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Comprehensive coherent structures around a surface-mounted low aspect ratio square
cylinder in uniform flow with an oblique angle of 45◦ were investigated for
cylinder-width-based Reynolds numbers of 3000 and 10 000 by direct numerical
simulation based on a topology-confined mesh refinement framework. High-resolution
simulations and the critical-point concept were scrutinized to reveal for the first time
the reasonable and compatible topologies of flow separation and complete near-wall
structures, due to their extensive impact on various engineering applications. Large-scale
horseshoe vortices are observed at two notable foci in the viscous sublayer. Within this
layer, a wall-parallel jet is formed by downflow intruding into the bottom surface at the
half-saddle point, then deflecting in the upstream direction and finally penetrating the
bottom surface until the half-saddle point. A pair of conical vortices on the cylinder’s
top surface switch themselves on two sides of the square cylinder, where the switching
frequency is identical with that of the sway of the side shear layer. The undulation of the
Kelvin–Helmholtz instability is identified in the instantaneous development of a conical
vortex and side shear layer, where the scaling of the ratio of the Kelvin–Helmholtz and
von Kármán frequencies follows the power-law relation obtained by Lander et al. (J. Fluid
Mech., vol. 849, 2018, pp. 1096–1119). Large-scale arch-shaped vortex is often detected in
the intermediate wake region of a square cylinder, involving two interconnected portions,
such as the leg portion separated from leeward surfaces and head portion rolled up from
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the top surface. The leg portion of the arch-shaped vortex was rooted by two foci near the
bottom-surface plane.

Key words: turbulence simulation, separated flows, shear layers

1. Introduction

Near-wall coherent structures are occasionally formed around the surface-mounted square
cylinder subjected to oblique inflow (Thomas & Williams 1999; Ono, Tamura & Kataoka
2008); and regularly encountered in various engineering applications (building Cao et al.
2022, vehicles Zhang et al. 2022, aircraft Morris & Williamson 2020, high-speed trains
Li et al. 2021 and rough wall-bounded turbulent flow Nugroho, Hutchins & Monty 2013;
Chung et al. 2021). These structures include conical, horseshoe, arch-shaped vortices and
Kelvin–Helmholtz instability because of the nonlinear interaction between the turbulent
boundary layer and the obstacle. While severe structural damage and failure caused
by the conical vortex were early reported and studied in civil engineering (Ginger &
Letchford 1993), the comprehensive study of those vortices and their interference to the
reattachment and separation regions on obstacle’s surfaces has seldomly been conducted.
For simplicity, the oblique flow around surface-mounted square cylinder is considered
as the typical idealization for capturing those vortex structures (Kawai & Nishimura
1996; Kawai 1997, 2002). In this paper, the characteristics of turbulent oblique flow
past a surface-mounted square cylinder, including the mechanism of near-wall coherent
vortex structures, their interference and spectral analysis are numerically carried out for
comprehensive understanding of the underlying fluid mechanics.

Figure 1(a) shows the schematic plot of coherent structures attached to a flat roof
(conical vortex, Kelvin–Helmholtz instability), rear surface (arch-shaped vortex) and the
ground (horseshoe vortex) when the turbulent oblique flow attacks the square cylinder
roof. The cores of the conical and arch-shaped vortices are strongly correlated with
the formation of Kelvin–Helmholtz (KH) and shear layer instabilities, respectively. As
shown in figure 1(b), a pair of conical vortices occasionally evolves on the top surface,
inducing the strong negative pressure suction along the square cylinder’s windward edges.
This pressure suction causes the switching of the conical vortices, producing unequal
vortex cores of conical vortices at the square cylinder sides (shown in figure 1b i,iii).
In addition, the suction also induces the flapping of the KH instability (shown in
figure 1b ii,iv), thus interfering with the asymmetry of the arch-shaped vortex (shown
in figure 1a). As listed in table 1, previous research ranges from semi-empirical theory,
wind-tunnel experiments to large-eddy simulation; where the flow characteristics are
classified into a relationship between conical vortex and negative pressure suction, effect
of incident turbulent inflow and parapets on the pressure fluctuation and visualization of
vortex structures. For the study related to vortex-suction correlation, Banks and Meroney
(Banks & Meroney 2001a,b,c) utilized the quasi-steady theory to model the vortex flow
mechanism to connect the increase in suction towards the roof corner. While Banks
et al. (2000) performed the mean position and size of the corner vortices to prove no
relationship between cross-stream vortex size and suction, the strong association between
large peak suction and large conical vortex was reported by many works (Kind 1986;
Mehta et al. 1992; Ginger & Letchford 1993; Lin, Surry & Tieleman 1995; Kawai 1997,
2002; Wu & Sarkar 2006; Richards & Hoxey 2008; Kozmar 2020). Two spiral cores
of conical vortices, developing from the roof corner, were observed by these authors.
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DNS of 45◦ oblique flow past surface-mounted square cylinder
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Figure 1. Illustration of coherent structures developed behind the surface-mounted square cylinder;
(a) three-dimensional view; (b) the switching of the conical vortex and the flapping of the KH instability.

They alternately increase and decrease in size and vortex strengths, inducing the strong
negative pressure fluctuation.

For the effect of incident turbulent inflow, Kawai (1997, 2002) observed that the strength
of conical vortices in smooth inflow is stronger than that in turbulent inflow. Also, the
inclined angle of the conical vortex core to the windward edges in smooth inflow is larger
than that in turbulent inflow. Otherwise, he also found that the strong conical vortex starts
to form when the turbulent inflow approaches the roof at the angle of attack of α = 25◦ to
the windward edges. While Wu et al. (2001a,b) pointed out the strong correlation of the
vertical component of turbulent inflow with negative pressure suction, Castro & Robins
(1977) elucidated that the turbulence inflow addition suppresses the strength of the conical
vortex, thus reducing the streamwise velocity component. Marwood & Wood (1997)
investigated thoroughly the effect of lateral and vertical component turbulence on the roof
pressure beneath conical vortices. They pointed out that the lateral wind component with
large excursions causes the extremes in pressure.

For the pressure fluctuation observed on the roof conner, it is clarified that the switching
phenomenon of the conical vortex induces the extremely negative pressure fluctuation
(Kind 1986; He et al. 2007; Banks 2013). Marwood & Wood (1997) indicated that the
instantaneous variation of the position of the conical vortex core significantly alters the
pressure fluctuation. In particular, the extremely low pressure fluctuation occurs when the
core is furthest from the windward edge and highest above the roof surface. Nishimura &
Kawai (2010) investigated the connection and interference between the switching conical
vortex and wake vortex by adding a splitter plate onto the roof and in the wake. They
found that the switching of the conical vortex disappeared when a splitter plate set in the
wake. Hence, it is concluded that the wake vortex controls the conical vortex switching.
Kawai & Nishimura (1996) pointed out that the spiral rotation around the conical vortex
core and its switching remarkably cause the travelling-wave-type suction fluctuations at
the high and low frequency, respectively. Furthermore, the parapet configurations attached
to the roof edge also have a significant impact on the high peak local suction (Baskaran &
Stathopoulos 1988; Bienkiewicz & Sun 1992).

While the pressure fluctuation on the top surface of the square cylinder is largely
determined by the inlet turbulence intensity, parapet configuration, type of boundary
layer and its thickness, the aspect ratio (AR) of the cylinder significantly alters the
near-wake large-scale coherent structures (Sakamoto & Arie 1983; Kawamura et al. 1984;
Okamoto & Sunabashiri 1992; Sumner, Heseltine & Dansereau 2004). Pattenden, Turnock
& Zhang (2005) found that the antisymmetrical Kármán and tip vortices transformed into
an arch-shaped vortex as long as the AR is less than a critical value of (h/w)cr = 2 − 6
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(where h and w are the height and width of the square cylinder, respectively), depending
on the boundary layer thickness and inflow turbulence intensity. While the intermittent
occurrence of Kármán and arch-shaped vortices was observed in the near wake of the
cylinder at AR ≈ (h/w)cr, an alternate Kármán vortex occurs along the square cylinder
at AR > (h/w)cr (Okamoto & Sunabashiri 1992). Hwang & Yang (2004), Yakhot, Liu
& Nikitin (2006) and Diaz-Daniel, Laizet & Vassilicos (2017) found only hairpin-like
vortices in the wake of small AR square cylinders, often generated at low Reynolds
numbers. These studies found that destabilizing the shear layer that detached from
the square cylinder’s top leading edge caused hairpin-like structures. Hearst, Gomit
& Ganapathisubramani (2016) found that arch-shaped and tip vortices only apply to
time-averaged flow in a wall-mounted cube (AR = 1), whereas instantaneous wake
structures, such as conical and KH vortices, are more complex and three-dimensional,
causing highly fluctuating pressure suction on the top surface of a square cylinder
(AR = 0.5) (Kawai & Nishimura 1996; Thomas & Williams 1999; Kawai, Okuda &
Ohashi 2012). In addition, the instantaneous horseshoe and alternate Kármán vortices have
not been reported in the literature for a square cylinder of AR < 2 both experimentally and
numerically.

Although the aforementioned studies have been conducted for many years using
quasi-steady theory and wind-tunnel experiments, large-eddy simulations were rarely
used to understand the detailed mechanism and characteristics of the near and far wake
structures. A few studies have used large-eddy simulation to gain a thorough understanding
of the conical vortex. He & Song (1997) resolved the three-dimensional roof corner
vortex, which produces large suction pressure on the roof surface, resulting in house
roof damage. Thomas & Williams (1999) successfully captured the three-dimensional
near-wall and wake structures, including conical and KH vortices. In particular, the conical
vortex dynamics, primary unsteady shedding of KH instability in the near wake, and the
formation of a two-cell swirl pattern in the far wake, is investigated. Ono et al. (2008)
thoroughly investigated the switching conical vortex and its spiral motion. While the
turbulence inflow was used by He & Song (1997), the uniform and turbulent boundary
layer inflows are utilized in the works of Thomas & Williams (1999) and Ono et al. (2008).
It was pointed out that the coherent structures were well captured with and without the
effect of the turbulent boundary layer except for the magnitude of the negative pressure
peak near the suction edges.

To the best of the authors’ knowledge, the previous studies have been mainly performed
for the effect of turbulent inflow and appearance of a conical vortex on the extremely
negative pressure suction and fluctuation, while the comprehensive study of near-wall
coherent structures, including KH and shear layer instability, horseshoe, arch-shaped and
Kármán vortices, has not taken place. Particularly, three unclear points in the literature
motivate this study, despite many attempts to describe the wake coherent structures
of the square cylinder in oblique flow. The first is the incomplete identification of
instantaneous near-wall structures related to horseshoe, arch-shaped, KH and Kármán
vortices and their associations with the existence of a conical vortex and separated shear
layer at AR < 2. The second is the previously weak visualization techniques (as listed
in table 1) to capture these vortex structures. Therefore, taking the advantage of present
direct numerical simulation (only large-eddy simulation (LES) performed in previous
works), several advanced methods based on spectral analysis, vortex identifications and
the critical-point concept are proposed in the present study; so that the small-to-large-scale
coherent structures are comprehensibly distinguished with both instantaneous and
time-averaged fields. The third is the effect of the Reynolds number on the near-wall and
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near-wake flow, specifically the vortex formation and its interference with the ground and
square cylinder surfaces to crucially alter the reattachment and separation regions.

