

(k)
i π

(k)
i /(k + 1))−1∑k

j=0(1/θ)j
→ 0 as k → ∞.

The conditions of Theorem 2.1 are all satisfied, and so, as k → ∞, the quasistationary distri-
bution of the process X(k) converges to a geometric distribution on {0, 1, 2, . . . }. In terms of the
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Pearl–Verhulst logistic model X̃(N), with quasistationary distribution (q̃
(N)
1 , q̃

(N)
2 , . . . , q̃

(N)
N ),

then, for large N , we have

q̃
(N)
i ≈ (1 − θ)θN−i for i = 1, 2, . . . , N, (3.1)

provided θ < 1.
To clarify the interpretation of the condition θ < 1, consider the deterministic process x̃(t)

corresponding to the proportion X̃(N)(t)/N in the limit as N → ∞. Then x̃(t) ∈ [0, 1] and

dx̃

dt
= x̃(λ − µ − (α1λ + α2µ)x̃) for 0 ≤ x̃ < 1.

Thus, x̃(t) has an equilibrium point at x̃ = 0, which is stable for λ ≤ µ. Defining a =
(λ − µ)/(α1λ + α2µ) then, provided 0 < a < 1, there is a second equilibrium point at x̃ = a,
and this point is stable for 0 < a < 1 (note that a > 0 is equivalent to λ > µ). In the case
a > 1, x̃(t) reaches the boundary at x̃ = 1 within finite time, provided x̃(0) > 0. The general
form of the birth rates λ̃

(N)
i = λi(1 − α1i/N) does not reduce to 0 at the boundary i = N ,

and instead the model imposes λ̃
(N)
N = 0 as a separate condition. Consequently, dx̃/dt has

a discontinuity at x̃ = 1. Provided the process does not tend to spend much time near the
boundary at X̃(N) = N , the somewhat artificial nature of the boundary condition need not be an
issue. In the case a > 1, however, the process does tend to spend time near this boundary. The
condition a > 1 is equivalent to θ < 1. Thus, although the case θ < 1 is of some mathematical
interest, the more biologically relevant case is when θ > 1.

3.2. The Pearl–Verhulst model in the case α1 = 1

In the case α1 = 1 the limit result above does not apply. On the other hand, the general form
for λ̃

(N)
i does now reduce to 0 at i = N , and we have a < 1, so that this is a more biologically

realistic case. The model with α1 = 1 was studied by Norden [18].
A proper limit distribution may be obtained by scaling the parameter λ as λ = Nλ̄ for some

fixed λ̄ > 0. We thus obtain

π
(k)
i = (µ/λ̄)i

i!
k + 1

k − i + 1

i−1∏
j=0

(
1 + α2

k + 1 − j

k + 1

)
→ φi

i! = πi as k → ∞,

where φ = µ(1 + α2)/λ̄. We have
∑∞

i=1 πi < ∞ and

φi

i!
(

1 − α2

1 + α2

i − 1

k + 1

)i

< π
(k)
i <

φi

i!
(

1 + i

k + 1 − i

)
.

Hence,
k∑

i=1

|π(k)
i − πi | ≤

k∑
i=1

φi

i!
(

i

k + 1 − i
+ 1 −

(
1 − α2

1 + α2

i − 1

k + 1

)i)

≤
k∑

i=1

φi

i!
(

i

k + 1 − i
+ i

α2

1 + α2

i − 1

k + 1

)

≤ φ

k−1∑
i=0

φi

i!
1

k − i
+ 1

k + 1

α2

1 + α2
φ2eφ.
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Taking rk to be a sequence of integers with 1 ≤ rk ≤ k such that, as k → ∞, we have rk → ∞
and rk/k → 0, then

k−1∑
i=0

φi

i!
1

k − i
≤ 1

k − rk

rk∑
i=0

φi

i! +
k−1∑

i=rk+1

φi

i! ≤ eφ

k − rk
+

∞∑
i=rk+1

φi

i! → 0 as k → ∞,

and so
∑k

i=1 |π(k)
i − πi | → 0 as k → ∞.

