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Abstract
Overcoming vaccine hesitancy is critical to containing the COVID-19 pandemic in the
United States. To increase vaccination rates, the State of Ohio launched a million dollar
lottery in May 2021. Following a pre-registered analysis, we estimate the effects of Ohio’s
lottery program Vax-a-Million on COVID-19 vaccination rates by comparing it to a “syn-
thetic control” composed of eight other states. We find a statistically insignificant 1.3%
decrease in the full vaccination rate in Ohio at the end of the lottery period. We investigate
the robustness of our conclusion to model specifications through a multiverse analysis of
216 possible models, including longer time periods and alternative vaccination measures.
The majority (88%) find small negative effects in line with the results of our pre-registered
model. While our results are most consistent with a decrease in vaccination rate, they do
not allow a firm conclusion on whether the lottery increased or decreased vaccine uptake.

Keywords: COVID-19; vaccination; synthetic control; lotteries; vaccine hesitancy; vaccine confidence;
multiverse analysis

Introduction
The COVID-19 pandemic is the largest public health crisis in recent history. With
the discovery and mass production of efficacious vaccines against the virus, moti-
vating uptake of the vaccines has emerged as a critical challenge in the United States.
To this end, a number of incentives and encouragement strategies have been imple-
mented in the United States, ranging from free beer to saving bonds (Kmietowicz
2021; Treisman 2021). Because of the rapid pace of the pandemic and response
efforts, however, little is yet known about the effectiveness of these programs
and whether they can help contain the virus in the United States (Mandvalli 2021).
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Lotteries are a potentially powerful and low cost way to encourage vaccination
that have been shown to induce behavior change in financial (Gertler et al. 2018)
and health behaviors (Van Der Swaluw et al. 2018). Particularly in the context of
vaccination, lotteries may be an effective incentive in that they are uniquely attrac-
tive to risk-preferring individuals.

Prior work finds risk preference is positively correlated with vaccine skepticism
(Massin et al. 2015), suggesting that the vaccine-hesitant may be uniquely high in
risk preference and thus uniquely responsive to lottery incentive programs.

Additionally, individuals who systematically overestimate low-probability events,
such as adverse vaccine reactions, may also systematically overestimate the proba-
bilities of winning a lottery (Camerer and Kunreuther 1989). Lastly, prior work finds
that low-income communities are less likely to get vaccinated but also more likely to
have high participation rates in lotteries (Price and Novak 1999; Razai et al. 2021;
Soares et al. 2021). For these reasons, lotteries may effectively encourage individuals
to vaccinate where other strategies have failed.

Yet despite these appealing factors, there are serious concerns about whether and
how individuals should be compensated for obtaining COVID-19 vaccinations.
Efforts to promote uptake of the human papillomavirus (HPV) vaccine illustrate
the uncertainty and challenges associated with incentivizing vaccination. One ran-
domized controlled trial in the United Kingdom found that financial compensation
boosted HPV vaccination rates in participants by nearly ten percentage points
(Mantzari et al. 2015). However, in a different context when community health ser-
vice providers in the Netherlands offered raffles for iPods in exchange for receiving
the HPV vaccine, these communities subsequently had lower vaccination rates and
the vaccination initiative received negative media coverage (Rondy et al. 2010).

Vaccine promotion efforts have also faced political challenges (Intlekofer et al.
2012; Haber et al. 2007), including opposition based on the cost of compensating
vaccine recipients (Buchanon 2021). Similar sentiments have been shared with
regard to COVID-19 vaccination efforts, including concerns that payment to indi-
viduals erodes intrinsic motivation, is coercive, and could reduce confidence in the
vaccine’s safety (Largent and Miller 2021). While the benefits of increasing vacci-
nation rates may outweigh potential ethical concerns (Persad and Emanuel 2021),
the optimal compensation strategy for staggered treatments – such as the Moderna
and Pfizer vaccines – is not obvious (Higgins et al. 2021):

These concerns speak to a larger issue of how to evaluate the efficacy of these
vaccination efforts. To increase vaccination rates, lotteries could induce individuals
who would never get vaccinated otherwise, or they could cause individuals to vac-
cinate sooner than they would have otherwise. Alternatively, lotteries may have no
impact on vaccination, or even discourage individuals from vaccinating. The relative
composition of these effects may make the net impact of vaccination lotteries posi-
tive, transitory, or deleterious (Buttenheim and Asch 2013; Cryder et al. 2010).