Naturally, this paper’s originality is to deal with these three points. The uniform
flow of oblique angle α = 45◦ past a surface-mounted square cylinder of AR 0.5 is
comprehensively studied at moderate Reynolds numbers of 3000 and 10 000. Without loss
of generality, the uniform oblique inflow of 45◦ and the cylinder’s AR of 0.5 are followed
from the work of Ono et al. (2008) in the present study to sufficiently extract the complex
flow features. Richards & Hoxey (2008) reported that the time-mean pressure coefficient
on the separation corner of the square cylinder is lowest at α = 45◦. Although Saeedi,
LePoudre & Wang (2014) observed nearly independent flow structures for Reynolds
numbers greater than 2000, the effect of Reynolds number is significant in this study
for manifesting distinct near-wall coherent vortex structures due to the interference of
the approaching boundary layer and square cylinder’s vortices. As listed in the literature
review, the present Reynolds numbers are representative of higher Reynolds number cases
and range within the previous investigations in order to capture the dominant flow physics.

The rest of this paper is organized as follows. Section 2 expresses the governing
equations and numerical method based on the multiple-relaxation-time lattice Boltzmann
equation combined with topology-confined block refinement. The flow configurations and
computational set-up are discussed in § 3. Section 4 shows the results and discussions
before the major conclusions summarized in § 5.

2. Methodology

2.1. Multiple-relaxation-time lattice Boltzmann equation
This present study uses an indoor code based on the mesoscopic approach known
as the lattice Boltzmann equation (LBE). The LBE is a potential numerical method
used in computational fluid dynamics (CFD) for turbulence, heat, multi-component and
micro-flow applications (Succi 2015). In contrast to typical CFD approaches (Higuera &
Jiménez 1989; Higuera & Succi 1989; Higuera, Succi & Benzi 1989), the Navier–Stokes
equations (NSE) in the hydrodynamic limit are recovered using discretized particle
distribution functions Γ (Ladd & Verberg 2001). The LBE reconstructs the physical
dynamics of viscous flows. By using the Bhatnagar–Gross–Krook (BGK) collision model
(Chen & Doolen 1998), the LBE can be written as

Γi(x + ei�t, t + �t) = Γi(x, t) − ω(Γi(x, t) − Γ
eq

i (x, t)), (2.1)

where Γi, Γ
eq

i , x, ei, �t and ω = 1/τ are the discrete-velocity distribution function,
the local equilibrium distribution function, the corresponding physical location in space,
particle velocity in the ith direction, time streaming step and relaxation frequency with a
single relaxation time τ . A general LBE procedure is divided into collision and streaming.
While the collision process performs the right-hand side of (2.1), the streaming process
accomplishes the full (2.1). In the current work, the D3Q27 (27 discrete velocities in
3 dimensions) particle velocity model is used; because it has been demonstrated that
the LBE may meet the rotationally invariant flow condition in turbulence (Kang &
Hassan 2013; Suga et al. 2015). The expression for this discretized velocity set is

ei =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0, i = 0;
(±1, 0, 0), (0, ±1, 0), (0, 0, ±1)c, i = 1, 2, 3, 4, 5, 6;
(±1, ±1, 0), (±1, 0, ±1), (0, ±1, ±1)c, i = 7, 8, . . . , 17, 18;
(±1, ±1, ±1)c, i = 19, 20, . . . , 25, 26,

(2.2)
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here, c (= �x/�t) is taken as 1, where �x is the lattice spacing. For the D3Q27 model, the
second-order local equilibrium distribution function is parametrized by the local values of
density ρ and flow velocity u

Γ
eq

i (x, t) = ρwi

[
1 + ei · u

c2
s

+ (ei · u)2 − (cs|u|)2

2c4
s

]
, (2.3)

where w0 = 8/27, wi = 2/27 for i = 1 − 6, wi = 1/54 for i = 7 − 18, wi = 1/216 for
i = 19 − 26 and cs = c/

√
3 represents the lattice sound speed.

Using the Chapman–Enskog analysis, the kinematic viscosity ν associated with the
single relaxation time τ as a connection between the LBE and the NSE (Huang 2008),
ν = c2

s (τ − 0.5�t). As a result, the results obtained from LBE can reveal values in
macroscopic behaviour. However, the numerical stability of the BGK operator is limited
when the value of the kinematic viscosity is sufficiently small. This issue often occurs
in grid refinement attempts (discussed in the next section), cutting the single relaxation
time (Wang 2020). Based on the collision procedure (Lallemand & Luo 2000), the
multiple-relaxation-time (MRT) LBE is therefore performed to raise the free parameters of
the relaxation time. In particular, the particle population relaxes in moment space instead
of normal velocity space. Hence, (2.1) is replaced by

Γi(x + ei�t, t + �t) = Γi(x, t) − M−1S
[
mi(x, t) − meq

i (x, t)
]
�t, (2.4)

where M , S and mi are the transformation matrix, collision matrix and moment space for
distribution function Γ , respectively. In the current study, the matrices M and S are chosen
from the results of the study of Suga et al. (2015) for turbulent flow. In particular, S is a
27 × 27 diagonal matrix with s0−3 = 0, s4 = 1.54, s5−9 = 1/(0.5 + 3ν), s10−12 = 1.5,
s13−15 = 1.83, s16 = 1.4, s17 = 1.61, s18−22 = 1.98 and s23−26 = 1.74. The formulation
of transformation matrix M is established through the analysis of Dubois & Lallemand
(2011). A detailed performance of matrix M can be observed in Suga’s study. All processes
in the MRT method greatly improve the accuracy and stability of the single-relaxation-time
lattice Boltzmann model.

Finally, macroscopic flow quantities (mass density ρ, flow velocity u and intrinsic
average pressure p) in the LBE framework can be obtained from moments of the particle
distribution function

ρ(x, t) =
∑

i

Γi(x, t), ρu(x, t) =
∑

i

eiΓi(x, t), p(x, t) = ρ(x, t)c2
s . (2.5a–c)

2.2. Boundary condition for bounded flows
In order to define the presence of rigid bodies in the fluid field, the input geometry
uses the standard triangle language data, which provide the normal vector and vertex
coordinates of triangular facets, defining the body surface as shown in figure 2(a).
On the Cartesian mesh as depicted in figure 2(b), three types of cells are determined,
including solid cells xs, boundary cells xb and fluid cells xf . Initially, the type of fluid
cell is put in the full computational domain. The solid cells are then found using a fast
ray-triangle intersection algorithm proposed by Möller & Trumbore (2005). Specifically,
the exploration of solid cells is an inside/outside check of fluid cells with all triangular
facets based on the ray parameterization. Then, the boundary cells xb are the cells between
the fluid cell and the solid cell. Finally, figure 2(c) demonstrates the three cell types after
performing the ray-triangle intersection algorithm. At the boundary cell, the streaming
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Cell
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(a) (b) (c)

Fluid cell Cube
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Square cylin
derTriangle facet

n

xs

ei

xb

xf

d

Solid cell

Figure 2. Interpolated bounce-back boundary condition (a); topology-confined block refinement with three
levels (b); three partitions of solid cell, boundary cell and fluid cell (c).

process is performed to take into account the intentional neglect of lattice directions
prevented by solid cells. This omission is compensated by the interpolated bounce-back
(IBB) method (Bouzidi, Firdaouss & Lallemand 2001) that satisfies the flow behaviour
of second-order accuracy on the curved wall surface. The basic idea of the IBB method
is to store the information of the intersection point between particle velocity vector ei
and the triangle facet. Determining the point of intersection is also performed by the
ray-triangle intersection algorithm. According to Bouzidi et al. (2001), the reflection
of a distribution function is predicted by linear interpolation. The a priori unknown
bounced-back population is constructed from known populations at xb and xf as

Γī (xb, t + �t) =

⎧⎪⎪⎨
⎪⎪⎩

2qΓ +
i (xb, t) + (1 − 2q)Γ +

i
(
xf , t

)
, q ≤ 1

2
,

1
2q

Γ +
i (xb, t) + 2q − 1

2q
Γ +

ī
(xb, t) , q ≥ 1

2
,

(2.6)

where q is the distance ratio between the distance d measured from the boundary cell xb
to the intersection point and the magnitude of the discrete-velocity vector ei. As a result,
q = d/(|ei|�t) ∈ [0, 1] represents the reduced wall location information. Total fluid forces
acting on the three-dimensional rigid body’s surface (F (Fx, Fy, Fz)) are computed by the
momentum exchange method (Chen et al. 2013) on the boundary cell layer.

2.3. Topology-confined block refinement
Based on the block-structured grids of Duong et al. (2022), a framework of
topology-confined block refinement is developed, as shown in figure 2(b). The
computational domain is partitioned into areas of different grid sizes, called cube-shaped
blocks. This spatial difference is characterized by an indicator called refinement level l.
Therefore, the mesh system is constructed with the value l ranging from 0 to l = m − 1,
where m is the number of the expected refinement level. The refinement level l increases
from the confined flow region near the solid bodies to far-field regions. In each block,
the uniform Cartesian grid (cells) is used to store and solve the variables in the LBE.
The efficiency and robustness of the management of the informational communication
between refined and unrefined blocks are demonstrated in the numerical studies of
Kamatsuchi (2007) and Ishida, Takahashi & Nakahashi (2008). In each block, the index,
coordinates, spatial size, cell number, grid refinement level and neighbouring block
information are stored to provide detailed instructions within the cache environment for
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parallel computing. For parallelism, the block distribution on each grid refinement level is
performed by a load-balanced linear distribution algorithm based on the space-filling curve
theory (Bader 2012). This procedure is implemented with the message passing interface
technique, which is specially designed to function on parallel computing architectures.
After distributing block data to each node, independent workloads are numerically
performed by open multi-processing thread parallelization. Due to the space limitation,
the interested readers are referred to the work of Duong et al. (2022) for the detailed
algorithm of topology-confined block refinement.

