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We study the statistically steady states of the forced dissipative three-dimensional
homogeneous isotropic turbulence at scales larger than the forcing scale in real separation
space. The probability density functions (p.d.f.s) of longitudinal velocity difference at
large separations are close to, but deviate from, Gaussian, measured by their non-zero
odd parts. The analytical expressions of the third-order longitudinal structure functions
derived from the Kármán–Howarth–Monin equation prove that the odd-part p.d.f.s of
velocity differences at large separations are small but non-zero. Specifically, when the
forcing effect in the displacement space decays exponentially as the displacement tends
to infinity, the odd-order longitudinal structure functions have a power-law decay with an
exponent of −2, implying a significant coupling between large and small scales. Under
the assumption that forcing controls the large-scale dynamics, we propose a conjugate
regime to Kolmogorov’s inertial range, independent of the forcing scale, to capture the odd
parts of p.d.f.s. Thus, dynamics of large scales departs from the absolute equilibrium, and
we can partially recover small-scale information without explicitly resolving small-scale
dynamics. The departure from the statistical equilibrium is quantified and found to be
viscosity-independent. Even though this departure is small, it is significant and should be
considered when studying the large scales of the forced three-dimensional homogeneous
isotropic turbulence.

Key words: homogeneous turbulence, isotropic turbulence

1. Introduction

In three-dimensional (3-D) homogeneous isotropic turbulence (HIT), the injected energy
transfers at a constant rate by nonlinear interactions to small scales until dissipation occurs.
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In the inertial range, where the scales are away from the energy-containing scale and the
dissipation scale, from the Kármán–Howarth–Monin (KHM) equation (von Kármán &
Howarth 1938; Monin & Yaglom 1975), Kolmogorov (1941) obtained an asymptotic result
for the longitudinal velocity structure function

〈δu3
L〉 = −4

5εr, (1.1)

where 〈·〉 denotes the ensemble average, δuL = (u′ − u) · r0 is the longitudinal velocity
difference with u′ = u(x + r) , r the separation vector of two points with r0 = r/|r| a unit
vector and ε is the energy dissipation rate. The corresponding energy spectrum E(k) ∼
k−5/3 is also widely observed (Obukhov 1941; Frisch 1995), here k is the wavenumber.

For the dynamics of scales larger than the forcing scale (large scales hereafter), since
energy cascades from the forcing scale down to small dissipation scales, leaving no
averaged upscale energy to the large scales, it has been conjectured that the large-scale
dynamics of forced 3-D HIT can be described by the absolute equilibrium (Hopf 1952;
Lee 1952; Kraichnan 1973; Rose & Sulem 1978; Frisch 1995; Lesieur 1997). The spectra
of this equilibrium state follow the statistical mechanics of the truncated Euler equations,
where energy equally distributes among all Fourier modes and the velocity distribution
is Gaussian (Rose & Sulem 1978). Based on Liouville’s theorem (Lee 1952) and the
Gaussian equipartition ensemble (Orszag 1977), Kraichnan (1973) predicted the energy
and helicity spectra

E(k) = 4παk2

α2 − β2k2 and H(k) = 4πβk4

α2 − β2k2 , (1.2a,b)

respectively. The coefficients α and β are determined by the energy and the helicity of
flow. For non-helical flow, β = 0, leading to an energy spectrum E(k) ∼ k2. Numerical
and experimental results have justified the large-scale statistical equilibrium in 3-D HIT
(Cichowlas et al. 2005; Dallas, Fauve & Alexakis 2015; Cameron, Alexakis & Brachet
2017; Alexakis & Biferale 2018; Alexakis & Brachet 2019, 2020; Gorce & Falcon 2022;
Hosking & Schekochihin 2023). The dynamics of scales larger than the forcing scale
are of interest for many flows where the energy flux is zero, e.g. geophysical and
astrophysical flow, and turbulent mixing in industrial processes (Dallas et al. 2015). The
large-scale statistical equilibrium is also reported in magnetohydrodynamic turbulent flows
(Linkmann & Dallas 2016, 2017) and wave turbulence, such as capillary waves (Balkovsky
et al. 1995; Michel, Pétrélis & Fauve 2017), bending waves (Miquel, Naert & Aumaître
2021) and optical waves (Baudin et al. 2020).