In this paper, we present a pre-registered analysis of a program intervention that
offered vaccine excipients a chance to participate in a series of million dollar lotter-
ies if they had received their first vaccination prior to the weekly drawing. Despite
early results suggesting Ohioans increased their first doses in response to this lottery
announcement (Ohio Department of Public Health 2021), results of subsequent
studies of Ohio’s lottery program have been mixed (Mallow et al. 2021;
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Robertson et al. 2021; Walkey et al. 2021; Brehm et al. 2021; Barber and West 2021;
Thirumurthy et al. 2021; Sehgal 2021). Developments in the social sciences over the
last decade have made it clear that “researcher degrees of freedom” are a significant
problem leading to over-identification of treatment effects when none exist
(Simmons et al. 2011; Brodeur et al. 2018; Blanco-Perez and Brodeur 2020). Our
analysis is distinct in that we pre-registered our analysis plan, including code for
data processing, outcome selection, and model weights, ensuring that our analysis
was neither intentionally nor unintentionally biased towards finding a specific result
(Gelman and Loken 2013; Munafò et al. 2017). We couple this analysis with a multi-
verse analysis of 216 alternative specifications. While pre-specifying our analysis
plan ensures that we did not cherry pick a particular model, other modeling choices
may lead to a more efficient estimate of the true treatment effect (Ferman et al.
2020). The multiverse analysis examines the robustness of the pre-registered results
to the use of alternative outcomes, covariate selection, time-frames, and modeling
methods (Steegen et al. 2016).

We hypothesized that because lotteries offer incentives that may be uniquely
motivating to many unvaccinated individuals, we would see a relative increase in
vaccination rates in Ohio following the opening of the “Vax-a-million” lottery com-
pared to states that were similar before the lottery announcement. Contrary to our
expectations, our results are most consistent with a decrease in vaccinations in Ohio
following the lottery. However, our pre-registered analysis is unable to conclusively
state whether the lottery had positive or negative effects. While absence of evidence
is not the same as evidence of absence, this result should caution other states that are
considering using lottery incentives to increase vaccine turnout. Details of the policy
intervention and our specific causal inference strategy follow.

Data
The focal program we study is called Vax-a-Million1. The intervention was
announced on May 12, 2021 by Ohio Governor Mike Dewine. Starting on May
26, a weekly lottery drawing was conducted through June 23, 2021. All Ohio res-
idents who were 18 years or older and entered to participate in the lottery were eli-
gible to receive a one-million dollar prize if they had received their first dose by the
date of the drawing.

The focal outcome of our study comes from Our World in Data’s COVID-19
vaccination database, which uses numbers published by the US Center for
Disease Control (CDC) (Mathieu et al. 2021). The measure counts the percentage
of individuals that are fully vaccinated in each US state. We chose this to be our
outcome measure because it is aligned with the stated public policy goals of the
State of Ohio (DeWine 2021). The full vaccination outcome has become particularly
significant with the rise of virus variants that are more virulent to single doses
(Bernal et al. 2021). Notably, this measure requires that individuals who receive
either the Pfizer or Moderna vaccines must receive two doses to count as fully
vaccinated.

1https://www.ohiovaxamillion.com/index.html
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We plot fully vaccinated rates in each state in Figure 1. At the time of the lottery
announcement, Ohio was in the middle of the distribution, ranking as the 25th most
vaccinated state with 37.4% of the entire population being fully vaccinated. On the
day after the final lottery drawing, Ohio had slipped three positions to the 28th most
vaccinated state with 43.7% percent of the population fully vaccinated.