3. Numerical set-up

The numerical set-up is schematically shown in figure 3. A model of the surface-mounted
square cylinder is shown in figure 3(a). The square cylinder width (w) is used to
normalize length scales and dimensions. The height of the square cylinder is h = 0.5w,
implying an AR of AR=h/w = 0.5, which is identically considered in previous numerical
and experimental studies (shown in table 1). Figure 3(b) shows the schematic of the
computational domain and the definition of the coordinate system. The axis origin is
located at the centre of the square cylinder’s bottom surface. The streamwise (x), spanwise
(y) and vertical (z) dimensions are illustrated in the schematic by the red, dark blue and
green arrows, respectively. The uniform free-stream velocity is set as U∞ at the inlet
boundary. The lateral and upper boundaries of the domain are set to free-slip boundary
conditions (Succi 2001; Falcucci et al. 2011). The outlet boundary was set as the open
boundary condition ∂u/∂x = 0. The no-slip boundary condition was applied on the bottom
surface of the square cylinder using the half-way bounce-back method (Ladd 1994). The
IBB method mentioned in § 2.2 is used to model the no-slip boundary condition on the
square cylinder’s surfaces.

The computational domain size is selected as Lup + Ldo = 20w, W = 15w and
H = 10w. The lateral length (W) was reported as at least 10w for the sufficient accuracy by
AIJ (2017). In this study, the current lateral length (15w) is larger than the recommended
value, thus ensuring the adequate lateral length of the computational domain. The present
vertical length of H = 10w is contemplated based on the fact that the blockage effect of the
top boundary on the separated shear layer developed above the top surface of the square
cylinder should be sufficiently small. Furthermore, in the case of the set-up of the turbulent
boundary layer at the inlet boundary, this vertical length should be adequately large to
retain the streamwise development of the boundary layer. Cao et al. (2022) proposed the
minimum height (10w) of the top boundary from the thickness of the turbulent boundary
layer (δ/y = 20.1). Therefore, in the present study, due to the set-up of uniform inflow
(no turbulent boundary layer at the inlet), the vertical length of 10w is sufficiently large to
capture the flow physics.

The spatial block distribution in the symmetry plane is shown in figure 3(c) while the
x–y half-plane on the bottom surface of the square cylinder of z/w = 0 and the y–z planes
are respectively shown in figure 3(d,e). The finer cell distribution is arranged in a confined
region where the boundary layer is developed. Figure 3(c) shows m = 4 levels where the
cell sizes of Δ, 2Δ, 4Δ and 8Δ represent levels l = 0, 1, 2, 3, respectively. The level l = 0
is set up based on the fact that the finest resolution region should cover the development
of the separated shear layers on the top and side surfaces of square cylinder. Hence, the
grid generation strategy is based on three steps, including selection of block level, the
dimensions of similar-level blocks in the computational domain, indication of uniform cell
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Figure 3. Schematic of the computational domain; (a) three-dimensional view of the flow configuration;
(b) set-up of the boundary condition enforcement; (c) symmetry plane view of the computational domain with
the representation of topology-confined block-based grid; (d) x–y half-plane view of the computational domain
with the representation of topology-confined block-based grid and the detailed cell distribution of confined
regions; (e) grid system in y–z planes of x/w = 0, 5 and 12.5.

size (the cells are uniformly distributed in three directions of the cubed block). The total
number of grids is computed as the multiplication between blocks and cells in one block.

In order to determine the minimum cell size, the thickness (δB) of the boundary layer
developed on the cylinder’s surfaces is calculated as δB = 5.5 × 0.5w/

√
Re0.5w based

on the work of White (2006). In the present work, the maximum Reynolds number is
Rew = U∞w/ν = 10 000, where ν is the kinematic viscosity. Five levels of grid refinement
are employed, where the maximum level of finest resolution (Δ = w/256 = 0.0039w –
the cell size) is confined to the square cylinder region. Therefore, the thickness of the
boundary layer is δB = 0.0388w, thus expanding approximately 10 cells in the normal
direction, which is identical to the resolution used in the work of Cao et al. (2022). In
other directions, the uniform cell size is applied as mentioned in § 2.3, indicating the
256 × 256 × 256 cells distributed in a 1w × 1w × 1w volume of the surface-mounted
square cylinder. The number of cells is also distributed for each cubic block, maintaining
the block/cell ratio of 1/256 = 0.0039 for three directions. This ratio is approximately
equivalent to the range of 0.00285–0.0033 investigated by Cao & Tamura (2020) and
Trias, Gorobets & Oliva (2015), where the 0.00285 and 0.0033 ratios are on the lateral
width and upper, lower and back walls of the square cylinder, respectively. Generally,
the present resolution is higher than that of most numerical simulations or experimental
measurements (PIV: particle image velocimetry) at the same Reynolds number, pointing
out the total of 210 million cells utilized in this study. The examination of sufficient cell
sizes is performed in § 3.1.
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3.1. Verification and validation
First, we investigate the uniform flow past a square cylinder of lateral length (L∗ =
L/w = 6) at the angle of attack α = 14◦ to determine the sufficient grid resolution.
The computational domain and the boundary conditions in this case are established
based on the study of Oka & Ishihara (2009). Reynolds number is pointed as 104; and
topology-confined block refinement is used to generate a 5-level block system. For the
space limitation, the computational domain is briefly described as (40w × 15w × 40w).
Here, we examine two different resolutions at the maximum level, including the coarse grid
(Δ = w/256 = 0.0039w) and the fine grid (Δ = w/400 = 0.0025w), which correspond to
approximately 210 and 330 million cells based on the above grid design (see figure 3),
respectively. The time step �t∗ = (�tU∞)/w is 5 × 10−4, which is approximately
equivalent to the time step of LES (Cao & Tamura 2020) and direct numerical simulation
(DNS) (Trias et al. 2015).

Before comparing the present numerical results with references, the sufficient
integration period of time for time-averaged values is investigated. The instantaneous,
mean and root-mean-square aerodynamic coefficients exhibit temporal variation with
normalized time of t∗ = tU∞/w, as shown in figure 4. The instantaneous drag and
lift coefficients obtained by the fine grid are plotted in figure 4(a) with t∗ ranging
from 0 to 1000. In figure 4(b), the mean drag in time is defined as C̄D(t∗) =
1/(t∗ − t∗start)

∫ t∗
t∗start

CD(t∗)dt∗, where t∗start is the initial time at which the statistical average
is calculated after the flow becomes statistically stationary (t∗start = 50 in the present work).
Root-mean-square drag in time is defined as C′

D(t∗) = 1/(t∗ − t∗start)
∫ t∗

t∗start
[CD(t∗) −

C̄D(t∗)]2dt∗. It is similar to mean and root-mean-square lift in time. To ensure clarity, the
statistical values are scaled by those computed from t∗start until the end time (denoted by
t∗end); hence, the integration period of time is determined as t∗end − t∗start. The statistical
values converged well from t∗end = 680 to t∗end = 1000 over the present simulation. In
particular, the small vortex C at t∗end = 1000 is captured better than that at t∗end = 500
in the streamline contours. Figure 4(c,d) shows the comparison of the present C̄p and
C′

p along the square cylinder surfaces with those of Oka & Ishihara (2009); Nishimura
& Taniike (2000). The results of t∗end = 1000 collapse the references better than those
of t∗end = 500. Therefore, the sufficient time-mean data are taken in the sampling range
of t∗ = [50, 1000], corresponding to approximately 95 Kármán vortex sheddings. The
quantities for the pressure are defined as follows:

p̄ = 1
N

N∑
1

p, C̄p = p̄ − p∞
0.5ρ∞U2∞

, C′
p =

√√√√ 1
N

N∑
1

(
Cp − C̄p

)2
, (3.1a–c)

where p, p∞, p̄, C̄p and C′
p are instantaneous pressure, reference pressure, time-mean

pressure, time-mean pressure coefficient and root-mean-square pressure coefficient,
respectively. Figure 5 shows the C̄p and C′

p comparison of the present results with those of
the references. As shown in figure 5(a,c), the C̄p distributions of the present results along
the cross-section of the square cylinder show a good agreement with those reported by
Nishimura & Taniike (2000) and Oka & Ishihara (2009). Along the BC surface the results
obtained by coarse and fine grids approach that of Oka & Ishihara (2009). As depicted
in figure 5(c,d), the present values of C′

p collapse those of Nishimura & Taniike (2000)
although the fine grid results show a better approach than the coarse results, especially
along the BC and CD surfaces. Figure 6 depicts the time-mean streamline contour of the
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Figure 4. Temporal and mean coefficients; (a) instantaneous drag and lift coefficients obtained by the fine grid
of Δ = w/400. The sampling range indicates the time range used for time-averaging quantities; (b) temporal
convergence of aerodynamic coefficients; (c,d) comparison of C̄p and C′

p along the square cylinder surfaces
with references (Nishimura & Taniike 2000; Oka & Ishihara 2009).

present results compared with those of the reference. As shown in the figure, the present
positions of vortex centres behind the rear surfaces (A and B) and near the lower surface
(C) agree well with those of the reference. The positions of vortex centres near the rear (E)
and upper (F) surfaces resolved by the coarse grid are almost identical to those resolved
by the fine grid; while the position of vortex centre (D) near the lower surface obtained
by the fine grid tends to move upstream along the lower surface from that obtained by the
coarse grid. For the comparison of hydrodynamic coefficients, the global hydrodynamic
coefficients are computed as follows:

C̄D = 1
N

N∑
1

Fx
1
2ρ∞U2∞w

, C̄L = 1
N

N∑
1

Fy
1
2ρ∞U2∞w

, St = fw
U∞

, (3.2a,b)

C′
D =

√√√√ 1
N

N∑
1

(
CD − C̄D

)2
, C′

L =
√√√√ 1

N

N∑
1

(
CL − C̄L

)2
, (3.3a,b)

where CL, CD, C̄L, C̄D, C′
L, C′

D and St are the instantaneous, time-mean and
root-mean-squared lift and drag coefficients, and the Strouhal number, respectively. Here,
N represents the number of data instants. Table 2 indicates that the present results
(time-averaged and root-mean-square values) obtained by the coarse and fine grids
generally agree well with those of Oka & Ishihara (2009) (approximately <5 %); while a
great scatter (>10 %) is found among the experimental data (Igarashi 1984; Nishimura &
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Figure 5. Comparison of the present results (with two different grids: coarse (Δ = w/256) and fine
(Δ = w/400)) with references in the case of uniform flow past square cylinder at the angle of attack of α = 14◦;
(a,c) the time-mean pressure coefficients; (b,d) the root-mean-square pressure coefficients.

Taniike 2000). Specifically, Nishimura & Taniike (2000) tested two cylinders with square
cylinder aspect ratios of ARsc = 8.3–16.7 (where the ARsc is defined as the ratio of the
spanwise length to the square cylinder width); and Igarashi (1984) performed the square
cylinder of ARsc = 3.75–10. The discrepancy is due to the sensitivity to the experimental
conditions, including ARsc, end-plate condition, Reynolds number, free-stream turbulent
intensity and blockage ratio. Therefore, the coarse grid is chosen for the rest of simulations
to not only minimize the computational cost but also retain sufficient numerical accuracy.