However, the large-scale dynamics of the forced 3-D HIT differ from the absolute
equilibrium of the truncated Euler equations. In the absolute equilibrium, the energy and
helicity are conserved in an isolated system, where the initial conditions solely determine
the statistical dynamics. Although the energy flux is zero on average for the large scales
of forced 3-D HIT, Alexakis & Brachet (2019) pointed out that the large-scale dynamics
depend on the details of forcing. Due to the nonlinear interactions, there are transient
energy transfers between the large and small scales. Here, the small scales include the
forcing, inertial-range and dissipation scales. Therefore, the spectra quantitatively depart
from those predicted by the absolute equilibrium.

In the free-decaying turbulence, ‘Saffman turbulence’ (Saffman 1967) predicts a similar
spectrum, which, however, has different mechanisms from those of the forced turbulence
(Batchelor & Proudman 1956; Davidson 2015). In the forced turbulence, averages over
statistically steady states are considered and the large scales interact with small scales.
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In contrast, the flow is transient in the free-decaying turbulence and the forcing effect is
absent.

An alternative way to distinguish different scales is to consider the separation space
(Davidson & Pearson 2005). This article focuses on the statistics of velocity structure
functions at separations larger than the forcing scale. Gorce & Falcon (2022) studied
the second- and third-order structure functions and found that they are independent of
separation r of two measured points, which we believe is a result of low resolution.
This article shows that the probability density functions (p.d.f.s) of velocity difference
at large separations are close to, but deviate from, the Gaussian distribution. This
deviation is measured by the p.d.f.s’ non-zero odd part, for which we propose a universal
separate-variable form by normalizing the velocity difference using the combination of
the downscale energy flux rate ε and the forcing wavenumber kf . This is a conjugate
of Kolmogorov’s theory (Kolmogorov 1941), where the invariant velocity difference
p.d.f. in the inertial range is independent of the forcing scale and is obtained after
normalizing the velocity by (εr)1/3. Using the separate-variable-form p.d.f. and the exact
expressions for the third-order structure functions, we calculate the analytical expressions
for the odd-order structure functions, whose magnitudes’ slow decay in the limit of large
separation implies a strong interaction between large- and small-scale structures.

2. Theory

We study the forced 3-D incompressible Navier–Stokes equations

∂u
∂t

+ u · ∇u = −∇p + ν∇2u + F , (2.1a)

∇ · u = 0, (2.1b)

where p is the pressure, ν is the viscosity and F is the external forcing.
From the KHM equation (Frisch 1995), we have the relation between the longitudinal

third-order structure function and energy injection rate in statistically steady 3-D
homogeneous isotropic turbulence:

1
r2

d
dr

(
1
r

d
dr

(
r4〈δu3

L〉
))

= −6〈F · u′ + F ′ · u〉. (2.2)

Here, the external forcing is delta-correlated in time. Since the divergent part of F is
absorbed by the fluid pressure, we assume ∇ · F = 0. So the power input term is known
a priori, i.e. 〈F · u′ + F ′ · u〉 = 2〈F · F ′〉 (Bernard 1999; Srinivasan & Young 2012; Xie
& Bühler 2018). Since we focus on the dynamics for scales larger than the forcing scale,
let us assume that the forcing effect is confined in the displacement space, i.e. there exists
a finite scale rc < ∞ such that the right-hand side of (2.2) equals 0 when r > rc, or the
forcing effect decays fast enough, e.g. the right-hand side of (2.2) decays exponentially,
then in the limit of large displacement, (2.2) gives

〈δu3
L〉 ∼ r−2, (2.3)

which is a universal scaling.
The neglect of forcing impact on the scales larger than the forcing scale is similar to the

calculation of the third-order structure function in the energy inertial inverse-cascading
range. In two-dimensional turbulence, due to the upscale energy flux, (2.2) contains an
extra term, the large-scale damping (Xie & Bühler 2018) or energy temporal increasing
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(Lindborg 1999), to dominate over the forcing effect. However, in our current 3-D
turbulence scenario, the forward energy cascade prevents such a term. So, we seek a
scenario where the forcing decays fast enough in the displacement space to avoid the
impact of specific forcing forms and focus on the property of the Navier–Stokes equation.
The choice of locality is stronger than the asymptotic locality, which has a power-function
decay (Eyink 2005).

Thus, we introduce the type-I forcing, which decays exponentially, i.e.