Finally,

λ
(k)
i π

(k)
i

k + 1
= µ(µ/λ̄)i

i!
i∏

j=0

(
1 + α2

k + 1 − j

k + 1

)
,

so that λ
(k)
i π

(k)
i /(k + 1) → µ(1 + α2)φ

i/i! as k → ∞ and(
λ

(k)
i π

(k)
i

k + 1

)−1

≥ 1

µ(1 + α2)

i!
φi

,

from which it is immediate that a
(k)
i → 0 as k → ∞ for each fixed i.

The quasistationary distribution of X(k)(t) thus converges to a Poisson distribution of mean φ.
Hence, for large N , the quasistationary probabilities of the Pearl–Verhulst model X̃(N) in the
case α1 = 1, with scaled birth rate parameter λ = Nλ̄, satisfy

q̃
(N)
i ≈ φN−i

(N − i)!e−φ for i = 1, 2, . . . , N. (3.2)

3.3. The SIS model for endemic infection

In the case α1 = 1, α2 = 0, the Pearl–Verhulst model reduces to the SIS infection model
of Weiss and Dishon [21]. In this context, X̃(N) represents the number of infective individuals
in a closed population of size N , with X(k) representing the number of susceptible individuals.
For large N , the quasistationary probabilities, expressed in terms of the number of infectives,
satisfy

q̃
(N)
i ≈ (N/R0)

N−i

(N − i)! e−N/R0 for i = 1, 2, . . . , N, (3.3)

where R0 = N/φ = λ/µ is known as the basic reproduction number of the infection process.
Note that we are here using a limiting distribution on {1, 2, . . . } to approximate a distribution

on {1, 2, . . . , N}, and so our limiting probabilities (3.3) do not sum to 1. We can improve the
approximation by normalizing to obtain

q̃
(N)
i ≈

(
R0

N

)i 1

(N − i)!
/ N∑

j=1

(
R0

N

)j 1

(N − j)! for i = 1, 2, . . . , N. (3.4)

Approximation (3.4) is precisely the approximation suggested by Kryscio and Lefèvre [9] for
the nonendemic case R0 < 1. Our limit result, in contrast, requires R0 = N/φ with φ fixed as
N → ∞, so that we expect approximation (3.3) to work well only for R0 	 1.

Whether for the SIS model, the Pearl–Verhulst model, or, more generally, our limiting result,
suggests that q(k) ≈ m, but we would expect to improve the approximation by normalizing.
That is, with m(k) = (

∑k
i=0 mi)

−1m, an improved approximation is q(k) ≈ m(k). We shall not
pursue this further, since we seek approximations of simple form. We note that in the case of
the SIS model, Clancy and Pollett [4] showed that m(k) ≺st q(k).
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4. Cumulant closure approximations

Cumulant closure is a general technique that may be used to approximate the quasistationary
distribution of a birth–death process as follows. First, write down the Kolmogorov forward
equations for the state probabilities. Next, condition upon the event {X(k)(t) ∈ C(k)} to
obtain a set of ordinary differential equations satisfied by the conditional state probabilities
Pr(X(k)(t) = i | X(k)(t) ∈ C(k)) for i ∈ C(k). By summing over the nonabsorbing states one
can then obtain a partial differential equation satisfied by the conditional moment generating
function M(θ, t) = E[exp(θX(k)(t)) | X(k)(t) ∈ C(k)]. Taking logs leads to a partial differen-
tial equation satisfied by the cumulant generating function K(θ, t) = ln M(θ, t). Expanding as
a power series in θ yields expressions for the time derivatives of the cumulants k1(t), k2(t), . . .

of the distribution of the state of the process at time t conditional upon nonabsorption. We set
these derivatives equal to 0 and solve to find the equilibrium values k1, k2, . . . . The expression
for the derivative of the cumulant of any particular order will in general contain terms of higher
order, and so before we can solve the equations we need to somehow close the system. We
do this by assuming an appropriate distributional form for the quasistationary distribution of
interest, allowing all higher-order cumulants to be expressed in terms of the first few cumulants.
Full details for the case of the SIS infection model may be found in Clancy and Mendy [3]; see
Nåsell [14], [15] for the case of the Pearl–Verhulst model.