Second, we perform the simulation of uniform flow past a surface-mounted square
cylinder of AR=1 at Re = 10 000, and compare it with Castro & Robins (1977), using
the grid resolution of � = w/256. The computational domain is exactly identical to that
mentioned in § 3. The time step �t∗ is also selected as 5 × 10−4. The time-mean data
are taken in the sampling range of 200t∗, corresponding to approximately 20 Kármán
vortex sheddings. Figure 7 shows surface values of time-mean pressure coefficients, where
red-filled nodes and continuous black lines stand for the reference and present results,
respectively. As shown in the figure, at the corner edges, the present results deviate
from those of experiment because of the different Reynolds numbers. Generally, the
present results are in a good agreement with those of experiment. For the last validation,
the simulation of uniform flow past a surface-mounted square cylinder of AR = 0.5 is
performed at Re = 10 000. The set-up of the simulation is the same as the second one
except for the AR of the square cylinder. The present results are shown in figure 8 to
ensure the sufficient spatial and temporal resolutions based on the Kolmogorov length
and time scales. In turbulent flow analysis, the Kolmogorov length and time scales are
examined as dynamical parameters in space and time. According to Moin & Mahesh
(1998) and Li et al. (2020), the closeness between the smallest resolved length and time
scales and the Kolmogorov length and time scales determines the accuracy in resolving
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Ishihara et al.

Fine

Coarse

(c)

(b)

(a)

A

BC

A

BC

A

BC

D

EF

D

EF

Figure 6. Time-mean streamlines of uniform flow past square cylinder at the angle of attack of α = 14◦; (a) the
present result using coarse grid; (b) the present result using fine grid; (c) the reference result (Oka & Ishihara
2009).

the fluctuations of turbulent flow. To confirm the validity of numerical computation, the
present study investigated the ratio of the local grid size to the Kolmogorov length and
time scales for both time-mean and instantaneous data fields. Here, the Kolmogorov
length and time scales are respectively formulated as η = (ν3/ε)1/4 and τ = (ν/ε)1/2,
with ε = (ν/2)(∂u′

i/∂x∗
j + ∂u′

j/∂x∗
i )

2 denoting the dissipation rate of turbulent energy per

unit of cell volume, where u
′
i is the fluctuating velocity.

Figure 8(a) shows the schematic of two different planes of y/w = 0 and z/w = 0.25
to show the distribution of Δ/η in the regions near the square cylinder. A histogram
of the ratio of the local grid size to the Kolmogorov length scale for this region is
shown in figure 8(b). The results show that the maximum and time-mean values of these
are approximately 7.3 and 0.6, respectively. In other research, Yakhot et al. (2006) and
Saeedi et al. (2014) highlighted that the ratio of Δ/η should be less than 5 in the critical
regions containing the wakes behind the surface-mounted square cylinder at Re = 5610
and 12000, respectively. Furthermore, the study conducted by Cao et al. (2022) indicated
that most of the turbulent kinematic energy is dissipated on a scale of Δ/η = 10, which
was the constraint used by most previous DNSs. As shown in figure 8(b), the present grid
system has ensured that the ratio of Δ/η is maintained below 7.3. Both the time-mean
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Authors Technique ARsc C̄D C̄L St C′
D C′

L

Nishimura & Taniike (2000) Exp. 8.3–16.7 1.78 0.86 0.146 0.192 0.42
Igarashi (1984) Exp. 3.75–10 1.77 0.69 0.156 — —
Oka & Ishihara (2009) LES 1 1.60 0.96 — 0.312 0.638
Oka & Ishihara (2009) 6 1.69 0.82 0.156 0.223 0.504
Present coarse grid (w/256) LBE 6 1.67 0.85 0.151 0.225 0.51
Present fine grid (w/400) 6 1.71 0.79 0.152 0.22 0.50

Table 2. Comparison of time-mean hydrodynamic coefficients (C̄D, C̄L, St, C′
D and C′

D) between the present
results and previous research for the uniform flow past the square cylinder at an angle of attack of 14◦. The
effect of sampling ranges of t∗ ∈ [50, 1000] on these coefficients is shown corresponding to approximately 95
Kármán vortex sheddings.

1
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Figure 7. Surface values of time-mean pressure coefficients where red-filled nodes and continuous black
lines stand for the reference and present results, respectively.

(figure 8c) and instantaneous (figure 8d) contours of Δ/η scale fall into the required
range of Δ/η = 5 − 10 discussed by previous investigators. In particular, the Δ/η contour
shown in the time-mean field is smaller than 5, while the Δ/η contour greater than 5 in
the instantaneous field is only 0.3 %. Figure 9 shows a contour of the instantaneous and
time-mean ratios of the computing time step (�t∗) to the Kolmogorov time scale (τ ) for
the near-cylinder region. The results show that the maximum and time-mean ratios are
approximately 0.05 and 0.015, respectively. In other research, Li et al. (2020) highlighted
that the time-mean ratio of �t∗/τ should be less than 0.0205 to obtain the high-resolution
results. Furthermore, as expressed in figure 9(a), 99.8 % of the computational domain
shows the time-mean ratio of �t∗/τ < 0.02 while 0.2 % of the area confined to the
upstream edges of square cylinder shows a time-mean ratio of 0.02 ≤ �t∗/τ ≤ 0.05. For
the instantaneous ratio shown in figure 9(b), the ratio of 0.02 ≤ �t∗/τ ≤ 0.05 is confined
to the boundary layer and side shear layers. Therefore, our time step and grid size are
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Figure 8. (a) Schematic of the rectangular considered area is limited by the region of x/w = [−2, 6],
y/w = [−2.5, 2.5] and z/w = [0, 2]. (b) Histogram of the ratio between the local grid size
(Δ = 3

√
�x∗�y∗�z∗) and the Kolmogorov length scale (η), where the maximum and mean values of

these are approximately 7.3 and 0.6. (c,d) Time-mean and instantaneous distributions of the ratio in the
symmetry plane (y/w = 0) and x–y plane (z/w = 0.25), respectively.
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Figure 9. Contour of the ratio between the local time step (�t∗) and the Kolmogorov time scale (τ ), where the
maximum and mean values are approximately 0.05 and 0.015. (a,b) Depict the time-mean and instantaneous
distributions of the ratio in the symmetry plane (y/w = 0) and x–y plane (z/w = 0.25), respectively.
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sufficiently small in order to capture the turbulent fluctuation in the present numerical
simulations.

4. Results and discussions

This section focuses on the characteristics of instantaneous and time-mean coherent
structures generated by a square cylinder of AR = 0.5 in an oblique flow of 45◦ at moderate
Reynolds numbers of 3000 and 10 000 (based on w). Initially, the instantaneous fields
are introduced to classify the coherent structures into five types, including horseshoe,
hairpin, arch-shaped, conical, KH instability and Kármán vortices. Then, the spectrum
analysis is performed to distinguish these flow structures in the frequency domain. Lastly,
the time-mean fields are investigated, including the reconstruction of separated flow
topologies based on critical-point concepts, characteristics of time-mean structures and
Reynolds stress analysis.

4.1. Instantaneous field

4.1.1. Classification of instantaneous coherent structures
Figure 10 shows the instantaneous coherent structures developed behind the
surface-mounted square cylinder in an oblique flow of 45◦ at Re = 3000. Figure 10(a)
clearly visualizes the horseshoe, hairpin and KH instability vortices by visualizing the

contour of Q-criterion Q = 0.5(‖Ω∗2‖ − ‖S∗2‖), where S∗
ij = 0.5(∂u∗

i /∂x∗
j + ∂u∗

j /∂x∗
i )

and Ω∗
ij = 0.5(∂u∗

i /∂x∗
j − ∂u∗

j /∂x∗
i ). The horseshoe vortex is established in front of the

square cylinder near the bottom surface-cylinder junction region. The horseshoe vortex
formation is based on the fact that the shear development of the boundary layer from
the bottom surface produces the vertical pressure gradient in front of the square cylinder.
Hence, it causes the high momentum downflow stream towards the bottom surface; then
the major deflection of this wall occurs in the upstream direction, forming the horseshoe
vortex. In this study, the primary and secondary horseshoe vortices, observed due to the
strong upstream flow, are developing around the square cylinder’s junction region. The
relative distance of the primary horseshoe vortex to the frontal surface of the 45◦ square
cylinder is closer than that of the 0◦ square cylinder (Cao et al. 2022) and circular cylinder
(Eckerle & Langston 1987). That is because of the high favourable pressure gradient
caused by the 45◦-inclined front surfaces of the present square cylinder, generating the
strong suction to the horseshoe vortex. The primary and secondary vortices remain stable
at the distances of x/w = 3.5 and x/w = 1.9, respectively, thus indicating that the primary
vortex is stronger than the secondary one. The KH vortices of C-shape are detected
near the top and rear surfaces of the square cylinder. These vortices are formed due to
the instability (breakup) of the shear layers that is highly dependent on the viscosity.
Furthermore, it is interesting to note that the breakup of the secondary horseshoe vortex
generates a hairpin-shaped vortex at x/w = 2.2, including the hairpin tail (longitudinal
structure) and the hairpin head (lateral structure). The hairpin head rolls up the primary
horseshoe vortex as a result of the interaction between two counter-rotating vortex tubes
(primary and secondary horseshoe vortices). Otherwise, the hairpin vortex observed in
another downstream region is identical to that observed by Tufo et al. (1999).

Figure 10(b) shows the isovalues of Q = 10 represented by grey surfaces; and those of
kinetic energy of 0.5 ≤ E∗ = 0.5u∗2�x∗�y∗�z∗ ≤ 0.9 are represented by red surfaces.
Based on the kinetic energy contour, the formation of the arch-shaped vortex is captured
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Figure 10. Instantaneous coherent structures developed behind the surface-mounted square cylinder at
Re = 3000; (a) isovalues of Q = 10 represented by grey surfaces; (b) isovalues of Q = 10 represented by grey
surfaces while those of kinetic energy 0.5 ≤ E∗ = 0.5u∗2�x∗�y∗�z∗ ≤ 0.9 are represented by red surfaces;
(c) isovalues of Q = 10 are represented by grey surfaces while positive and negative isovalues of the helicity
H∗ = u∗ · ω∗ = ±10 are represented by yellow and blue surfaces, respectively.
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at the distance x/w = 1.5 downstream. Initially, the C-shape KH instability vortices are
asymmetrically formed near two rear surfaces of the square cylinder and develop their
size downstream. Then, when the size of two C-shape vortices is sufficiently large,
the two vortices combine into one arch-shaped vortex. Hence, the leg and arch parts
of the vortex are formed by the instability of the shear layer separated from the rear
and top surfaces of the square cylinder, respectively. Time-averaged experimental data
(Ahmed, Ramm & Faltin 1984; Hucho & Sovran 1993; Lienhart & Becker 2003; Liu
et al. 2021) reported C-shaped vortices attached to two side edges of the Ahmed model
in oblique flow of α = 30◦. However, for α > 30◦, the wake development of C-shaped
vortices was not observed. One significant observation in the present result is that, at
α = 45◦, the C-shaped KH vortices remain at some distance downstream and then develop
into a three-dimensional (3-D) arch-shaped vortex before transforming into complex 3-D
structures in the intermediate wake. Otherwise, the current work clearly visualizes the
M-shaped instantaneous arch vortex, which is similar to those found by Wang & Zhou
(2009) and Zhu et al. (2017) in the case of a circular cylinder. Furthermore, in the context of
a square cylinder, the current 3-D arch-shaped vortex has a more distinct shape compared
with the 2-D arch-shaped vortex discovered by Kawai et al. (2012).

