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Abstract

Let K be an algebraic number field. A cuboid is said to be K-rational if its edges and face diagonals lie
in K. A K-rational cuboid is said to be perfect if its body diagonal lies in K. The existence of perfect
Q-rational cuboids is an unsolved problem. We prove here that there are infinitely many distinct cubic
fields K such that a perfect K-rational cuboid exists; and that, for every integer n ≥ 2, there is an algebraic
number field K of degree n such that there exists a perfect K-rational cuboid.

2010 Mathematics subject classification: primary 11D41; secondary 11G05, 11G35, 14G25.
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1. Introduction

The problem of finding a rationally sided cuboid with face diagonals and body
diagonal all being rational amounts to solving in nonzero rationals the following
system of Diophantine equations:

x2 + y2 = p2,
y2 + z2 = q2,
z2 + x2 = r2,

x2 + y2 + z2 = s2.

(1.1)

This notorious unsolved problem has been studied extensively in the literature; see
Guy [2], Section D18, for a comprehensive list of references. The aim of this note is
to prove that for every integer n ≥ 2, there exists an algebraic number field of degree
n in which the system (1.1) has a solution. The case n = 2 is of course quite trivial.
It is straightforward to find a rational solution of the first three equations in (1.1), for
example (x, y, z; p, q, r) = (44, 117, 240; 125, 267, 244), and then we have a solution
of the equations (1.1) with s = 5

√
2929. This argument is easily generalised to show

that for every even integer n, there is a number field of degree n in which (1.1) has
solutions; see Section 2. Accordingly, the interesting case is the existence of number
fields K of odd degree in which (1.1) has solutions. In Section 3 we shall find explicit
solutions in extension fields of degrees 3 and 5. In Section 4 we shall show that there
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exist infinitely many distinct cubic fields in which the system (1.1) has solutions; and
also that there are number fields of every odd degree greater than or equal 3 in which
the equations (1.1) have solutions.

2. The case n even

Saunderson, Lucasian Professor of Mathematics at Cambridge, and blind from
infancy, was essentially aware (see [4]) of the parametrisation

(x, y, z; p, q, r) = (2t(t2 − 3)(3t2 − 1), 8t(t4 − 1), (t2 − 1)(t2 − 4t + 1)(t2 + 4t + 1);
2t(5t4 − 6t2 + 5), (t2 − 1)(t4 + 18t2 + 1), (t2 + 1)3) (2.1)

of the first three equations in (1.1). Then the fourth equation is satisfied precisely when

t8 + 68t6 − 122t4 + 68t2 + 1 = �. (2.2)

Theorem 2.1. Let n = 2m be an even integer. There exists a number field K of degree
n such that the equations (1.1) have a solution in K.

Proof. Let K0 be any number field of degree m. The polynomial

f (t) = t8 + 68t6 − 22t4 + 68t2 + 1

has only simple roots, so equation (2.2) defines a curve of genus 3 and, by Faltings’
theorem, has only finitely many rational points. Choose t0 ∈ K0 such that K0 = Q(t0)
and f (t0) < K2

0 . Then the parametrisation in (2.1) shows that(
x(t0), y(t0), z(t0); p(t0), q(t0), r(t0),

√
f (t0)

)
is a solution of the equations (1.1) in an extension of K0 of degree 2 and hence in a
number field of degree 2m = n. �

3. The case n odd

Let K be an algebraic number field. We suppose that x, y, z, p, q, r, s ∈ K satisfy the
equations (1.1). The first three equations in (1.1) may be parametrised by

x = (a2 − b2)λ, y = 2abλ, p = (a2 + b2)λ,
y = (c2 − d2)µ, z = 2cdµ, q = (c2 + d2)µ,
z = 2e f ν, x = (e2 − f 2)ν, r = (e2 + f 2)ν, (3.1)

with λ, µ, ν; a, b; c, d; e, f ∈ K. Then

2abcd(e2 − f 2) = (a2 − b2)(c2 − d2)e f (= (xyz/(2λµν)))

and
(c2 + d2)2µ2 + (e2 − f 2)2ν2 = s2.
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Taking the discriminant with respect to a/b of the first equation, and using ν/µ = cd/e f
in the second, gives the system

e4 +

( c2

d2 − 4 +
d2

c2

)
e2 f 2 + f 4 =�, (3.2)(

e2 +
c2

d2 f 2
)(

e2 +
d2

c2 f 2
)

=�. (3.3)

We can find solutions of (3.2) and (3.3) over cubic number fieldsQ(t) by a direct search
over minimum polynomials of t with small coefficients, then letting c/d take values
quadratic in t with small coefficients and searching for points on the intersection of the
two quartics. The first solution that we found in this way is the following example.