All data are aggregated to the week level. All subsequent plots and analyses are
recentered and denominated in weeks relative to the lottery announcement to facil-
itate communication. While vaccination data are updated daily, there is substantial
noise and missing data in the daily numbers as records are omitted from one day
and reported on the next. Thus, weekly aggregation smooths daily fluctuation in
reported vaccinations.

Methods
We use a synthetic control methodology to create the counterfactual vaccination
outcome for Ohio. This technique is useful for cases where a single-aggregated unit
such as a state or country receives a treatment (Abadie and Gardeazabal 2003;
Abadie et al. 2010). One can then create a synthetic version of a state by constructing
a convex combination of other states (the donor pool) using either pre-treatment
outcomes and/or other relevant covariates. Researchers have recently used synthetic
control methods to estimate the effectiveness of California’s shelter in place orders
at the beginning of the COVID-19 pandemic (Friedson et al. 2020), to estimate the
impact of a super-spreading event on COVID-19 case rates (Dave et al. 2021), and
to estimate the effects of lockdowns on air pollution and health in Wuhan, China
(Cole et al. 2020). We are aware of three other concurrent research efforts to analyze
the effectiveness of the Ohio lottery program that also use a synthetic control
approach (Barber and West 2021; Brehm et al. 2021; Sehgal 2021). We address dif-
ferences in findings and methods below in section 4.1

Figure 1.
Vaccination Rates by State.
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A particular novelty of this method is that it allows researchers to specify a coun-
terfactual without any knowledge of post-treatment data, making it well-suited for
pre-registration (Cunningham 2018). By pre-specifying the weighting of states, it
provides a clearly articulated counterfactual of what would happen if no interven-
tions occurred. In light of concerns regarding “cherry picking” with synthetic con-
trol methodologies (Ferman et al. 2020), we pre-registered the weights for the
synthetic comparison group using data from January 12 to May 9. We defined
the pre-treatment period through the end of the last full week before the lottery
announcement on May 12. On June 15, we revised our pre-registered protocol
to exclude states that had announced vaccine lotteries after our original pre-regis-
tration, specifying that we would also run our analysis excluding these states from
Ohio’s synthetic control. We present the analysis omitting other lottery-adopting
states in the main text below. In Appendix C, we present findings that follow
our initial plan and include all 50 states and the District of Columbia. These findings
are not substantively different. We stopped data collection and calculated results
after the last lottery was run on June 23. All the codes used to generate our pre-
registered synthetic controls come from the tidysynth package in R (Dunford
2021). Our initial code and analysis was posted to the Open Science Foundation
(OSF) repository on May 24 and on Github.2

We construct our synthetic control using the following expression:

Xk
m�1

vm X1m �
XJ�1

j�2

wjXjm

 !
2

(1)

X1 corresponds to our vector of pre-treatment outcomes, vaccination rates before
the lottery, for the state of Ohio. Xj corresponds to the pre-treatment outcomes and
the associated indices of other states in the donor pool. wj corresponds to the unit
weights, the associated weighting of each state in our synthetic construction. vm cor-
responds to a variable importance weight of the pre-treatment outcomes that we
match on. We minimize this expression subject to the constraints that both our unit
weights and variable weights are non-negative and sum to unity.

We trained our synthetic control model on the 17 weeks preceding the vaccina-
tion announcement. We used data from 31 non-lottery states and the District of
Columbia in the donor pool. After optimizing expression 1 based on the past 17
weeks of vaccination data, we generated the synthetic control version of Ohio.
Exact weights are shown in Table 1. Synthetic Ohio is a composite of Kansas,
Wisconsin, Virginia, Georgia, Iowa, Hawaii, Pennsylvania, and Connecticut.

While best practice on the role of covariates in synthetic control is still evolving,
using outcome data for each pre-treatment period obviates the need for covariates
and shrinks their variable importance weights to zero (Kaul et al. 2015): We believe
using the full path of our pre-treatment outcome is a parsimonious specification. As
part of the multiverse analysis, we test the effect of including additional covariate
adjustments.