Figure 10(c) shows isovalues of Q = 10 represented by grey surfaces; and the positive
and negative isovalues of the helicity H∗ = u∗ · ω∗ = ±10 are represented by yellow and
blue surfaces, respectively. The yellow and blue surfaces also signify the clockwise and
counterclockwise rotations of the vortex structures, respectively. As shown in the figure,
the counter-rotating conical vortex tubes are observed above the top surface of the square
cylinder. The clockwise-rotating conical vortex (yellow surface) shows its broken part
because of the KH instability. He et al. (2007) and Banks et al. (2000) utilized visualization
techniques to capture the instantaneous position of conical vortex cores in the selected
cross-sections along the streamwise direction while Marwood & Wood (1997), Kawai
(1997) and Kawai (2002) employed the velocity vector plot technique to visualize the
time-mean core and reattachment points. The latest numerical model by Ono et al. (2008)
for a square cylinder in 45◦ oblique flow used particle trace, velocity vector and streamwise
vorticity techniques to extract the instantaneous core. One important observation in the
present result is that the contour of helicity can clearly detect not only the instantaneous
core but also the vortex rotation of the conical vortex. Moreover, the helicity contour
reconfirms that the primary and secondary horseshoe vortices on each lateral side are
counter-rotating in the downstream region (only co-rotating in the near frontal surface);
and the hairpin vortex tail and head are also counter-rotating. In the region behind the rear
surfaces of the square cylinder, the vortex structures are three-dimensional.

Figure 11 shows the time histories of the pressure coefficients at four probe points
located near the upstream edges of the square cylinder at Re = 10 000. The pressure values
recorded at probe points a and c are nearly the same, similarly at probe points b and d.
This means that the conical vortex develops its size at the corner of the cylinder’s top
surface. The switching of the conical vortex occurs at t∗ = 115, 135 and 152, inducing a
high jump in the local pressure coefficient ranging from −1.2 to −0.5. This observation
is generally similar to that observed by the numerical method of Ono et al. (2008) and
experiments of Kawai (2002) and Nishimura & Kawai (2010). The only difference is that
the asymmetric feature is observed in the present result for the instantaneous pressure
coefficients at two symmetric probe points with respect to the wake centreline. The
identical asymmetry is also observed in the data obtained by other numerical simulations
(Ono et al. 2008) while the symmetry is observed using an experimental method
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Figure 11. Time histories of pressure coefficients at four probe points (a–d) located near the upstream edges
of the square cylinder at Re = 10 000.

(Kawai 2002). It can be noticed that the asymmetry might be caused by the limitation
of the present computational domain length (20w). Nishimura & Kawai (2010) tried to
see the main factor of the wake vortices causing the conical vortex switching by using a
splitter plate on the roof surface or in the wake of the square cylinder. They observed that
the switching of the conical vortex still occurs with a splitter plate on the roof surface
while it does not appear with a splitter plate in the wake, implying a strong effect of wake
vortices on the switching. For this interesting point, we will discuss more details of the
major factor related to wake vortex structures in the following subsections.

4.1.2. Dependence of Reynolds number
Figure 12 depicts the instantaneous coherent structures and pressure coefficient contours
on the top surface of a square cylinder at Re = 3000 and 10 000 during a switching
process of a conical vortex. While figure 12(a,c) shows the switching process of a conical
vortex at Re = 3000, figure 12(b,d) shows the switching process of a conical vortex at
Re = 10 000. The coherent structures around the square cylinder are highly changeable
because of the Reynolds number effect, although the switching process of a conical vortex
occurs independently of the change of Reynolds number. The highly negative pressure
suction region is observed to be switched on upstream sides of the top surface of the
square cylinder. The appearance of the conical vortex is identical to that observed by
numerical and experimental methods (Kawai 1997, 2002; Ono et al. 2008). However, this
appearance was detected based on the time history record of the pressure coefficient along
the upstream edges of a square cylinder’s top surface while the present observation is made
clearer using the Q-criterion contour of the flow field. The switching of the conical vortex
is highly correlated with the Kármán vortex shedding behind the square cylinder due to
the Reynolds number effect. This Kármán vortex is induced by the arch-shaped vortex
deformation, occasionally developing from side to side of the square cylinder. At higher
Reynolds number, the pressure suction region spreads along two upstream sides of the
cylinder’s top surface (shown in figure 12b,d); while it spreads along one upstream side at
lower Reynolds number (shown in figure 12a,c). That is because the KH instability forms
during the development of a conical vortex at higher Reynolds number (Re = 10 000), thus
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Figure 12. Instantaneous coherent structures and pressure coefficient contour on the top surface of square
cylinder at Re = 3000 and 10 000 during a switching process of a conical vortex; (a,c) the switching process
of conical vortex at Re = 3000 (jfm.2023re3000); (b,d) the switching process of conical vortex at Re = 10 000
(jfm.2023re10000). Panels show (a) Re = 3000, t∗ = 195, (b) Re = 10 000, t∗ = 125, (c) Re = 3000, t∗ = 236,
(d) Re = 10 000, t∗ = 145.

causing the waving reattachment lines. Therefore, it can be noted that the conical vortex
pair strongly attaches to the top surface at Re = 10 000 while it weakly attaches to the top
surface at Re = 3000. Furthermore, due to the Reynolds number effect, the angle between
the reattachment line and the upstream edge of the square cylinder at Re = 3000 (28.4◦)
is larger than that at Re = 10 000 (20.6◦). The large pressure suction on the top surface of
the square cylinder caused by a conical vortex was previously detected using extraction of
the time-mean and root-mean-square pressure coefficient and reattachment lines by Kawai
& Nishimura (1996), Kawai (1997), Marwood & Wood (1997), Kawai (2002) and Banks
(2013). They found that the reattachment line is inclined relative to the square cylinder’s
edge from 19.5◦ to 28.5◦ while the vortex core centreline is inclined from 12◦ to 14◦ to the
square cylinder’s edge. Therefore, our results fall into the observed range of references. In
addition, the distinct observation in the present work is that the variation of the Reynolds
number plays a crucial role in determining the inclination of conical vortex reattachment,
showing the inverse proportion of the Reynolds number increase to the inclination.

At Re = 3000, the arch-shaped vortex is asymmetrical and controlled by the pair of
conical vortices. In particular, as shown in figure 12(a), when the conical vortex attaches
to the top surface (shown by the reattachment line), the smaller part of the arch-shaped
vortex is observed. In an opposite manner, when the conical vortex detaches from the top
surface, the larger part of arch-shaped vortex is observed. A similar observation is obtained
at higher Reynolds number (shown in figure 12b). Hence, it is fair to note that the formation
of the arch-shaped vortex does not depend on the Reynolds number as long as the conical
vortex develops on the top surface of the square cylinder. Otherwise, the instability of the
horseshoe vortex in the front and wake of the square cylinder occurs at a higher Reynolds
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Figure 13. Instantaneous pressure coefficients at two probe points located along the side shear layer developed
behind the rear surfaces of the square cylinder at Re = 3000; (a) instantaneous pressure coefficients at two
probe points (A and B) located on the x–y plane (z/w = 0.5); (b) the contour of pressure coefficient at four
instants of t∗ = 195, 236, 277 and 319.

number of Re = 10 000. The primary and secondary horseshoe vortices are observed at
Re = 3000 while the primary horseshoe vortex is clearly detected at Re = 10 000 (the
secondary horseshoe vortex is weakly formed).

4.1.3. Undulation of Kelvin–Helmholtz instability
Figure 13 expresses the instantaneous pressure coefficients at two probe points located
along the side shear layer developed behind the rear surfaces of the square cylinder at
Re = 3000. Figure 13(a) shows the instantaneous pressure coefficients at two probe points
(A and B) located on the x–y plane (z/w = 0.5) while figure 13(b) depicts the contour
of the pressure coefficient at four instants of t∗ = 195, 236, 277 and 319. As shown in
figure 13(a), the instantaneous pressure coefficients denote the sway process of the shear
layer, being related to the Kármán vortex shedding. The sway of the shear layer of low
frequency starts from t∗ = 175, where the signal of KH instability of relatively higher
frequency appears intermittently with larger amplitude. The visualization of the shear layer
sway and the development of KH instability along the shear layers (red and yellow curved
lines) are clearly depicted in figure 13(b). During the sway process, the KH instability is
signified by small portions of negative pressure coefficient along the shear layers. These
KH vortices move downstream with the free-stream velocity and join with the 3-D vortices
in the far field. The signals of these low and high frequency vortices are transformed to
elucidate the quantitative details of these coherent motions. The identical occurrences of
the KH instability in the cylinder’s wake are characterized by other investigators of 2-D
circular and square cylinders (Prasad & Williamson 1997; Lander et al. 2018; Liu, Hamed
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Figure 14. Flapping process of KH instability developed on the top surface of square cylinder at Re = 3000
where the left-hand side and right-hand side columns indicate downward and upward flapping, respectively;
(a,b) the contour of velocity magnitude; (c,d) the contour of vorticity magnitude; (e, f ) the contour of
Q-criterion.

& Chamorro 2018) and surface-mounted square cylinders (Thomas & Williams 1999).
Furthermore, it is interesting to note that, when the shear layer sways itself from up to
down (based on top view), the negative pressure suction region caused by the conical
vortex also switches itself from one to another upstream side of the square cylinder. This
also reconfirms the strong correlation between the switching of the conical vortex and the
Kármán vortex shedding, as observed in figure 12. Nishimura & Kawai (2010) described
the interaction between the conical vortex and Kármán vortex in the wake although
Bienkiewicz & Sun (1992) and Kawai & Nishimura (1996) insisted that the conical
vortex switching appeared irregularly without the effect of wake vortices. Therefore, the
present scrutiny reconfirms the work of Nishimura & Kawai (2010), revealing the identical
frequency of conical vortex and Kármán vortex sheddings.