Example 3.1. Let K = Q(t) and t3 − 11t + 12 = 0. Then

(a, b) = (t2 − 5t + 5, t2 + t − 3), (c, d) = (t + 2, 1), (e, f ) = (2t2 + 4t − 13, 1)

leads to the following point on (1.1):

(x, y, z; p, q, r, s) = (4t, t2 + 3t − 9, t2 − 4; 3t2 + 3t − 15, t2 + 4t − 11, t2 + 4, t2 + 5).

The system (3.2) and (3.3) may also be written as the intersection of three quadrics
in the form

E2 +

( c2

d2 − 4 +
d2

c2

)
EF + F2 = s2

1,

E2 +

( c2

d2 +
d2

c2

)
EF + F2 = s2

2, (3.4)

EF = s2
3,

with (E, F) = (e2, f 2); and, as such, represents a curve of genus 5 over Q(c/d). There
are three obvious coverings of curves of genus 1 obtained by ‘forgetting’ s1, s2, s3 in
turn; and an obvious covering of a genus-2 curve:

x
(
x2 +

( c2

d2 − 4 +
d2

c2

)
x + 1

)(
x2 +

( c2

d2 +
d2

c2

)
x + 1

)
= �,

with x = E/F. This latter allows discovery of points over degree-5 number fields. For
example, set (c, d) = (2, 1) and define a quintic number field K(t) by setting t to have
minimum polynomial

x
(
x2 + 1

4 x + 1
)(

x2 + 17
4 x + 1

)
= 9(x2 + x + 8)2,

the right-hand term being chosen so that t, t2 + 1
4 t + 1 and t2 + 17

4 t + 1 are each squares
in K. This gives the following point on (3.4):

(E, F, s1, s2, s3) = (t, 1, (−496t4 + 2296t3 + 13905t2 + 46876t + 78464)/30080,
(−16t4 + 8t3 + 655t2 + 1828t + 5760)/1152,
(−16t4 − 120t3 + 1807t2 + 3756t + 17280)/6768).
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Correspondingly, this simplifies to the following solution of (1.1):

(x, y, z; p, q, r, s)
= (17τ4 + 10τ3 + τ2 − 220τ − 546, 648, 864; 5τ4 − 14τ3 + 13τ2 − 340τ − 402,

1080, 7τ4 + 38τ3 − 25τ2 + 28τ − 606, 11τ4 − 2τ3 + 115τ2 − 172τ − 366), (3.5)

where τ5 − 2τ4 + 9τ3 − 40τ2 + 38τ − 168 = 0.
This point taken with its conjugates defines an effective rational divisor D0 of degree

5 on the genus-5 curve (3.4). By the Riemann–Roch theorem, a divisor of degree at
least 9 on a genus-5 curve is linearly equivalent to an effective divisor, so denoting
by Π a plane section on the curve, a divisor nΠ − mD0 with 8n − 5m ≥ 9 is linearly
equivalent to an effective divisor. In this way we can construct effective divisors on
the curve of every odd degree at least 9. (We have constructed effective divisors of
degrees 3 and 5 in Examples 3.1 and (3.5), respectively. For a degree-7 example, see
Example 4.5.)

4. Infinitely many cubic fields

We can find infinitely many cubic fields in which the system of equations (1.1) has
solutions, as follows.

The parametrisation (2.1) corresponds in (3.1) to

(λ, µ, ν) = (4t, t2 − 1, 1),
(a, b) = (2(t2 − 1), t2 + 1),
(c, d) = (t2 + 4t + 1, t2 − 4t + 1),
(e, f ) = ((t − 1)(t2 + 4t + 1), (t + 1)(t2 − 4t + 1)).

Then

e4 +

( c2

d2 − 4 +
d2

c2

)
e2 f 2 + f 4 = 16t2(5t4 − 6t2 + 5)2,

and it remains to make square(
e2 +

c2

d2 f 2
)(

e2 +
d2

c2 f 2
)

= 4(t2 + 1)2(t8 + 68t6 − 122t4 + 68t2 + 1).