〈F · F ′〉 ∼ exp(−(rkf )
2/4). (2.4)

From dimensional analysis, the longitudinal third-order structure can be expressed as

〈δu3
L〉 = ε

kf
g(kf r). (2.5)

Substituting (2.4) into (2.2), the type-I forcing leads to (Xie & Bühler 2019)

gI(z) = −12
√

π(z2 − 6)erf(z/2) + 6z exp(−z2/4)

z4 , (2.6)

and in the large-scale limit, r → ∞, we obtain

〈δu3
L〉I → −12

√
π

ε

k3
f r2

, (2.7)

which is consistent with (2.3).
Considering that the strongly localized forcing in the displacement space is not

always realized, e.g. the delta-forcing in the spectral space is usually used in numerical
simulations, we discuss the structure functions in the spectral space. Noting that by using
a Fourier transform, we can also express the right-hand side of (2.2) with the spectral
energy injection rate ε(k) as

− 12
∫ ∞

0
dk

ε(k)
kr

sin(kr), (2.8)

the confined forcing effect in the displacement space also implies a constraint of ε(k).
Under the constraint of a finite total energy injection rate, an extreme case is associated
with a delta concentrated energy injection rate, ε(k) = εδ(k − kf ). Here, ε(k) is not an
integrable function but is understood as a Dirac measure. So we introduce the type-II
forcing with energy injected at a spherical shell, i.e. |k| = kf with k the wavenumber
vector. Now, solving (2.2), we obtain

gII(z) = −12
−z2 sin(z) − 3z cos(z) + 3 sin(z)

z4 , (2.9)

and it presents a r−2 envelope for 〈δu3
L〉 in the limit of large displacement:

〈δu3
L〉II → 12

ε

k3
f r2

sin(kf r). (2.10)

It should be noted that while the type-II forcing is local in spectral space, the corresponding
forcing correlation follows 〈F · F ′〉 ∼ sin(Kf r)/r, whose magnitude decays as a power
function. So it is not strongly localized in the displacement space, but asymptotic local.
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2.1. Expressions of p.d.f. and high-odd-order structure functions
In the first case, while the forcing decays exponentially with separation r, the third-order
structure function still decays slowly as r−2, suggesting strong interactions between forcing
and large scales. Since the large and forcing scales are well coupled, we hypothesize
that the forcing mechanism dominates the dynamics of the no-flux regime (large scales).
Therefore, the odd part of the probability distribution of velocity difference at large
separations has a separate-variable form where the velocity difference is normalized by
the combination of characteristic wavenumber kf and energy injection rate ε:

Podd
(
δuL, ε, kf , r

) = P0

(
δuL/

(
ε/kf

)1/3
)

g(kf r). (2.11)

This expression is quite remarkable as a conjugate of Kolmogorov’s theory, where
the inertial-range p.d.f. of velocity difference is normalized using displacement as a
characteristic spatial scale following δuL/(εr)1/3.

Thus, in the no-flux range, the odd-order structure functions are obtained from a direct
integration using (2.11):

〈δun
L〉 =

∫
δun

LPodd(δuL, ε, kf , r) dδuL = Cn

(
ε

kf

)n/3

g(kf r), (2.12)

where

Cn =
∫

znP0(z) dz, (2.13)

n is an odd integer, and g(kf r) is universal and can be obtained from the already calculated
analytical third-order structure function expressions (cf. (2.6) and (2.9)).

In the next section, we numerically justify the expressions of the third-order structure
function and the conjecture on the separate-variable form of odd-part p.d.f. (2.11) and high
odd-order structure function expressions (2.12).

3. Numerical results

We employ a direct numerical simulation (DNS) using a pseudo-spectral method to test
theoretical results. The Navier–Stokes equations are solved using the pseudo-spectral
algorithm in a cubic box with periodic boundary conditions. The domain size and
resolution are L = 2π and N3 = 5123, respectively. We use a 2/3 dealiasing and an
eighth-order hyper-viscosity for dissipation (Borue & Orszag 1996). This algorithm
explicitly solves the linear viscous term and uses the Adams–Bashforth method for the
nonlinear term (cf. Chen & Shan 1992).

We employ type-I (exponential) and type-II (spherical shell) forcings with kf = 20 to
an initial weak, random field and collect data in statistically steady states. As suggested by
Alexakis & Brachet (2019), we also performed a simulation where forcing is added on six
modes: (±kf , 0, 0), (0, ±kf , 0), (0, 0, ±kf ) to generate a k2 spectrum at large scales. In this
case, the forcing effect on the dynamics of large scales is weaker compared with type-II
forcing. To justify the odd-order structure function expression (2.12), we also employed
simulations with different energy injection rates ε of the type-II (spherical shell) forcing.