Figure 14 shows the flapping process of KH instability developed on the top surface
of a square cylinder where the left-hand side and right-hand side columns indicate the
downward and upward flapping, respectively. As shown in figure 14(a,c), two shear layers,
developed from the leading and trailing edges of the square cylinder, are observed in
flapping-down process. In this stage, the shear layers are strongly suctioned by the low
pressure region distributed on the cylinder’s surface. In figure 14(e), the separated shear
layer remains laminar in the range between the separation point near the leading edge of
x/w = 0 and x/w = 0.25. The instability region is shown in the range between x/w = 0.25
and x/w = 1.5. During this process, the KH vortex starts to shed from the laminar shear
layer at x/w = 0.25 because of the amplification of the disturbance. Then, it evolves
and gets larger in size at x/w = 0.45. The KH vortex is stretched and interacts with
other discrete vortices at x/w = 0.8. The stretching process includes vortex splitting,
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Figure 15. Spectra of streamwise velocity fluctuations (φ) at nine probe points located along the core of the
conical vortex developed on the top surface of the square cylinder at Re = 3000.

forming the transition region of the KH instability. In the flapping-down process (shown
in figure 14b–d), only one shear layer, developed from the leading edge of the square
cylinder, is observed. At this stage, the shear layer undulates upward because of the higher
surface pressure distribution compared with the downward process. Due to the upward
undulation of the shear layer, the KH vortex starts to shed from the laminar shear layer
at x/w = 0 because of the amplification of the disturbance. Then, it evolves with larger
deformation at x/w = 0.65. The KH vortex is stretched and interacts with other discrete
vortices at x/w = 1.2 by diffusing vorticity, causing vortex breakdown into random eddies.
Generally, the KH vortices on the top surface of the surface-mounted square cylinder are
identical with those observed by Brun et al. (2008) for a 2-D square cylinder at Re = 2000.
However, in this study, it is interesting to note that the position, where the KH vortex
starts to shed, tends to move upstream along the shear layer during the flapping-up process
compared with that during the flapping-down process.

Figure 15 analyses the spectra (φ) of streamwise velocity fluctuations (u
′ = u∗ − ũ∗,

where ũ∗ stands for the moving-averaged streamwise velocity) at nine probe points located
along the core of the conical vortex developed on the top surface of the square cylinder at
Re = 3000. As shown in the figure, the frequencies of von Kármán vortex shedding (fVK)
and KH instability (fKH) are clearly observed at six locations from point 1 to point 6, where
only the sign of KH instability is identified at points 7, 8 and 9. At the separation point close
to the leading edge of the square cylinder (point 1), the signature of the von Kármán vortex
is unclear while it is obvious at points 2, 3, 4, 5 and 6, where two peaks of fVK and 0.5fVK
are detected. From point 3 to point 9, two signatures of KH vortices of fKH and 0.5fKH
are also observed, revealing the occurrence of vortex pairing. The frequencies fKH and
0.5fKH are remarkably noticeable at points 1, 2 and 3, signifying the development of KH
vortices along the conical vortex on the top surface of the square cylinder. The frequencies
fKH and 0.5fKH at points of 4 to 9 are signified by the KH vortices shed from the shear
layer of the rear surfaces of the square cylinder. At points 7, 8 and 9, the energy spectrum
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Figure 16. Ratio scaling of KH frequency and von Kármán frequency, fKH/fVK as a function of Reynolds
number (Re). The continuous and dash-dotted lines are the scaling models of square and circular cylinders
proposed by Lander et al. (2018) and Prasad & Williamson (1997), respectively. Right-pointing triangle (�)
is the numerical data of Brun et al. (2008). Square (�) is the numerical DNS data of Trias et al. (2015).
Circle (◦) is the experimental data of Lander et al. (2018). Diamond (�) is the present data, where the inset
depicts the spectra of three velocity fluctuation components at probe point 2 (−0.598w, −0.046w, 0.02w) at
Re = 10 000.

cascade of the flow approaches the k−5/2 slope. The present results of fKH and 0.5fKH
are identical at all probe points along the shear layer while those spectral frequencies are
lower with an increase in distance along the shear layer, as observed by Lander et al. (2018).
The change of spectral frequencies is because of the reduction of convection velocity of the
KH vortices in the shear layer of the 2-D square cylinder; and the reverse flow between
the cylinder’s surface and the shear layer also reduces the convection velocity. However,
the reverse flow is neglected in the present 3-D square cylinder because of the occurrence
of strong conical vortex tubes on the cylinder’s top surface, as observed in figure 10(c).

Figure 16 expresses the scaling of the ratio of KH and von Kármán frequencies
(fKH/fVK) as a function of Reynolds number (Re). The continuous and dash-dotted
lines are the scaling models of square and circular cylinders proposed by Lander et al.
(2018) and Prasad & Williamson (1997), respectively. The frequency ratio scaling of
the square and circular cylinders, represented by the power-law relations, are fKH/fVK =
0.18Re0.6 and fKH/fVK = 0.0235Re0.67, respectively. Right-pointing triangle is the LES
data of Brun et al. (2008). Square is the DNS data of Trias et al. (2015). Circle is the
laser Doppler velocimetry data of Lander et al. (2018). Diamond is the present LBE
data at Re = 3000 and 10 000 where the inset depicts the spectra of three components
of the velocity fluctuation at probe point 2 (−0.598w, −0.046w, 0.02w) at Re = 10 000.
The present results show a good agreement with the power-law relation of the square
cylinder. It is interesting to note that the energy spectrum approaches the k−5/3 slope
of Kolmogorov’s similarity hypothesis at Re = 10 000; while the k−5/2 slope is obtained
at Re = 3000. The higher inclination of the energy spectra at higher Reynolds number
is correlated with the vortex structures formed behind the square cylinder. As can be
seen in figure 12, the larger coherent structures (KH instability and arch-shaped vortex)
occur in the wake at Re = 3000 while smaller structures appear at Re = 10 000. Hence,
it is fair to note that the smaller coherent structures demonstrate the more inclined
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energy spectrum slope of Kolmogorov’s similarity hypothesis, reconfirming the present
finding of a Reynolds number effect discussed in the previous subsection. As reported
by Prasad & Williamson (1997), Brun et al. (2008) and Liu et al. (2018), the frequency
of Kármán vortex shedding slightly increases in the range of 103 < Re < 5.4 ∗ 104 for
the case of a 2-D circular cylinder while it remains nearly unchanged for the case of
a 2-D square cylinder in the range of 1.5 ∗ 104 < Re < 7.4 ∗ 104 (Lander et al. 2018).
Therefore, it primarily depends on the kinematic viscosity of the flow. In the present work,
the frequency of Kármán vortex shedding at Re = 10 000 (figure 16) is slightly larger
than that at Re = 3000 (figure 15), following the trend obtained by the circular cylinder
references. Therefore, it should be noted that the Kármán vortex shedding frequency is not
controlled by the spanwise length of the 2-D circular cylinder or the package of vortices
(arch-shaped, conical and KH) of a low-AR surface-mounted square cylinder.

4.1.4. Association of coherent structures with flow separation
It was thoroughly discussed in previous sections that the large pressure suction is generated
along the upstream edges close to a roof corner of the square cylinder. This local suction
is induced by a pair of conical vortices on the roof resulting from flow separation from
these edges. Otherwise, the horseshoe, arch-shaped, KH, hairpin and Kármán vortices
were also observed. In this section, we will extract the association and correlation with
flow separation of these coherent structures. Figure 17 shows the correlation of a conical
and KH vortex with a horseshoe vortex at Re = 3000. Instantaneous contours of vorticity
magnitude (|ω|) and velocity vector distribution on y–z planes of x/w = 0 and x/w = 0.9
are expressed during a switching process of conical vortices at t∗ = 195 and t∗ = 236.
As shown in the figure, the flow pattern changed suddenly from t∗ = 195 to t∗ = 236 and
vice versa in the y–z plane of x/w = 0, as the left and right parts of the conical vortex
core grew and decayed alternately. The conical vortex part showing oppositely rotating
spiral cores attaches closely to the roof surface, corresponding to the maximum suction
on the roof directly underneath the conical vortex. This phenomenon is identical to what
was observed by Kawai (1997) and Taniguchi & Taniike (1996). The difference in the
current study is that we recognize the conical vortex by contour of vorticity magnitude,
which is better than the wind-tunnel visualization in the previous research. In y–z plane
of x/w = 0.9, the conical vortex core continuously elongates downstream and drives
the roof’s KH vortex to roll in the clockwise direction, generating the re-entrant part
of the arch-shaped vortex expressed in figure 17(a), which was similarly observed by
Kawai et al. (2012). However, this study shows that the arch-shaped vortex is formed
by the KH vortices from the roof and side surfaces (as also observed in figure 10a).
Moreover, during the switching process, the leg parts of the arch-shaped vortex alternately
grew and decayed in vorticity magnitude. Simultaneously, the primary horseshoe vortex
rolls toward the side surface of the square cylinder (0.67w) near the stronger vorticity
part. Meanwhile, the opposite primary horseshoe vortex was driven away (0.8w) from
the side surface of the square cylinder near the weaker vorticity part as a result of
the sway process of the side shear layers (figure 13). It was oppositely observed in
figure 17(b). Therefore, it demonstrates the strong correlation of KH vortex with horseshoe
vortex.

Figure 18 clearly shows not only the association of coherent structures with flow
separation, but also the crucial role of the Kármán vortex at Re = 10 000 in affecting
the oscillating frequency of KH, conical and horseshoe vortex structures. Two probe
points A and B are respectively located near the side shear layer and horseshoe vortex
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Figure 17. Correlation of conical and KH vortex with horseshoe vortex at Re = 3000. Instantaneous contours
of vorticity magnitude (|ω|) and velocity vector distribution on y–z planes of x/w = 0 and x/w = 0.9 are
expressed during a switching process of conical vortices at t∗ = 195 (a) and t∗ = 236 (b).

to capture the dominant frequencies around these vortices. As seen in figure 18(a),
the dominant frequencies at probe point A include the Kármán (fVK) and KH (fKH)
frequencies; meanwhile those at probe point B involve the Kármán and hairpin frequencies
(fH shown in figure 18d). It is interesting to note that the hairpin frequency is lower than the
KH frequency; while the Kármán frequency dominates both the side shear layer and the
horseshoe vortex. The detection of fKH in the present study is also similar to that observed
by Kawai & Nishimura (1996). Figure 18(b,c) expresses the sway process of the horseshoe
vortex at Re = 10 000 due to the dominance of the Kármán vortex, which is generated
due to the instability of the arch-shaped vortex shown in figure 18(d). The sway of the
present horseshoe vortex is in agreement with the observations of Pattenden et al. (2005)
and Krajnović (2011) for a circular cylinder.