A key step in the cumulant closure method is the choice of a specific distributional form with
which to approximate the quasistationary distribution of interest. Most commonly, the normal
distribution is used, so that cumulants of order 3 and above vanish, leaving two equations to be
solved for the two unknowns k1 and k2. To improve upon the normal approximation, one can try
a variety of distributional forms and see which leads to the best approximation. Thus, for the SIS
model in the case R0 > 1, Clancy and Mendy [3] used normal, lognormal, binomial, negative
binomial, and beta-binomial distributions to approximate the quasistationary distribution of
the number of infectives, and concluded that of these the beta-binomial distribution gave the
best approximation. Whereas Clancy and Mendy [3] simply experimented with many different
distributions in a somewhat arbitrary manner, in Sections 4.1–4.3 we use the results obtained
in Section 3 to provide guidance in the choice of an appropriate approximating distribution.

4.1. The Pearl–Verhulst model

Starting from the Kolmogorov forward equations of the process X̃(N)(t), Nåsell [14] derived
expressions for the time derivatives of the first three cumulants. In the case α1 
= 1, however,
there are terms missing from the expressions given by Nåsell [14]. In particular, the first
cumulant differential equation should be

k̇1 = λ − µ

aN
((aN − k1(t))k1(t) − k2(t)) + µ

(
1 + α2

N

)
q̃

(N)
1 (t)k1(t)

− λ(1 − α1)Nq̃
(N)
N (t), (4.1)

where q̃
(N)
i (t) = Pr(X̃(N)(t) = i | X̃(N)(t) 
= 0). The final term, involving q̃

(N)
N (t), is omitted

from the equations quoted by Nåsell [14]. This term arises because of the discontinuity in the
form of the birth rates λ̃

(N)
i at the boundary i = N .

Our limit result suggests that, provided θ < 1, the distribution of N − X̃(N) in quasi-
stationarity may be approximated by a geometric distribution supported on {0, 1, 2, . . . }.
Assuming the geometric distributional form, but without assuming the parameter value of
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the limit theorem, implies that

k2 = (N − k1)(N − k1 + 1), (4.2)

q̃
(N)
N = 1

N − k1 + 1
, (4.3)

and it remains to find k1. Since θ < 1 (equivalently, a > 1), we may treat q̃
(N)
1 as negligible.

Substituting (4.2) and (4.3) into (4.1) and neglecting the term in q̃
(N)
1 , then, close to equilibrium,

k̇1 ≈ λ − µ

aN(N − k1 + 1)
f (k1),

where, for x ∈ R, we define

f (x) = 2x3 − ((4 + a)N + 3)x2 + (N + 1)((3 + a)N + 1)x − N(N + 1)2 − a − 1

1 − θ
N2.

Any stable equilibrium point must satisfy f (k1) = 0 and f ′(k1) < 0. This is only possible if the
equation f (x) = 0 has three real roots, with the middle root providing the stable equilibrium
point k1. With θ < 1, so that a > 1, it is clear that f (x) < 0 for x ≤ 0 and that f (N) < 0, so
that k1 must be the larger of the two roots within (0, N), provided the equation f (x) = 0 has
a root within this range.

The limiting result (3.1) implies that, for large N , provided θ < 1,

k1 ≈ N − θ

1 − θ
.

Asymptotically, as N → ∞, we find that one of the roots of f (x) = 0 has leading-order terms
in agreement with this, while the other two roots do not; in fact, the relevant root satisfies

k1 = N − θ

1 − θ
− θ

(1 − θ)2

(
1 − 1

a − 1

)
1

N
+ O

(
1

N2

)
.

For numerical work, we shall evaluate k1 by solving the equation f (x) = 0 numerically
using the MATLAB fsolve function to search for solutions close to x = N .