2The url to our OSF page is https://osf.io/cypbr/. Updated code can be found at our github at https://
github.com/williamlief/synth_vax and at the JEPS dataverse repository https://dataverse.harvard.edu/
dataset.xhtml?persistentId=doi%3A10.7910%2FDVN%2FQYXN9L.
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Synthetic Ohio and Actual Ohio match very well in their cumulative vaccination
rate during the pre-treatment period. In Table 2 below, we show the value of our
pre-treatment outcomes for Actual Ohio, Synthetic Ohio, and the average across our
donor pool, in the weeks leading up to the vaccination announcement. In all cases,
the error between Actual Ohio and Synthetic Ohio was at most 0.6 percentage
points. This result suggests that the difference between Synthetic Ohio and
Actual Ohio in the pre-treatment period is relatively small.

Results
We present results for Synthetic Ohio and Actual Ohio in Figure 2. At the time of
the final lottery drawing, the vaccination rate for Actual Ohio was 43.7% and the
vaccination rate for Synthetic Ohio was 45.0%. This represents a decrease in full
vaccinations of approximately 1.3% percentage points relative to Synthetic Ohio.

The pre-registered inference strategy we use to compute statistical significance is
a permutation test of the mean squared predicted error ratios. This is calculated by
repeating the minimization procedure from expression 1 to create a unique syn-
thetic counterfactual for each of the donor states. We compute the ratio of the mean
squared prediction error (MSPE) between the pre-treatment and post-treatment
periods using the synthetic counterfactuals for each state. We then sort these
MSPE ratios in descending order and use the associated rank for each state as
its associated p-value (See Appendix A for a placebo analysis and Appendix B
for a power analysis). Intuitively, non-treated states should continue to match their
synthetic counterfactual relatively well in the post-treatment period. If a policy
exhibits a substantial change in the focal outcome, the synthetic control for the true
treated state will have relatively poor out of sample fit in the post-treatment period.
Our pre-specified threshold for statistical significance was a p-value of 0.10.
Excluding lottery states, this would correspond to our treatment state having an
associated rank of 3 or higher out of the remaining 33 states.

Table 1.
Weights Used to Construct the Synthetic Counterfactual to Ohio. States not
listed had weights less than 0.001. These weights are based on a June 15
registration that excludes all other lottery-adopting states. See Appendix C

Table 3 for a comparison to our original pre-registered weights

Unit Weights

CT 0.029

GA 0.168

HI 0.061

IA 0.066

KS 0.256

PA 0.056

VA 0.173

WI 0.192
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We present the result for the MSPE ratio test in Table 3. This MSPE ratio is 27.0,
suggesting the treatment period error is substantially larger than the pre-treatment
period error. However, when we compute our p-value using the state’s MSPE rank-
ing in descending order, we see that the associated p-value is 12/33, yielding an
approximate p-value of 0.36. In other words, 11 other non-lottery-adopting states
had larger divergences from their synthetic counterfactuals than Ohio did. Thus, we
cannot reject the hypothesis that Ohio’s state lottery had no impact on state-wide
cumulative vaccination rates. This null finding, however, should not be construed as
proof that the lottery had no effect.

While best practices for estimating confidence intervals for synthetic control
analyses are still being established, conformal inference techniques suggest that
the associated point estimates at the end of period are between −3.4% and 0.9%,
see bottom panel of Figure 2 (Chernozhukov et al. 2021; Ben-Michael et al.
2021a). We emphasize that this confidence interval is descriptive and note the
method is not specified in our pre-registration.