4.2. Time-averaged field

4.2.1. Flow separation
To comprehensively interpret the 3-D complex separation of oblique flow past a
surface-mounted square cylinder, critical-point theory is employed to obtain the logical
elucidation of this complex flow in a time-mean sense. That is because the instantaneous
surface flow pattern is identical to the time-mean surface flow pattern when the shear
layer is close to the surface (Cao, Tamura & Kawai 2019). The theory distinguishes the
critical points, where the indeterminate streamlines or skin-friction lines are obtained
from high-resolution numerical simulation or experiment (Délery 2001). Accordingly,
the flow topology is introduced by critical points, detachment/reattachment lines,
separation/reattachment surfaces and topological rules to describe consistently the
complex flow separation. Figure 19 shows classification of the critical point in the
p–q chart (defined by the eigenvalues λ1 and λ2 of the velocity derivative tensor,
Fij = ∂τwi/∂xj, where τwi stands for surface shear stress), reproduced following
Délery (2001). The purple-filled points represent unstable and stable foci and the centre
while the green- and red-filled points stand for isotropic, attachment and separation nodes
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Figure 19. Classification of critical point in the p–q chart, reproduced following Délery (2001). The
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and saddle points, respectively. In this study, foci, nodes, saddle points, half-saddle points,
half-node points, attachment lines and separation lines are respectively denoted by F, N, S,
S

′
, N

′
, (A) and (S). These critical points satisfy the topological basic rules (Délery 2013)

as follows: (∑
N + 1

2

∑
N

′
)

−
(∑

S + 1
2

∑
S

′
)

= 1 − n. (4.1)

For a simply connected domain, n = 1; for a doubly connected domain, n = 2.
Figure 20 shows the separated flow topologies projected on the x–y planes of z/w =

0.05, 0.25 and 0.5. Figure 20(a i,b i,c i) shows the surface flow patterns of the present
simulation results, visualizing the pseudo-streamlines with respect to the velocity vector;
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Figure 20. The separated flow topologies projected on the x–y planes: (a) z/w = 0.05; (b) z/w = 0.25;
(c) z/w = 0.5. Figures (a i,b i,c i) show the surface flow patterns of the present simulation results, visualizing
the pseudo-streamlines with respect to the velocity vector; figures (a ii,b ii,c ii) reconstruct the flow topology
based on critical-point concepts from the left-hand side figures. The colour shows the contour of the time-mean
pressure coefficient ranging from −1 to 1.4.

figure 20(a ii,b ii,c ii) reconstructs the flow topology based on critical-point concepts from
figure 20(a i,b i,c i). The colour shows the contour of the time-mean pressure coefficient
ranging from −1 to 1.4. Figure 20(a) shows the topology of the bottom-surface flow,
represented by foci (F1 and F2), saddle points (S1, S2, S3 and S4), half-saddle points
(S

′
1, S

′
2 and S

′
3), nodes (N1 and N2), half-node point (N

′
1), separation lines ((S1),(S2),

(S3), (S4) and (S5)) and attachment line (A). Generally, the present result of S3, S4, N1
and S1 agrees well with that obtained by Thomas & Williams (1999). Furthermore, all
critical points of the bottom-surface flow in this study satisfy the topological constraint
of a doubly connected domain (4.1), such as (

∑
N + 1

2
∑

N
′
) − (

∑
S + 1

2
∑

S
′
) = −1,

where
∑

N = 4,
∑

N
′ = 1,

∑
S = 4 and

∑
S

′ = 3. The free-stream flow approaches and
diverges from the separation line (S1), where the divergence point is the saddle point S1.
The separation line (S1) is the contact line of the secondary horseshoe vortex with the
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DNS of 45◦ oblique flow past surface-mounted square cylinder

bottom surface. This vortex originates from the saddle point S1, surrounds the square
cylinder and extends downstream before entering the free-stream flow. The attachment line
(A) starts from the node N1 and emanates around the square cylinder, forming the contact
line of the primary horseshoe vortex with the bottom surface. Similarly, the primary
horseshoe vortex also spreads around the square cylinder, and proceeds downstream before
entering the free-stream flow. In the wake region, the shear flows (separated from the
half-saddle points S

′
2 and S

′
3) and the reversed flows (started from the half-node point N

′
1)

spin towards the symmetrical foci F1 and F2. These two foci F1 and F2 are isolated by
separation lines (S3) and (S4), passing through the saddle points S3 and S4, respectively.
In other bluff body studies, one saddle and two focus points are regularly observed in the
time-mean wake while two saddle and two focus points are identified in the present study.

Figure 20(b) expresses the flow topology in the x–y plane of z/w = 0.25, represented
by foci (F1, F2, F3 and F4), saddle point S1, half-saddle points (S

′
1, S

′
2, S

′
3, S

′
4, S

′
5, S

′
6, S

′
7

and S
′
8), separation lines ((S1) and (S2)). All critical points also satisfy the topological

constraint of a doubly connected domain, where
∑

N = 4,
∑

N
′ = 0,

∑
S = 1 and∑

S
′ = 8. The symmetrical foci F1 and F2 are formed by the reversed flows started from

saddle points S
′
6 and S

′
7, respectively. The vortex foci F3 and F4 are symmetrical and

isolated by the separation line (S2) of the saddle point S1, which is identical to other bluff
body studies. Figure 20(c) expresses the flow topology in the x–y plane of z/w = 0.5,
represented by foci (F1 and F2), node N1, half-saddle points (S

′
1, S

′
2, S

′
3, S

′
4, S

′
5, S

′
6, S

′
7 and

S
′
8). All critical points also satisfy the topological constraint of a doubly connected domain,

where
∑

N = 3,
∑

N
′ = 0,

∑
S = 0 and

∑
S

′ = 8. The formation of two symmetrical
foci F1 and F2 is different from that in the middle plane of z/w = 0.25. In particular, the
reversed flows started from the saddle point S

′
6 and node N1 roll themselves towards F1;

and similarly to F2.
Figure 21 expresses the flow topology in the x–z plane of y/w = 0, represented by foci

(F1, F2, F3, F4 and F5), saddle point S1, half-saddle points (S
′
1, S

′
2, S

′
3, S

′
4, S

′
5, S

′
6, S

′
7, S

′
8, S

′
9

and S
′
10). All critical points also satisfy the topological constraint of a doubly connected

domain, where
∑

N = 5,
∑

N
′ = 0,

∑
S = 1 and

∑
S

′ = 10. In the cylinder–surface
junction region of the square cylinder, the foci F1 and F2 represent the primary and
secondary horseshoe vortices. On the top surface, the focus F3 is the vortex bubble that
arises near the leading edge because of the reversed flow starting from the saddle point
S

′
6. In the wake region, the shear layer developed from the trailing edge of the top surface

(half-saddle point S
′
7) proceeds downstream and rolls itself towards the attachment region,

originating from the half-saddle point S
′
10. The large recirculation zone of the node centre

F5 is manifested between the separated shear layer and small recirculation zone of node
centre F4 in the junction region.

Figure 22 depicts the flow topologies on the top and leeward surfaces of the square
cylinder which are reproduced from the surface streamline contours. As shown in
figure 22(a), the symmetrical separation lines of (S1) and (S2), originating from the
separation point near the upstream corner point of the square cylinder signify the
detachment of the conical vortex from the top surface while the attachment line (A1) is
the contact line of the conical vortex with the top surface. Therefore, the conical vortex
manifests itself between the separation and attachment lines, forming the symmetrical
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Figure 21. The separated flow topology projected on the x–z plane of y/w = 0; (a) the surface flow pattern
of the present simulation results, visualizing the pseudo-streamlines with respect to the velocity vector;
(b) the reconstruction of the flow topology based on critical-point concepts. The colour shows the contour
of the time-mean pressure coefficient ranging from −1 to 1.4.
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Figure 22. Reproduction of flow topologies on the square cylinder surfaces from the present results of
surface streamline contours: (a) top-surface flow topologies; (b) leeward surface flow topologies.

conical vortices at two regions segregated by the attachment line (A1). The separation
line (S2) continuously extends on the leeward surface of the square cylinder, as shown in
figure 22(b). The (S2) line is finally prevented by attaching the separation node point N2.
Otherwise, the attachment node point N1 is observed to firmly connect with two saddle
points S1 and S2. The reversed flows from right to left caused by the adverse pressure
gradient are isolated by the separation line (S5) of the saddle point S2. The saddle point
S3 is observed in the cylinder–surface junction region with its two separation lines (S6)
and (S7).

4.2.2. Time-mean coherent structures
Figure 23 expresses time-mean streamline contours with critical points in the symmetry
plane in the junction region near the front cylinder surface and compares the present
results with those obtained by Jenssen et al. (2021). In the reference data, the Reynolds
number was investigated at ReD = 39 000 (where D is the diameter of circular cylinder).
In the present results, the blue and red contours represent the regions of the negative
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Figure 23. Time-mean streamline contours with critical points in the symmetry plane in the junction region
near the front cylinder surface; (a,b) particle image velocimetry and LES data of a circular cylinder (Jenssen
et al. 2021); (c) present results of a square cylinder where the blue and red contours represent the negative
(wall-parallel jet) and positive time-mean streamwise velocities, respectively.

(called wall-parallel jet) and positive streamwise velocity, respectively. As shown in
figure 23(c), these regions are isolated by the black layer, where the streamwise velocity
approaches zero. Wall-parallel jet region is formed by the downflow intruding into the
bottom surface at half-saddle point S3, then deflecting in the upstream direction, and
finally penetrating the bottom surface until the half-saddle point N1. In the reference results
shown in figure 23(a,b), a part of the downflow is redirected to the cylinder front surface
at node point V3, which is not observed in the present study. The primary and secondary
horseshoe vortex centres at foci V1 and V2 are observed in the present study while only
a primary horseshoe vortex centre is detected in the reference. The present location of
V1 (x/w + 0.205 = −0.621) is closer to the cylinder surface than that of the reference
(x/D = −0.73, as shown in figure 23b). That is because the favourable pressure gradient
at upstream surfaces of 45◦ square cylinder is larger than those of a circular cylinder
(Baker 1980; Pattenden et al. 2005; Jenssen et al. 2021). Although the present thickness
of the wall-parallel jet is higher than that of the reference because of the occurrence of
V2, the present location of N1 (x/w + 0.205 = −1.09) is identical to that of the reference
(x/D = −1.1, as shown in figure 23b).
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Figure 24. Three-dimensional separation flow visualization in the top-surface region projected on seven z–y
planes of x/w ranging from −0.6 to 0.9. Each plane visualizes the contour of vorticity magnitude with respect
to the pseudo-streamlines.