4.2. The Pearl–Verhulst model in the case α1 = 1

When α1 = 1, in order that we can neglect terms in q̃
(N)
1 , we require λ 	 µ, so that

0 � a < 1. With this assumption, (4.1) in equilibrium reduces to

(aN − k1)k1 − k2 = 0. (4.4)

For this case, we obtained a Poisson limit for the process X(k), which would imply that the
cumulants for X̃(N) satisfy k2 = N − k1. With this substitution, (4.4) yields

k1 = 1
2 (aN + 1 +

√
((

√
N − 1)2 − (1 − a)N)((

√
N + 1)2 − (1 − a)N)), (4.5)

where we take the positive square root to ensure a stable equilibrium point. For a real solution,
we require a ≥ 1 − (1 − (1/

√
N))2.
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4.3. The SIS model for endemic infection

With α1 = 1, α2 = 0, and R0 = λ/µ, (4.5) may be written as

k1 = 1

2

(
N

(
1 − 1

R0

)
+ 1 +

√(
(
√

N − 1)2 − N

R0

)(
(
√

N + 1)2 − N

R0

))
,

and, for real roots, we require R0 ≥ (1 − (1/
√

N))−2. Note that k1 = N(1 − 1/R0) −
1/(R0 − 1) + O(1/N), which is in agreement with the asymptotic expression for k1 given by
Clancy and Mendy [3].

The Poisson moment closure approximation is remarkably simple, in that we have assumed
a one-parameter distributional form and, thus, only needed to use a single cumulant equation.
Previous cumulant closure approximations have most often fitted two-parameter distributional
families, which immediately suggests that we may be able to improve upon our Poisson
approximation using a negative binomial distribution. Clancy and Mendy [3] considered,
inter alia, a negative binomial approximation for the quasistationary distribution of the number
of infectives in the SIS model. Here we consider a negative binomial approximation for the
number of susceptibles.

This distributional assumption implies the cumulant relationship

k3 = k2 − 2k2
2

N − k1
. (4.6)

When R0 	 1, so that terms involving q̃
(N)
1 may be neglected, the first two cumulant equilibrium

equations are (
N

(
1 − 1

R0

)
− k1

)
k1 − k2 = 0, (4.7)(

N

(
1 + 1

R0

)
− k1

)
k1 +

(
2N

(
1 − 1

R0

)
− 1

)
k2 − 4k1k2 − 2k3 = 0. (4.8)

Substituting for k2 and k3 from (4.6) and (4.7) into (4.8) gives a cubic equation for k1 which
can be straightforwardly solved to yield solutions k1 = 0 or

k1 = N

((
1 − 1

R0

)(
1 − N

2(N + NR0 − R0)

)

±
√

((
√

N − √
2)2 − N/R0)((

√
N + √

2)2 − N/R0)

2(N + NR0 − R0)

)
.

For real roots, we require R0 ≥ (1 − √
2/N)−2. To leading order in N , taking the positive

square root in the above expression gives k1 = (1 − 1/R0)N + O(1), which is in agreement
with previous moment closure approximations and, therefore, provides the relevant solution.
We can now obtain k2 immediately from (4.7).

5. Performance of the approximations

We follow Clancy and Mendy [3] in measuring the performance of our approximations
in terms of the total variation distance restricted to the support of the true quasistationary
distribution. That is, if q denotes the quasistationary distribution of interest supported on
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{1, 2, . . . , N}, and q̂ denotes an approximating distribution, the distance between the two is
defined to be

d(q, q̂) = 1

2

N∑
i=1

|qi − q̂i |.

For all of the approximations q̂ considered below, it may be possible to improve the numerical
accuracy by re-normalizing so that the probabilities sum to 1, as discussed at the end of
Section 3.3, but we do not pursue this here.