Multiverse analysis

We are aware of three other, concurrent research efforts that use synthetic control
methods (Brehm et al. 2021; Barber and West 2021; Sehgal 2021).None of these

Table 2.
Balance Table

Pre-treatment outcome Ohio Synthetic Ohio Difference Donor Pool

lagged_vaccinations_week17 0.120 0.362 − 0.242 0.554

lagged_vaccinations_week16 0.610 0.775 − 0.165 1.088

lagged_vaccinations_week15 1.400 1.435 − 0.035 1.885

lagged_vaccinations_week14 2.440 2.411 0.029 2.958

lagged_vaccinations_week13 3.830 3.757 0.073 4.333

lagged_vaccinations_week12 5.560 5.709 − 0.149 6.186

lagged_vaccinations_week11 7.670 7.692 − 0.022 7.914

lagged_vaccinations_week10 9.440 9.498 − 0.058 9.749

lagged_vaccinations_week09 11.870 11.795 0.075 12.036

lagged_vaccinations_week08 13.860 13.837 0.023 14.027

lagged_vaccinations_week07 16.130 16.056 0.074 16.292

lagged_vaccinations_week06 18.780 18.804 − 0.024 19.250

lagged_vaccinations_week05 21.610 22.218 − 0.608 22.595

lagged_vaccinations_week04 26.320 26.083 0.237 25.941

lagged_vaccinations_week03 30.110 29.780 0.330 28.863

lagged_vaccinations_week02 33.230 33.021 0.209 31.600

lagged_vaccinations_week01 35.620 35.827 − 0.207 34.113
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Figure 2.
Trends in Vaccination Rates (Top). Difference in Vaccination rates between Actual Ohio and Synthetic
Ohio (Bottom). Notes: Negative values show that Ohio has a lower total vaccination rate than the

synthetic comparison.
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studies used pre-registered analysis plans. These papers have found small positive
effects of the Ohio lottery on first vaccination doses. In order to fully understand
why similar methods would find differing conclusions, we conducted a multiverse
analysis to explore the impact of several different data processing and modeling
choices, based on those used in the aforementioned papers, on the final outcome
estimates through the creation of 216 distinct synthetic control models (Steegen
et al. 2016; Silberzahn et al. 2018). In Appendix D, we use the weights published
in Barber and West (2021), and Sehgal (2021) to present a direct replication and
comparison of their first dose effects over an extended time frame. We find that
the positive effects on first doses observed at the end of the lottery period rapidly
decay and turn negative.

Multiverse analyses have been used to understand differences in empirical
research findings in several research contexts including racial disparities in police
use of force (Cesario et al. 2019), brain structure and depressive disorders (Kołodziej
et al. 2021), smartphone use and parenting (Modecki et al. 2020), and power pose
effects (Credé and Phillips 2017). The multiverse approach can highlight when find-
ings are robust to data processing and modeling decisions, or when statistically sig-
nificant findings disappear under slightly different assumptions.

In Table 4, we outline six decision criteria that we considered. The choices indi-
cated with a * are our pre-registered modeling decisions. Pre-registering those
choices before outcome data were available ensured that those decisions were
not influenced by a motivated search of the modeling space for a significant effect.

Our first consideration in our multiverse is the associated donor pool of our syn-
thetic Ohio. We initially pre-registered the decision to use all 50 states, prior to
many other states subsequently adopting lotteries. On June 15, we amended the
pre-registered plan to exclude any states that subsequently adopted vaccination lot-
tery sweepstakes. This leaves a donor pool of 50 and 32 units, respectively. We note
that though other work (Brehm et al. 2021) uses county-level data, we restrict our
multiverse analysis to state units.

Second, we extend our results with additional outcomes, testing whether first
doses or total vaccines administered captured effects that did not show up in the
share fully vaccinated.

Third, we consider different starting time windows. Our analysis used vaccina-
tion data compiled by Our World in Data (Mathieu et al. 2021) that were available
from January 12, 2021. However, others have reported that comprehensive data
from the CDC were not available until February 19, 2021 and that access to vaccines

Table 3.
Outcome Table

Measure MSPE-Ratio Average Difference Last Period Difference

Value 27.0 − 1.14 − 1.27

Rank 12 23 24

p-value 0.36 0.70 0.73
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may have been limited to health care workers and other at-risk individuals prior to
that (Barber and West 2021). Other work has used an even shorter 30-day pre-
treatment window, which we omit here for the sake of parsimony (Sehgal 2021).