Figure 1(a,c) shows the energy spectrum E(k) and the energy flux across scales Π(k).
For scales smaller than the forcing scale (k/kf > 1), an inertial range associated with a
forward energy cascade and a k−5/3 energy spectrum is observed, which are consistent
with Kolmogorov’s theory. The averaged energy flux is zero for the scales larger than
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Figure 1. (a,c) Normalized energy flux Π(k)/ε with inset the energy spectrum E(k). (b,d) P.d.f.s of the
normalized fluid velocity fluctuations P(u/〈u2〉1/2) of all modes (blue) and large-scale modes (orange). The
dashed black line denotes the Gaussian distribution with inset the corresponding kurtosis. Panels (a,b) and
(c,d) represent the exponential (type-I) and spherical shell (type-II) forcing, respectively.

the forcing scale (k/kf < 1), referred to as the no-flux range. The energy spectra scale
as k3/2 and k1/2 for the two forcing types, respectively. These apparent deviations from
the k2 spectrum of the absolute equilibrium state are related to the nonlinear interactions
between large scales and forcing scale, which are also observed and explained by Alexakis
& Brachet (2019).

We obtain the velocity fluctuations of large-scale modes by applying a spectral low-pass
filter, which sets the modes with k > kf to zero. In figures 1(a) and 1(c), p.d.f.s of the
normalized velocity fluctuations Pu(u/〈u2〉1/2) of large-scale modes are shown to be close
to Gaussian with kurtosis near 3.

We check in figure 2 that the theoretical expressions (2.5), (2.6) and (2.9) well capture
the longitudinal third-order structure function 〈δu3

L〉 obtained from DNS in the inertial
range, forcing scale and the no-flux range (large scales). In the inertial range, 〈δu3

L〉 scales
as r, consistent with Kolmogorov’s theory. In the no-flux range, r > lf with lf = π/kf

the forcing scale, as r → ∞, the envelope of 〈δu3
L〉 scales as r−2. Since we employed

a triple periodic boundary condition, the theoretical and numerical results collapse to a
range smaller than the domain size.

In figure 3, we justify the decay rate with data from numerical simulations with six-mode
forcing. In the no-flux range of figure 3, the spectrum has a k2 scaling, consistent with the
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Figure 2. Theoretical solution (black) and results from DNS (blue) for the longitudinal third-order structure
function 〈δu3

L〉. (a) Exponential (type-I) forcing and (b) spherical shell (type-II) forcing. Solid lines represent
the positive values and dashed lines represent the absolute value of the negative values.
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Figure 3. Results for forcing on six modes: (±kf , 0, 0), (0, ±kf , 0), (0, 0, ±kf ). (a) Spectra and energy flux.
(b) Third-order longitudinal structure function. Solid lines represent the positive values and dashed lines
represent the absolute value of the negative values.

absolute equilibrium. The longitudinal structure function, however, decays slowly as r−2,
the same as the other two forcing methods.

In figure 4, we present the p.d.f. of the normalized longitudinal velocity difference
P(δuL/〈δu2

L〉1/2) with separations r = 0.37, 0.54 and 0.70, which correspond to the local
extrema of the third-order structure function expression divided by the decaying rate r−2

(cf. (2.10)) and are larger than the forcing scale rf = π/kf ≈ 0.16. The observed p.d.f.s are
close to Gaussian distributions and we quantify the small departure from Gaussian using
the odd parts of the p.d.f.s, which are shown in figure 5.

We justify the separate-of-variable form of the p.d.f. (2.11) in the insets of figure 5.
When the p.d.f.s are normalized by g(kf r), the curves collapse well, suggesting a universal
P0. For the no-flux range (large scales), g(kf r) ∼ r−2 for turbulence driven by type-I
forcing. The r-dependence of Podd representing the forcing effect, along with the universal
of P0, indicates that the forcing dominates the dynamics of large scales. Thus, even though
the non-Gaussian odd-part p.d.f. of the longitudinal velocity difference, Podd, is small, its
slower decay rate than that of the forcing effect implies a strong interaction between large
and small scales.

In figure 6, we justify the odd-order structure function expression (2.12) up to order
11 and find that Cn ≈ −12cn−3, with c = 7 and c = 6.6 for the two forcing types,
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Figure 7. Normalized high-odd-order structure functions in numerical simulations with type-II forcing and
varying energy injection rates.

respectively. The convergence of the high-order structure functions is shown in the
Appendix. This expression is further justified by the collapse of structure functions with
different energy injection rates ε using the type-II forcing in figure 7.