5.1. The Pearl–Verhulst model

Figure 1 shows the relative performance of the geometric limit result (3.1) and the geometric
cumulant closure approximation with α1 = 0.5, α2 = 0, and N = 50, over a range of values
of the ratio R0 = λ/µ. With these values, the condition θ < 1 reduces to R0 > 2. We see that
the cumulant closure approximation gives a noticeable improvement upon the limit result. For
larger values of N , a similar picture is seen, with both approximations becoming more accurate
as N increases. So far as the parameters α1 and α2 are concerned, in general, the condition
θ < 1 may be expressed as R0 > (1 + α2)/(1 − α1), so that increasing either of α1 or α2
reduces the range of R0 values over which our limit result can be applied. Numerical work
indicates that both of our approximations become more accurate as α1 and α2 decrease.

5.2. The Pearl–Verhulst model with α1 = 1

Figure 2 shows the relative performance of the Poisson limit result (3.2) and the Poisson
cumulant closure approximation with α1 = 1, α2 = 0.2, and N = 50, over a range of values
of R0. For these parameter values, the condition for a real solution to (4.5) is R0 ≥ 1.428
(approximately). Again, the cumulant closure approximation gives a noticeable improvement
upon the limiting result. The limit result here approximates the distribution of X(k) by a Poisson
distribution of mean φ = N(1 + α2)/R0, and since X(k) ∈ {0, 1, . . . , N − 1}, we would only
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Figure 1: Distance between approximating distributions and the true quasistationary distribution of the
Pearl–Verhulst logistic model as R0 = λ/µ varies, with α1 = 0.5, α2 = 0, and N = 50.
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Figure 2: Distance between approximating distributions and the true quasistationary distribution of the
Pearl–Verhulst logistic model as R0 = λ/µ varies, with α1 = 1, α2 = 0.2, and N = 50.

expect a good approximation provided 1 + α2 � R0. In fact, we find, as before, that the
smaller the value of α2, the better both of our approximations perform. For very small α2,
increasing N improves the accuracy of both approximations, as one might expect. For larger
values, increasing N while keeping α2 and R0 fixed seems to have very little effect upon the
accuracy of the cumulant closure approximation, while the Poisson limit approximation actually
becomes less accurate as N increases. Note that the limiting regime of Section 3.2 requires
that R0 be proportional to N , rather than remaining fixed as N increases.

5.3. The SIS model for endemic infection

By far the most widely studied case is the SIS infection model, with α1 = 1 and α2 = 0.
Many authors have derived approximations to the quasistationary distribution of this model; a
review of the various approximations appears in Clancy and Mendy [3]. The best approximation
for moderate R0 values was found by Clancy and Mendy to be that of Ovaskainen [19], given
by

q̃Ov
i = KN

(
1 − N

(N − 1)R0

)
e−N/R0

(
1 −

(
N

(N − 1)R0

)i)
(N/R0)

N−i

i(N − i)! (5.1)

for i = 1, 2, . . . , N − 1, where

K = max

{
1,

2(N − 1)2R2
0

N((N − 1)R0 − N)2

}
,

with the probability q̃Ov
N being given by a slightly modified version of (5.1). This approximation

was criticised in [3] as performing poorly for large values of R0. However, closer inspection
reveals that it is only the probability q̃

(N)
N which is poorly approximated, and that if we simply

use (5.1) with i = N instead of the modified formula for q̃Ov
N suggested in [19] then there is no

problem for large R0 values. Consequently, we shall compare our own approximations only
with that of [19], which itself outperforms all other approximations considered in [3].
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Figure 3: Distance between approximating distributions and the true quasistationary distribution of the
SIS infection model as R0 = λ/µ varies, with N = 50.

We take N = 50, so that the condition for the Poisson cumulant closure method to yield a real
root isR0 ≥ 1.357 (approximately), while the corresponding condition for the negative binomial
cumulant closure method is R0 ≥ 1.5625. Figure 3 shows that the Poisson cumulant closure
approximation performs almost as well as Ovaskainen’s approximation, while being of rather
simpler form. The approximation obtained by cumulant closure assuming a negative binomial
distribution for the number of susceptibles in quasistationarity outperforms even Ovaskainen’s
approximation.

For larger values of N , a similar picture is seen, with all of the approximations becoming
more accurate as N increases, in line with our finding of Section 5.2 for sufficiently small values
of α2.