Equivalently, we need points on the hyperelliptic curve

C : Y2 = X8 + 68X6 − 122X4 + 68X2 + 1 (4.1)

which lie in a cubic number field Q(t). The curve C, as in (2.2), is of genus 3.
First, we find all the points on (4.1) that are defined over Q. This enumeration is

implicit in existing results, which prove that the Euler parametrisation (2.1) cannot
result in a rational solution to the cuboid problem; see, for example, Spohn [5], though
the result follows immediately from Pocklington [3]. But we state the theorem in the
form in which we wish to use it, giving an alternative and simple proof.
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Theorem 4.1. The rational points on the curve (4.1) are precisely the two points at
infinity (1, 1, 0), (−1, 1, 0) and the finite points (±x,±y) = (0, 1), (1, 4).

Proof. The curve (4.1) has the involution

φ(X,Y) =

(X + 1
X − 1

,
4Y

(X − 1)4

)
and the corresponding quotient curve

C̃ : y2 = x3 − 3x2 + x

is of rank 0. The mapping is given by

(x, y) =

( 32X2(X2 − 1)2

X8 + 36X6 − 58X4 + 36X2 + 1 − (X2 + 1)2Y
,

8X(X2 − 1)(X2 − 2X − 1)(X2 + 2X − 1)
X8 + 36X6 − 58X4 + 36X2 + 1 − (X2 + 1)2Y

)
.

There are precisely two rational points on C̃, namely (0, 1, 0) at infinity and the finite
point (0, 0) of order 2. It follows that a rational point (X,Y) on (4.1) must satisfy

X8 + 36X6 − 58X4 + 36X2 + 1 − (1 + X2)2Y = 0 or X(X2 − 1) = 0.

The former also implies that X(X2 − 1) = 0, so that a complete listing of points on
(4.1) is given by the two points (1, 1, 0), (1, −1, 0) at infinity and the finite points
(±X,±Y) = (0, 1), (1, 4). �

We now seek identities of the following form:

x8 + 68x6 − 122x4 + 68x2 + 1 − (c0gx2 + c1x − c0)2

= (x3 + gx2 + hx − 1)(x5 − gx4 + c2x3 − c3x2 + c4x + (c2
0 − 1)), (4.2)

where we shall demand irreducibility of x3 + gx2 + hx − 1. Equating coefficients of
powers of x in (4.2),

c2 = g2 + 68 − h,
c3 = g3 + 68g − 1 − 2gh,
c4 = g4 + 68g2 − 2g − 122 − (3g2 + 68)h + h2 − g2c2

0,

with
(1 + gh)(g2 + 69 − 2h − c2

0) = 0.

If 1 + gh = 0, then x3 + gx2 + hx − 1 = (x + g)(x2 + h), violating irreducibility, so
necessarily c2

0 = g2 + 69 − 2h, giving

c2
1 = 2g + 69 + (g2 + 2g + 122)h + (g2 + 68)h2 − h3,

2c0c1 = g2 + 2g + 122 + 2(g2 + 68)h − 3h2.
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Eliminating c1 gives

D : (g2 − h2)2 − 4(g − h)(g + h)2 − 4(7g2 − 2gh + 7h2) − 64(g − h) − 4160 = 0. (4.3)

Equation (4.3) represents a curve of genus 1, with rational point (1, 1, 0) at infinity. So,
it is an elliptic curve, with cubic model

E : y2 = x3 + x2 − x + 15,

of rank 1 with generator P = (−1, 4). Birational maps D↔ E are given by

(x, y) =
( 1

128 (−g3 + 6g2 + 16g + 160 + (−g2 + 12g − 16)h + (g + 6)h2 + h3),
1

256 (g3 − 6g2 + 240g − 2080 − (g3 − 7g2 − 4g − 304)h

−(g2 − 11g + 22)h2 + (g + 5)h3 + h4)
)

and

(g, h) =

(
−(x + 3)(x + 15) − 2y(x − 1)

(x − 1)(x + 3)
,

(x + 3)(x + 15) − 2y(x − 1)
(x − 1)(x + 3)

)
.