Fourth, we vary the end date of the post-treatment period. Our original ending
date – the day of the last lottery drawing – was potentially too early to find effects on
full vaccinations, due to the necessity of waiting three to four weeks between doses
to complete the Pfizer and Moderna vaccines (Barber and West 2021; Brehm et al.
2021). We therefore test whether effects change four and eight weeks after the final
lottery drawing to allow for the administration of second doses. This latter selection

Table 4.
Data Processing and Modeling Choices. Choices indicated with a* represent the pre-registered

modeling decisions

Modeling Decisions

1. States to Include in Comparison

(a*) All states � District of Columbia

(b* June 15 modification) Only states that did not adopt a lottery

See Appendix table 2 for excluded states

2. Outcome

(a*) Percent fully vaccinated

(b) Percent with at least one dose

(c) Total number of vaccines given per hundred

3. Vaccination Data Start Time

(a*) OWID data availability (01/12/2021)

(b) CDC data availability (02/19/2021)

4. Vaccination End of Comparison

(a*) Lottery end date (06/24/2021)

(b) 4 weeks after lottery end to allow for full vaccination (07/23/2021)

(c) 8 weeks after lottery end (08/22/2021)

5. Covariates

(a*) None

(b) State demographics, 2020 Republican Presidential Election vote share,
2019 Influenza vaccination rate.

(c) b� Google mobility trends

6. Synthetic Control Model

(a*) Traditional Synthetic Control

(b) Augmented synthetic control with unit fixed effects and ridge regressions

Did Ohio’s Vaccine Lottery Increase Vaccination Rates? 251

https://doi.org/10.1017/XPS.2021.32 Published online by Cambridge University Press

https://doi.org/10.1017/XPS.2021.32
https://doi.org/10.1017/XPS.2021.32


was chosen as it was the day prior to full approval of the Pfizer vaccine by the Food
and Drug Administration (FDA)3.

Fifth, we assess the inclusion of covariates to improve the construction of the
synthetic counterfactual. Following the lead of other papers investigating the effect
of the Ohio lottery, we test the use of a series of state demographic variables as well
as 2019 estimates of flu vaccination rates and the 2020 Presidential election repub-
lican vote share (Brehm et al. 2021), and additionally including daily estimates of
individual mobility provided by Google trends (Barber and West 2021):

Lastly, we varied the modeling technique used to compare the traditional syn-
thetic control approach to an augmented synthetic control model (Ben-Michael
et al. 2021a), exploring a technique that relaxes some of the assumptions of the tra-
ditional synthetic control model by allowing for state fixed effects and augmenting
the counterfactual comparison with ridge regressions. Most notably, these
approaches allow the associated donor weights to be negative and can facilitate bet-
ter pre-treatment fit.

We fully interact all of the modeling decisions and data processing choices to
create 216 possible models.

We analyze the results of this multiverse of modeling decisions in two stages.
First, we examine the variability in donor states’ weights in the synthetic control
for Ohio in Figure 3. Here we see that the construction of the counterfactual is sen-
sitive to the modeling decisions made. While some states consistently have near-
zero weights, the states that are used in the counterfactual have widely varying
weights ranging from comprising half the weight of the counterfactual down to hav-
ing no weighting at all. While the weights used in synthetic controls provide a high
level of transparency in the calculation of the counterfactual, these results show that
the determination of those weights is quite sensitive to researcher decisions. Prior
research has found that synthetic control weights are subject to cherry picking con-
cerns (Ferman et al. 2020).