Figure 24 depicts 3-D separation flow visualization in the top-surface region projected
on seven z–y planes of x/w ranging from −0.6 to 0.9. According to the discussion of
the development of a symmetrical conical vortex on the top surface of a square cylinder
in figure 22(a), seven planes are arranged to capture the development of one time-mean
conical vortex on a half-side of the square cylinder’s top surface. Each plane visualizes the
contour of vorticity magnitude with respect to the pseudo-streamlines. Starting from the
separation point, the conical vortex core expands its size with an increase in x/w, forming
the conical vortex core, as also observed in figure 10(c). From x/w = −0.6 to x/w = 0.25
the conical vortex still attaches the top surface while it moves upwards and rolls in the
counterclockwise direction at x/w = 0.6 and 0.9 because of the sway of the shear layer on
the leeward surface. It reconfirms the strong correlation between the sway of the shear layer
and the switching of the conical vortex discussed in figure 13. Otherwise, the reattachment
line is observed to be more inclined from the upstream edge than the conical vortex core,
which is similar to other references (Kawai & Nishimura 1996; Kawai 1997; Marwood
& Wood 1997; Kawai 2002; Banks 2013). The 3-D coordinate of the conical vortex core
is extracted by figure 25, where the attachment of the conical vortex is clearly shown on
the top surface. While the upstream portion creates and time-mean angle of 26.4◦ to the
upstream edge, the downstream portion of the conical vortex core proceeds aloft when this
vortex travels out from the top surface.

The aloft part of the conical vortices continuously travels downstream and establishes
the arch-shaped vortex, as observed in figure 26. The arch-shaped vortex and its
deformation projected on the y–z planes of x/w ranging from 0.75 to 2 is visualized, where
left-hand side figures indicate the streamwise time-mean vorticity contours; and right-hand
side figure shows the Q-criterion contour of Q = 10. The horseshoe, side shear layer and
conical vortices are clearly captured around the square cylinder while the base streamwise
vortex pair is also detected in the moderate wake of the square cylinder. The tip and base
vortices are categorized as the streamwise counter-rotating vortices that always occur in
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Figure 25. The conical vortex core above the top surface of the square cylinder.

the near- and moderate- wake of the 3-D square cylinder (da Silva et al. 2020; Cao et al.
2022). In this study, the tip vortex pair is not observed due to the small cylinder AR of 0.5.
In the in-plane flows at x/w = 0.75, the symmetrical arch-shaped vortices are established
by two counter-rotating parts, including clockwise (blue contours) and counterclockwise
(yellow contours) parts. Each part contains a vortex head and tail. In particular, the upward
flows travel vertically from the bottom surface of z/w = 0 to z/w = 0.45, then emanate in
the opposite transverse directions, thus forming the symmetrical arch-shaped vortices. The
development of these vortices is driven by the conical vortices. As a result, the head vortex
starts to split from its tail at x/w = 0.9 because of the aloft part of the conical vortex core.
These vortices are partly split at x/w = 1.2, and they are fully broken into the 3-D vortex
structures at x/w = 2. Simultaneously, the downflow caused by the downwash roll of the
shear layer from the top surface (observed in figure 21) occurs to manifest the base vortices.
Therefore, it is interesting to note that the formation of the base vortex is highly correlated
to the streamwise termination of the arch-shaped vortex.

The arch-shaped vortex core in the wake of the square cylinder is shown in figure 27,
where the vortex centres of the core are coordinated from the streamline contours shown
in figures 20 and 21. The arch-shaped vortex was rooted by two foci on the x–y plane
near the bottom surface. Furthermore, the inclination of the arch-shaped vortex core is
clearly observed and driven by the aloft part of the conical vortex (as seen in figure 24),
which connects to the sway of the separated shear layer from the square cylinder side (as
seen in figure 13). The attachment of the downwash flow of the conical vortex pair at the
attachment line (A1) (depicted in figure 22a) exhibits the re-entrance of the arch-shaped
vortex, which is identical to that observed by Kawai et al. (2012).

4.2.3. Reynolds stresses
To understand the detailed interaction between the coherent structures around the square
cylinder and boundary layer on the bottom surface, the transport of turbulent fluctuations
is investigated in this section. The Reynolds stresses connecting directly to the turbulence
intensity is discussed, including normal (u′u′ , v

′
v

′ and w′w′) and shear (u′
v

′ and
w′u′) stresses. That is because the Reynolds stress component of v

′w′ is nearly zero
due to statistical symmetry. The present examination of the Reynolds stress will shed
some light on the characteristics of wake coherent structures in time-mean fluctuation
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Figure 26. Visualization of arch-shaped vortex and its deformation projected on y–z planes of x/w ranging
from 0.75 to 2; (a–d) indicate the streamwise time-mean vorticity contours; (e) shows the Q-criterion contour
of Q = 10.

sense, including primary and secondary horseshoe vortices (denoted as PHS and SHS,
respectively), side shear layer (SSL), rolled shear layer (RSL), arch-shaped vortex (ASV)
and base vortex (BV). Figure 28 depicts the Reynolds normal stress projected on the x–y
planes of z/w = 0.05, 0.25 and 0.5 while figure 28(a,d,g) shows the spanwise-averaged
Reynolds normal stress of u′u′ , (b,e,h) and (c, f,i) show the transverse- and vertically
averaged Reynolds normal stresses of v

′
v

′ and w′w′ , respectively. For the distribution of
u′u′ , at the bottom surface of z/w = 0.05, the signature of the side shear layer, primary
and secondary horseshoe vortices are clearly marked. At z/w = 0.25, the PHS and SHS
disappear while the SSL is intensified together with the existence of the arch-shaped
vortex. At z/w = 0.5, the SSL and ASV are greatly escalated. For the distribution of v

′
v

′ ,
the attachment region (observed in figure 21) is intensively signified at the z/w = 0.05
because of the rolled shear layer separated from the cylinder’s top surface. The intensity
of the shear layer is reduced at z/w = 0.25 and 0.5, which is opposite to the distribution
of w′w′ .

Figure 29 shows the time-averaged Reynolds shear stress projected on the x–y planes
of z/w = 0.05, 0.25 and 0.5. While the left-hand side column shows the Reynolds shear
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Figure 27. The arch-shaped vortex core in the wake of square cylinder.

stress of u′
v

′ , the right-hand side column expresses the Reynolds normal stress of w′u′ .
For the distribution of u′

v
′ , the PHS, SSL and BV are clearly marked at z/w = 0.05

while the colour contours mean counter rotations. The counter-rotating base vortices
reconfirm the identical observation to the previous studies (da Silva et al. 2020; Cao et al.
2022). At z/w = 0.25, only the SSL is intensively magnified while the ASV and SSL
are simultaneously detected at z/w = 0.5. For the distribution of w′u′ , the ASV is clearly
observed at z/w = 0.25 and greatly intensified at z/w = 0.5 while it is weakly captured
at the bottom surface. Figure 30 depicts averaged Reynolds normal and shear stresses
projected on the symmetry plane. While the streamwise-, transverse- and vertical-averaged
Reynolds normal stresses are respectively shown in figures 30(a), 30(b) and 30(c), the
averaged Reynolds shear stress of w′u′ is expressed in figure 30(d). The rolled shear layers
are well captured in the distributions of u′u′ , w′w′ and w′u′ while the high intensity of v

′
v

′

is concentrated on the attachment region. Especially, the highest intensity of v
′
v

′ is around
the half-saddle point S

′
10, as observed in figure 21.

5. Conclusions

The complete near-wall coherent structures around a 3-D surface-mounted square cylinder
of AR = 0.5 in an oblique uniform flow of α = 45◦ have been comprehensively
investigated for the first time by using LBE combined with block-structured
topology-confined mesh refinement and a fast ray-triangle intersection algorithm. A very
high resolution Cartesian mesh (256 × 256 × 256 cells for a volume of 1w × 1w × 1w) is
utilized to capture the detailed characteristics of coherent structures and the small-scale
flow separation at moderate Reynolds numbers of 3000 and 10 000. The critical-point
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Figure 28. Averaged Reynolds normal stress projected on x–y planes of z/w = 0.05, 0.25 and 0.5; (a,d,g)
show the spanwise-averaged Reynolds normal stress of u′ u′ ; (b,e,h) show the transverse-averaged Reynolds
normal stress of v

′
v

′ ; (c, f,i) show the vertically averaged Reynolds normal stress of w′ w′ .

concept was employed to describe the reasonable and compatible topologies of flow
separation around and on the square cylinder’s surfaces. The detailed findings of the
present study on the coherent structures with the topological description are encapsulated
as follows.

The large-scale horseshoe vortices (primary and secondary) at two notable foci are
frequently observed in the junction region in front of the square cylinder. The wall-parallel
jet region developed on the bottom surface is formed by the downflow intruding into the
bottom surface at the half-saddle point, then deflecting in the upstream direction and finally
penetrating the bottom surface until the half-saddle point. The present location of primary
horseshoe vortex centres is closer to the square cylinder surface than that of the reference.
That is because the favourable pressure gradient at upstream surfaces of a 45◦ square
cylinder is larger than those of a circular cylinder and a 0◦ square cylinder.

A pair of conical vortices is usually observed on the cylinder’s top surface. In the
instantaneous field, the conical vortices switch themselves on two cylinder sides, where the
switching frequency is identical to that of the sway of the side shear layer. In the time-mean
field, the conical vortex core consists of two segments. While the upstream segment is
attached to the cylinder surface, the downstream segment moves upwards because of the
sway of the side shear layer. The undulation of the KH instability is observed in the
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Figure 29. Averaged Reynolds shear stress projected on x–y planes z/w = 0.05, 0.25, and 0.5; (a,c,e) show
the Reynolds shear stress of u′

v
′ ; (b,d, f ) show the Reynolds normal stress of w′ u′ .

instantaneous development of the conical vortex and side shear layer. The KH frequency
is smaller than the Kármán frequency, which connects to the sway of the side shear layer.
The scalings of the ratio of the KH and von Kármán frequencies show a good agreement
with the power-law relation (fKH/fVK = 0.18Re0.6) of the square cylinder proposed by
Lander et al. (2018).

The large-scale arch-shaped vortex is often detected in the intermediate wake region of
the square cylinder, involving two inter-connected portions, such as a leg portion separated
from the side leeward surfaces and a head portion rolled up from the top surface. The leg
portion of the arch-shaped vortex was rooted by two foci on the bottom-surface plane
near the bottom surface. The inclination of the arch-shaped vortex core is driven by the
aloft part of the conical vortex, connecting to the sway of the separated shear layer from
the square cylinder side. The re-entrance of the arch-shaped vortex is exhibited by the
attachment of the downwash flow of the conical vortex pair at the attachment line. The
streamwise counter-rotating base vortices observed close to bottom surface are formed
because of the downwash roll of the shear layer from the top surface. The formation
of the base vortex is highly correlated to the streamwise termination of the arch-shaped
vortex.
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Supplementary movies. Supplementary movies are available at https://doi.org/10.1017/jfm.2024.554.
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