Accordingly, the infinitely many pullbacks to D of the points mP on E, for m ∈ Z, result
in infinitely many identities of type (4.2). If in such an identity x3 + gx2 + hx − 1 is
reducible, then it has a finite rational root ρ which is certainly nonzero. But (4.2)
now implies that ρ is the X-coordinate of a finite rational point on (4.1), so, by
Theorem 4.1, we have ρ = ±1. This implies that either h = −g or h = g − 2; in each
case (g, h) being a point of D in (4.3) can only occur for irrational g. Hence, the
cubics x3 + gx2 + hx − 1 are guaranteed to be irreducible. Identity (4.2) now shows
that t8 + 68t6 − 122t4 + 68t2 + 1 ∈ Q(t)2, where t3 + gt2 + ht − 1 = 0.

Example 4.2. The generator P(−1, 4) corresponds to (g, h) = (3,−11), with cubic field
Q(τ), τ3 + 3τ2 − 11τ − 1 = 0. The corresponding point of (1.1) using (2.1) simplifies
to

x : y : z : p : q : r : s
= τ2 − 8τ + 13 : 5τ2 − 2τ − 19 : −3τ2 − 4τ + 23 :

2(τ2 − 7τ + 11) : 2(3τ2 − 15) : 2(6τ − 13) : −7τ2 + 33. (4.4)

Theorem 4.3. There exist infinitely many distinct cubic fields K in which the system
(1.1) has solutions.

Proof. Two isomorphic cubic fields will have discriminants differing by a perfect
square. The discriminant of X3 + gX2 + hX − 1, with g, h as above, is equal to
16F(x)/((x − 1)4(x + 3)2), where

F(x) = x8 − 19x7 − 44x6 − 5x5 + 272x4 − 2621x3 + 1168x2 + 21237x + 45547

is irreducible. Inductively, suppose that we have constructed as above k ≥ 1 distinct
cubic fields in which system (1.1) has points. Let the respective discriminants be ∆i,
i = 1, . . . , k. The curves F(x) = ∆iy2, for i = 1, . . . , k, are each of genus 3 and so, by
Faltings’ theorem, the set S k of x ∈ Q such that F(x) = ∆iy2, for some i = 1, . . . , k, is
finite. Now choose m ∈ Z so that xm < S k, where (xm, ym) = mP; then (xm, ym) pulls
back to (g, h), corresponding to a cubic field distinct from the previous k. �
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Theorem 4.4. Let n ≥ 3 be an odd integer. Then there exists a number field K of degree
n in which the system (1.1) has solutions.

Proof. We have already discovered a solution of (1.1) in a cubic number field, so we
can henceforth suppose that n ≥ 5. The cubic point of (1.1) in (4.4) corresponds to
the cubic point (τ, 30τ2 − 96τ − 10) on (4.1) and so determines on (4.1) an effective
divisor D0 of degree 3. The curve (4.1) is of genus 3, so the Riemann–Roch theorem
implies that a divisor in (4.1) of degree at least 5 is linearly equivalent to an effective
divisor. We can certainly find positive integers m, k such that 8m − 3k = n. Denoting
by Π a (weighted) plane section on the curve, then the divisor mΠ − kD0 has degree
n and so is linearly equivalent to an effective divisor. Such a divisor depends on n − 3
independent parameters; in general therefore such a divisor should be irreducible (the
Hilbert irreducibility theorem guarantees that there is a specialisation of the parameters
which will give an irreducible divisor; see, for example, Coray [1, Section 2]). Such an
irreducible divisor pulls back via the parametrisation (2.1) to a point on (1.1) defined
over an extension field of degree n. �

As illustration of the technique in Theorem 4.4, we find a solution of (1.1) in an
extension field of degree 7.

Example 4.5. Since 2Π − 3D0 has degree 7, we construct a curve such as

Y2 + (−9X3 − 39X2 + 91X − 27)Y
= 2X8 + 41X7 + 427X6 + 979X5 − 623X4 + 27X3 − 487X2 + 241X − 15,

having intersection with (4.1) containing 3D0 (there are four degrees of freedom, so it
is not difficult either to construct such a curve or to ensure that the residual divisor of
degree 7 is irreducible; rather, the difficulty is in trying to ensure that the coefficients
do not become unduly large). The residual intersection on (4.1) is then a divisor of
degree 7, defined in this instance by

X7 + 49X6 + 347X5 + 767X4 + 375X3 + 87X2 − 1459X + 473 = 0.
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