In Figure 4, we present the end of period differences between Actual Ohio and
Synthetic Ohio across modeling decisions. The figure presents the estimated final
period treatment effect on the y-axis while the x-axis represents different time win-
dows (Options 3 and 4 from Table 4) while color is used to denote the covariate
choice used (option 5). A total of twelve figures are presented with the three rows
corresponding to measuring effects on the percentage of the population receiving a
first dose, percentage fully vaccinated, and the total number of doses per capita
(option 2). The four columns correspond to the counterfactual states considered
and modeling choice (options 1 and 6). Across specifications, we find a maximum
positive effect of �3.6 percentage points on full vaccinations and a maximum neg-
ative effect of −5.9 percentage points on total doses administered. We see estimates
of negative effects in 59 out of 72 models that use first doses as the dependent vari-
able, 60 out of 72 of the models that measure effects on full vaccination rates, and all
72 of the models that estimate total vaccines administered. Our pre-registered
model is indicated with a * and is near the middle of the model estimates.

To assess the relative validity of these models, we compute the post-treatment fit
for our donor states. Put differently, we estimate how much non-treated states

3https://www.fda.gov/news-events/press-announcements/fda-approves-first-covid-19-vaccine
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Figure 3.
Distribution of Donor State Weights in Synthetic Counterfactuals Across Multiverse of Models.
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Figure 4.
Distribution of Estimated Change in Vaccination Outcomes Across Multiverse of Models.
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diverge from their synthetic counterfactuals, with smaller divergence treated as evi-
dence of better model fit (Abadie 2021). Intuitively, if a model has poor post-
treatment fit when no intervention occurred, this model would be less preferable
to one that more accurately described donor states’ behavior.

We calculate the average mean squared predicted error in the post-treatment
period for each model across the permutations. We find that the median model
has an average post-period MSPE of 11.9 in the non-treated states. Our pre-
registered model has an average non-treated post-period MSPE of 8.4, which is
the 35th percentile of all the calculated average post-period MSPE values. For each
of the three outcome measures, the model with the lowest MSPE is indicated in
Figure 4 with an X. We estimate a negative effect of −0.38 percentage points on
first doses, −0.54 percentage points for full vaccination rates, and −2.66 percentage
points for total doses in the best-fitting models, though none of these estimates are
statistically significant according to our permutation test. Thus, we find small, neg-
ative effects for each outcome in the models that best generalize to the control states.

Discussion
Contrary to our pre-registered hypothesis, our work did not detect a statistically
significant effect of Ohio’s lottery program on state-wide vaccination rates. In
our pre-registered analysis, the majority of specifications from our multiverse anal-
ysis, and in the best-fitting models from the multiverse analysis, we found conver-
gent evidence that the effect of the lottery was generally slightly negative, and not
statistically significant. Nonetheless, while negative point estimates predominated in
these analyses, we do not have strong evidence that the lottery program had negative
effects, as our estimated confidence intervals include positive effects. These findings
are particularly important as they contrast with early results suggesting that Ohio’s
lottery was effective at boosting vaccination rates in the short term, and those early
results were used by the White House to encourage other states to adopt lotteries of
their own (Ohio Department of Public Health 2021; White House Press
Briefing 2021).

How do our results fit with other papers analyzing the effect of COVID-19 vac-
cine lotteries, in Ohio and beyond? Our results corroborate a pre-registered experi-
ment that attempts to assess the efficacy of vaccination lotteries (Milkman et al.
2021) in Pennsylvania. With respect to studies of Ohio specifically, some other work
casts doubt on the efficacy of lottery sweepstakes at increasing COVID-19 vaccina-
tion rates (Walkey et al. 2021; Thirumurthy et al. 2021). County-level analyses have
found some positive impact on starting-vaccination rates (Brehm et al. 2021;
Robertson et al. 2021; Mallow et al. 2021). Other work that used a similar synthetic
control approach found modest positive effects (Barber andWest 2021; Sehgal 2021;
Brehm et al. 2021). In the multiverse analysis, we find that differences in estimates
are not explained through the use of full vaccination rates versus first doses as the
focal outcome and find that the positive effects reported in these papers are repli-
cated in only a small subset of the modeling space.