6. Discussion

The quasistationary distribution of the SIS infection model has been much studied in the
literature, as, to a lesser extent, have those of more general logistic population models. The
convergence result of Keilson and Ramaswamy [8] is not directly applicable to such models,
but by extending their result we have been able to establish convergence for the quasistationary
distributions of these processes, and, hence, to develop new and more accurate approximations.

On the face of it, our limiting regime does not appear interesting, since in the applications we
have considered the probability mass is concentrated close to an upper boundary which in the
limit goes to infinity. In the case α1 = 1, this amounts to the fact that we have R0 → ∞, when
it would seem more reasonable to hold R0 fixed as N → ∞. However, what is more important
for applications is whether the limiting result provides a reasonably accurate approximation
for finite N . We see from Figures 2 and 3 that we can indeed obtain reasonably accurate
approximations (of very simple form) for moderate R0 values for which the probability mass of
the quasistationary distribution is substantially spread across the state space. At the expense of
slightly greater complexity, the cumulant closure approximations suggested by our limit result
can give very good agreement with the true quasistationary distribution for moderate R0 values.
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For the SIS model, our convergence result firstly suggests that it may be more productive
to consider the distribution of the number of susceptible individuals, rather than focusing (as
previous authors have done) on the number of infective individuals. Focusing upon the number
of susceptibles has previously enjoyed some success when applied to susceptible-infective-
removed (SIR) infection models, with the object of interest now being not a quasistationary
distribution but rather the distribution of the total number of individuals remaining uninfected
at the end of an outbreak of infection. Daniels [5] established a Poisson limit theorem for
this quantity in the case of a major outbreak, with more general and extensive results having
since been obtained by Ball and Barbour [1] and Lefèvre and Utev [10], [11]. Secondly, our
convergence result suggests appropriate distributional forms to consider as approximations
to the quasistationary distribution. In terms of a balance between simplicity and accuracy,
arguably the most satisfactory approximation is obtained by applying the cumulant closure
method assuming a Poisson-distributed number of susceptibles. Although the negative binomial
cumulant closure approximation and the approximation of Ovaskainen [19] are both more
accurate (for sufficiently large R0), the Poisson approximation retains almost as much accuracy
with significantly greater simplicity.

A finite state space birth–death process of the form we have considered will almost surely
be absorbed within finite time. The quasistationary distribution is always well defined for such
a process, but is only of practical interest if the time until absorption is long. In terms of our
Pearl–Verhulst model, this is equivalent to the condition a 	 0, and allows us to treat q̃

(N)
1

as negligible in deriving our cumulant closure approximations. If the time until absorption is
only moderately long, it may be that the process does have time to settle to its quasistationary
distribution before absorption occurs, but that q̃(N)

1 is not small enough to be neglected. Deriving
satisfactory approximations to the quasistationary distribution then becomes a challenging task,
and even for the SIS model no really satisfactory solution has been found in this parameter region
(where R0 is only slightly above 1).

We noted in Section 3 that our Poisson limit distribution for the SIS model becomes, on
normalization, the approximation suggested by Kryscio and Lefèvre [9] for R0 < 1, whereas
our unnormalized version is applicable for R0 	 1. In the case R0 	 1, normalization makes
very little difference, so we expect the normalized Poisson approximation (3.4) to work well
for both R0 < 1 and R0 	 1, suggesting that this approximation may work well across the
whole range of R0 values. In fact, the approximation does indeed seem reasonably accurate for
all R0 values, but becomes least accurate when R0 is slightly above 1.

References

[1] Ball, F. G. and Barbour, A. D. (1990). Poisson approximation for some epidemic models. J. Appl. Prob. 27,
479–490.

[2] Barbour, A. D. and Pollett, P. K. (2010). Total variation approximation for quasi-stationary distributions.
J. Appl. Prob. 47, 934–946.

[3] Clancy, D. and Mendy, S. T. (2011). Approximating the quasi-stationary distribution of the SIS model for
endemic infection. Methodology Comput. Appl. Prob. 13, 603–618.