4. Summary and discussion

In summary, we study the large-scale statistics of the forced 3-D homogeneous isotropic
turbulence in the real separation space and find that the p.d.f.s of the longitudinal velocity
difference are close to, but depart from, a Gaussian distribution. We measure this departure
by the odd-part p.d.f.s. From the argument that large scales and forcing scale are well
coupled, the large-scale dynamics (r > rf ) are dominated by the forcing mechanism,
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where the odd-part p.d.f. of velocity difference Podd for large separations can be written
to a separate-variable form by separating the r-dependence, which leads to a universal
r-dependence for odd-order structure functions. Even though the odd part of the p.d.f. has
a smaller magnitude than the even part, the analytical solutions of the third-order structure
function calculated from the KHM equation prove that the odd-part p.d.f. is non-zero.
Also, when the forcing is localized in the spatial displacement space, e.g. exponentially
decays as r → ∞, the odd-order structure functions decay slowly following a power-law
r−2, implying that the long-range interaction between large and small scales is strong. Here
we consider a localization that is more strict than the asymptotic locality which is used to
study local energy transfer (cf. Eyink 2005).

Interestingly, this large-scale regime with a characteristic scale given by the forcing scale
is conjugate to the inertial range of Kolmogorov’s theory, where the characteristic scale is
the separation. This discovery provides a more comprehensive understanding of turbulence
because previous turbulence theory focuses on the inertial range, which cannot exist solely.
Additionally, we need an understanding of dynamics at scales larger than the forcing scale.
In free-decaying turbulence, when r → ∞, the longitudinal third-order structure function
decays as r−4 (Chapter 7 in Monin & Yaglom 1975; Hosking & Schekochihin 2023), which
is weaker than the present forced turbulence situation. In our formulation, the forcing
impact manifests itself by normalizing the velocity structure function using the energy
injection rate and forcing scale, which is missing in the decaying turbulence.

An interesting implication is that if we have an observation of 3-D turbulence which
cannot resolve the forcing scale, we can still know if there is unresolved energy
injection, which could be a foundation for turbulence super-resolution. This implication
is reasonable: even though there is no averaged upscale energy flux, the large-scale field
needs to adjust accordingly to reach a statistically steady state with a forward cascade.
From another perspective, if the 3-D turbulence is driven from an initially zero state, a
transient energy flux to large scales must exist before reaching the statistically steady state,
which links the small and large scales through energy injection and is remembered by the
statistically steady state.
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Appendix. Convergence of the p.d.f. of the normalized longitudinal velocity
difference

The p.d.f.s of the normalized longitudinal velocity difference P(δuL/〈δu2
L〉1/2) are well

resolved as shown in figure 8 for the exponential (type-I) forcing and figure 9 for the
spherical shell (type-II) forcing.
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L〉1/2) multiplied by δun

L/〈δu2
L〉n/2 (n = 2, 3, 4, 5, 6, 7, 8, 9, 10, 11) at different scales for

the exponential (type-I) forcing.

984 A71-11

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

24
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.247


M. Ding, J.-H. Xie and J. Wang

–5 0 5
0

0.05

0.10

0.15

0.20

0.25

0.30

–5 0 5
–0.5

0

0.5

–5 0 5
0

0.2

0.4

0.6

0.8

1.0

–5 0 5
–2

–1

0

1

2

–5 0 5
0

1

2

3

4

5

–5 0 5
–15

–10

–5

0

5

10

15

–5 0 5
0

5

10

15

20

25

30

35

–5 0 5
–100

–50

0

50

100

–5 0 5
0

50

100

150

200

250

300

–5 0 5
–1000

–500

0

500

1000

δu
L1
0
/
〈δu

2 L〉1
0
/2
P

δu
L8
/
〈δu

2 L〉8
/2
P

δu
L9
/
〈δu

2 L〉9
/2
P

δu
L6
/
〈δu

2 L〉6
/2
P

δu
L7
/
〈δu

2 L〉7
/2
P

δu
L4
/
〈δu

2 L〉4
/2
P

δu
L5
/
〈δu

2 L〉5
/2
P

δu
L2
/
〈δu

2 L〉P

δu
L3
/
〈δu

2 L〉3
/2
P

δu
L1
1
/
〈δu

2 L〉1
1
/2
P

δuL/〈δu2
L〉1/2 δuL/〈δu2

L〉1/2

r = 0.37
r = 0.54
r = 0.70

(a) (b)

(c)

(e)

(d )

( f )

(g) (h)

(i) ( j)

Figure 9. P(δuL/〈δu2
L〉1/2) multiplied by δun

L/〈δu2
L〉n/2 (n = 2, 3, 4, 5, 6, 7, 8, 9, 10, 11) at different scales for

the spherical shell (type-II) forcing.
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