We caution however that our results are all based on state-level average vacci-
nation rates for Ohio. A challenge faced by recent evaluations of the Ohio
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Lottery program is that relevant comparator states have had data revisions and cor-
rections that are on the order of a percentage point (Cox 2021; Kansas Vaccine
Database 2021; McDaniel 2021). We encourage other researchers to look at this
issue with more granular data and to examine heterogeneity in incentive effects
for specific sub-populations, especially those with lower vaccination rates. Initial
work suggests that the Ohio lottery may have been successful in increasing vacci-
nation rates in lower income counties (Mallow et al. 2021).

As more states have adopted lottery incentives, future research should use meth-
ods that allow for multiple treated units. New methods of multi-treatment synthetic
control models may be appropriate for this context (Ben-Michael et al. 2021b,
2021a). We present an exploratory analysis of the multi-state adoption in
Appendix E and find evidence for modestly positive (1.0%), non-significant effects
of the lotteries on vaccination rates. One group of researchers who have studied the
effect of these incentives in a similar sample of states found small negative effects on
weekly vaccination rates (Thirumurthy et al. 2021), while another set found small
positive effects (Robertson et al. 2021).

Although initial coverage was positive, later news reports questioned the long-
term effectiveness of lottery incentives (Welsh-Huggins 2021), and our analysis sug-
gests early effects likely did not endure. Nonetheless, 17 states followed Ohio’s lead
and took up their own vaccination lotteries. In Appendix D, we present analysis that
suggests that research which found positive effects on initial doses during the lottery
period turned negative shortly after the lottery’s completion.

With multiple possible interventions to induce higher vaccination rates and lim-
ited resources, policymakers have had to make decisions in a rapidly evolving con-
text with incomplete information. While our study does not provide conclusive
evidence regarding the effectiveness of lotteries, it strongly suggests that continuing
to explore the suite of policy options beyond vaccine lotteries is warranted, and con-
vergence on lotteries as a primary intervention would be premature. Emerging evi-
dence on direct payments for vaccination is conflicting (Chang et al. 2021; Campos-
Mercade et al. 2021), suggesting that measured confidence in, and additional
research on, the efficacy of material incentives is warranted.

As the pace of vaccination continues to slow, it is important that policymakers
receive rapid feedback about the effectiveness of their efforts. Our work acts as proof
of concept that social science methods can be used both in prospective and policy-
relevant settings in real time. We made a pre-print of these results available on July
5, less than 2 months after the policy was announced on May 13. We also made all
code and data used publicly available. We offer the following closing thoughts on
how policymakers and researchers may better facilitate such policy evaluation.

First, providing high frequency data with clearly defined policy changes can help
facilitate assessment of such actions. The ease with which this analysis was con-
ducted was due largely to the fact that researchers and public officials offered a tre-
mendous level of data transparency. We as researchers had no privileged access. The
fact that the intervention was well-defined and conducted over a short period fur-
ther facilitated our analysis.

Second, given the known biases in publication processes towards positive and
statistically significant results (Dwan et al. 2008; Munafò et al. 2017), multiverse
analyses are a powerful tool to ensure that researchers have not intentionally or
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unintentionally made apparently reasonable decisions that may bias analyses
toward finding a specific result. Incorporating pre-analysis plans can help adjudicate
which of these specifications are most appropriate (Ludwig et al. 2019).

Lastly, we highlight the value of synthetic control methods as a tool for prospec-
tive policy analysis for researchers. Of the nearly 80,000 registrations on the Open
Science Foundation repository, only seven use synthetic controls4. Synthetic control
methods allow researchers to generate a specific and transparent counterfactual out-
come before post-treatment data is available. With these pre-defined weights, com-
paring treatment outcomes between a synthetic and actual state is no more
complicated than computing a weighted average (as we show in Appendix D).
Given the technique’s alignment with pre-registration, relative simplicity, and broad
utilization, we believe more researchers should consider pre-registering synthetic
control analyses of timely policy matters and coupling this approach with a multi-
verse analysis (Athey and Imbens 2017; Steegen et al. 2016).
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