[4] Clancy, D. and Pollett, P. K. (2003). A note on quasi-stationary distributions of birth-death processes and
the SIS logistic epidemic. J. Appl. Prob. 40, 821–825.

[5] Daniels, H. E. (1967). The distribution of the total size of an epidemic. In Proc. 5th Berkeley Symp. Math.
Statist. Prob., Vol. 4, University of California Press, Berkeley, CA, pp. 281–293.

[6] Darroch, J. N. and Seneta, E. (1967). On quasi-stationary distributions in absorbing continuous-time finite
Markov chains. J. Appl. Prob. 4, 192–196.

[7] Ferrari, P. A., Kesten, H., Martinez, S. and Picco, P. (1995). Existence of quasistationary distributions.
A renewal dynamical approach. Ann. Prob. 23, 501–521.

https://doi.org/10.1239/jap/1354716656 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1354716656


QSDs of birth–death processes 1051

[8] Keilson, J. and Ramaswamy, R. (1984). Convergence of quasi-stationary distributions in birth-death processes.
Stoch. Process. Appl. 18, 301–312.

[9] Kryscio, R. J. and Lefèvre, C. (1989). On the extinction of the S-I-S stochastic logistic epidemic. J. Appl.
Prob. 27, 685–694.

[10] Lefèvre, C. and Utev, S. (1995). Poisson approximation for the final state of a generalized epidemic process.
Ann. Prob. 23, 1139–1162.

[11] Lefèvre, C. and Utev, S. (1997). Mixed Poisson approximation in the collective epidemic model. Stoch.
Process. Appl. 69, 217–246.

[12] Matis, J. H. and Kiffe, T. R. (1996). On approximating the moments of the equilibrium distribution of a
stochastic logistic model. Biometrics 52, 980–991.

[13] Nåsell, I. (2001). Extinction and quasi-stationarity in the Verhulst logistic model. J. Theoret. Biol. 211, 11–27.
[14] Nåsell, I. (2003). An extension of the moment closure method. Theoret. Pop. Biol. 64, 233–239.
[15] Nåsell, I. (2007). Extinction and quasi-stationarity in the Verhulst logistic model: with derivations of

mathematical results. Available at http://www.math.kth.se/∼ingemar/forsk/verhulst/ver10.pdf.
[16] Nåsell, I. (2011). Extinction and Quasi-Stationarity in the Stochastic Logistic SIS Model. Springer, Heidelberg.
[17] Nåsell, I. (2012). Extinction and quasi-stationarity in the stochastic logistic SIS model: a Maple module and

corrections. Available at http://www.math.kth.se/∼ingemar/SIS/SIS.html.
[18] Norden, R. H. (1982). On the distribution of the time to extinction in the stochastic logistic population model.

Adv. Appl. Prob. 14, 687–708.
[19] Ovaskainen, O. (2001). The quasistationary distribution of the stochastic logistic model. J. Appl. Prob. 38,

898–907.
[20] Pollett, P. K. and Vassallo, A. (1992). Diffusion approximations for some simple chemical reaction schemes.

Adv. Appl. Prob. 24, 875–893.
[21] Weiss, G. H. and Dishon, M. (1971). On the asymptotic behaviour of the stochastic and deterministic models

of an epidemic. Math. Biosci. 11, 261–265.

https://doi.org/10.1239/jap/1354716656 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1354716656

	1 Introduction
	2 Convergence of quasistationary distributions
	3 Applications
	3.1 The Pearl--Verhulst logistic population model
	3.2 The Pearl--Verhulst model in the case 1=1
	3.3 The SIS model for endemic infection

	4 Cumulant closure approximations
	4.1 The Pearl--Verhulst model
	4.2 The Pearl--Verhulst model in the case 1=1
	4.3 The SIS model for endemic infection

	5 Performance of the approximations
	5.1 The Pearl--Verhulst model
	5.2 The Pearl--Verhulst model with 1=1
	5.3 The SIS model for endemic infection

	6 Discussion
	References

